1
|
Fontanesi F. IUBMB Life special issue: Mitochondrial biology and the yeast paradigm. IUBMB Life 2024; 76:614-616. [PMID: 38599587 DOI: 10.1002/iub.2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Veloso Ribeiro Franco L, Barros MH. Biolistic transformation of the yeast Saccharomyces cerevisiae mitochondrial DNA. IUBMB Life 2023; 75:972-982. [PMID: 37470229 DOI: 10.1002/iub.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.
Collapse
Affiliation(s)
| | - Mario H Barros
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Yang G, Zhao T, Lu S, Weng J, Zeng X. T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase. Int J Mol Sci 2022; 23:ijms23042327. [PMID: 35216443 PMCID: PMC8877559 DOI: 10.3390/ijms23042327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-encoded Atp23 was previously shown to have dual functions, including processing the yeast Atp6 precursor and assisting the assembly of yeast mitochondrial ATP synthase. However, it remains unknown whether there are genes functionally complementary to ATP23 to rescue atp23 null mutant. In the present paper, we screen and characterize three revertants of atp23 null mutant and reveal a T1121G point mutation in the mitochondrial gene COX1 coding sequence, which leads to Val374Gly mutation in Cox1, the suppressor in the revertants. This was verified further by the partial restoration of mitochondrial ATP synthase assembly in atp23 null mutant transformed with exogenous hybrid COX1 T1121G mutant plasmid. The predicted tertiary structure of the Cox1 p.Val374Gly mutation showed no obvious difference from wild-type Cox1. By further chase labeling with isotope [35S]-methionine, we found that the stability of Atp6 of ATP synthase increased in the revertants compared with the atp23 null mutant. Taking all the data together, we revealed that the T1121G point mutation of mitochondrial gene COX1 could partially restore the unassembly of mitochondrial ATP synthase in atp23 null mutant by increasing the stability of Atp6. Therefore, this study uncovers a gene that is partially functionally complementary to ATP23 to rescue ATP23 deficiency, broadening our understanding of the relationship between yeast the cytochrome c oxidase complex and mitochondrial ATP synthase complex.
Collapse
|
4
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
RNA processing in yeast mitochondria: characterization of mit(-) mutants disturbed in the synthesis of subunit I of cytochrome c oxidase. Curr Genet 2013; 8:457-65. [PMID: 24177916 DOI: 10.1007/bf00433912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1984] [Indexed: 10/26/2022]
Abstract
Mit(-) mutants disturbed in the synthesis of cytochrome c oxidase subunit I lack the mRNA for this protein and accumulate longer RNAs still containing intron sequences. We have analyzed the patterns of transcripts occurring in several such mutants in an attempt to define a pathway of processing events and to demarcate intron-sequences involved in RNA splicing. We find that processing does not follow a strictly ordered pathway and, in contrast to the situation for the cytochrome b gene, that a block in the processing of an intron does not necessarily lead to a block in the processing of introns downstream. Although in some cases, this may result from overlapping specificities of intronic-URF encoded RNA maturases, an internal start of translation on precursor RNAs seems more likely.M5-16, a mutant deleted for a large part of the central portion of the subunit I gene exhibits delayed processing and a highly simplified pattern of intermediates. The lengths of these indicate that maturation of the mRNA for subunit I involves processing, as well as splicing.
Collapse
|
6
|
Woo DK, Jung YW, O'Brien KM, Poyton RO. Molecular characterization of a mitochondrial mutant carrying point mutations in the 3′ untranslated region of theCOX3mRNA fromSaccharomyces cerevisiae. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.782898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Respiratory and TCA cycle activities affect S. cerevisiae lifespan, response to caloric restriction and mtDNA stability. J Bioenerg Biomembr 2011; 43:483-91. [PMID: 21833600 DOI: 10.1007/s10863-011-9377-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
We studied the importance of respiratory fitness in S. cerevisiae lifespan, response to caloric restriction (CR) and mtDNA stability. Mutants harboring mtDNA instability and electron transport defects do not respond to CR, while tricarboxylic acid cycle mutants presented extended lifespans due to CR. Interestingly, mtDNA is unstable in cells lacking dihydrolipoyl dehydrogenase under CR conditions, and cells lacking aconitase under standard conditions (both enzymes are components of the TCA and mitochondrial nucleoid). Altogether, our data indicate that respiratory integrity is required for lifespan extension by CR and that mtDNA stability is regulated by nucleoid proteins in a glucose-sensitive manner.
Collapse
|
8
|
Predicting the contribution of novel POLG mutations to human disease through analysis in yeast model. Mitochondrion 2010; 11:182-90. [PMID: 20883824 DOI: 10.1016/j.mito.2010.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022]
Abstract
The yeast Saccharomyces cerevisiae was used to validate the pathogenic significance of eight human mutations in the gene encoding for the mitochondrial DNA polymerase gamma, namely G303R, S305R, R386H, R574W, P625R, D930N, K947R and P1073L, among which three are novel and four are of unclear pathological significance. Mitochondrial DNA extended and point mutability as well as dominance/recessivity of each mutation has been evaluated. The analysis in yeast revealed that two mutations, S305R and R386H, cannot be the sole cause of pathology observed in patients. These data led us to search for a second mutation in compound with S305R and we found a mutation, P1073L, missed in the first genetic analysis. Finally, a significant rescue of extended mutability has been observed for several dominant mutations by treatment with mitochondrial antioxidants.
Collapse
|
9
|
Baruffini E, Ferrero I, Foury F. In vivo analysis of mtDNA replication defects in yeast. Methods 2010; 51:426-36. [PMID: 20206271 DOI: 10.1016/j.ymeth.2010.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/27/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has the capacity to survive large deletions or total loss of mtDNA (petite mutants), and thus in the last few years it has been used as a model system to study defects in mitochondrial DNA (mtDNA) maintenance produced by mutations in genes involved in mtDNA replication. In this paper we describe methods to obtain strains harboring mutations in nuclear genes essential for the integrity of mtDNA, to measure the frequency and the nature of petite mutants, to estimate the point mutation frequency in mtDNA and to determine whether a nuclear mutation is recessive or dominant and, in the latter case, the kind of dominance.
Collapse
Affiliation(s)
- Enrico Baruffini
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, Viale Usberti 11/A, 43124 Parma, Italy.
| | | | | |
Collapse
|
10
|
Hagemann R. The foundation of extranuclear inheritance: plastid and mitochondrial genetics. Mol Genet Genomics 2010; 283:199-209. [PMID: 20140454 DOI: 10.1007/s00438-010-0521-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 12/16/2022]
Abstract
In 1909 two papers by Correns and by Baur published in volume 1 of Zeitschrift für induktive Abstammungs- und Vererbungslehre (now Molecular Genetics and Genomics) reported on the non-Mendelian inheritance of chlorophyll deficiencies. These papers, reporting the very first cases of extranuclear inheritance, laid the foundation for a new field: non-Mendelian or extranuclear genetics. Correns observed a purely maternal inheritance (in Mirabilis), whereas Baur found a biparental inheritance (in Pelargonium). Correns suspected the non-Mendelian factors in the cytoplasm, while Baur believed that the plastids carry these extranuclear factors. In the following years, Baur's hypothesis was proved to be correct. Baur subsequently developed the theory of plastid inheritance. In many genera the plastids are transmitted only uniparentally by the mother, while in a few genera there is a biparental plastid inheritance. Commonly there is random sorting of plastids during ontogenetic development. Renner and Schwemmle as well as geneticists in other countries added additional details to this theory. Pioneering studies on mitochondrial inheritance in yeast started in 1949 in the group of Ephrussi and Slonimski; respiration-deficient cells (petites in yeast, poky in Neurospora) were demonstrated to be due to mitochondrial mutations. Electron microscopical and biochemical studies (1962-1964) showed that plastids and mitochondria contain organelle-specific DNA molecules. These findings laid the molecular basis for the two branches of extranuclear inheritance: plastid and mitochondrial genetics.
Collapse
|
11
|
Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M. Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 2009; 32:143-58. [PMID: 19125351 DOI: 10.1007/s10545-008-1038-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/03/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Mitochondrial DNA depletion syndromes (MDSs) form a group of autosomal recessive disorders characterized by profoundly decreased mitochondrial DNA copy numbers in affected tissues. Three main clinical presentations are known: myopathic, encephalomyopathic and hepatocerebral. The first is associated with mutations in thymidine kinase 2 (TK2) and p53-induced ribonucleotide reductase B subunit (RRM2B); the second with mutations in succinate synthase A (SUCLA2) and B (SUCLG1); the third with mutations in Twinkle (PEO1), pol-gammaA (POLG1), deoxyguanosine kinase (DGUOK) and MPV17 (MPV17). In this work, we review the MDS-associated phenotypes and present our own experience of 32 MDS patients, with the aim of defining the mutation frequency of the known genes, the clinical spectrum of the diseases, and the genotype-phenotype correlations. Five of our patients carried previously unreported mutations in one of the eight MDS genes.
Collapse
Affiliation(s)
- A Spinazzola
- Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute 'C. Besta', Via Temolo, 4, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kemmer D, McHardy LM, Hoon S, Rebérioux D, Giaever G, Nislow C, Roskelley CD, Roberge M. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis. BMC Microbiol 2009; 9:9. [PMID: 19144191 PMCID: PMC2632640 DOI: 10.1186/1471-2180-9-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 01/14/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. RESULTS Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches--analysis of the sensitivity of rho0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. CONCLUSION Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.
Collapse
Affiliation(s)
- Danielle Kemmer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Lianne M McHardy
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Shawn Hoon
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
| | - Delphine Rebérioux
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Nagai N, Ito Y, Takeuchi N, Usui S, Hirano K. Comparison of the mechanisms of cataract development involving differences in Ca2+ regulation in lenses among three hereditary cataract model rats. Biol Pharm Bull 2009; 31:1990-5. [PMID: 18981561 DOI: 10.1248/bpb.31.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously found that the increases in Ca2+ content in the lenses of three hereditary cataract model rats, UPL rat (UPLR), Shumiya cataract rat (SCR) and Ihara cataract rat (ICR), are inhibited by aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, and that the mechanisms of Ca2+ enhancement in these rat models differ. In this study, we compare the mechanisms for dysfunction in Ca2+ regulation in UPLR, SCR and ICR. Decreases in the activity of Ca2+-ATPase were found in the lenses of SCR and ICR concurrent with cataract development. In contrast, the Ca2+-ATPase activity in UPLR with opaque lenses was higher than in those with transparent lenses. On the other hand, ATP levels were markedly decreased in UPLR with opaque lenses. The expression of cytochrome c oxidase (CCO)-1 mRNA and CCO activity in UPLR lenses was found to decrease during cataract development. The nitric oxide (NO) and lipid peroxide levels were also increased in the lenses of UPLR, SCR and ICR with opaque lenses. In UPLR, excessive NO may cause damage to the mitochondrial genome, resulting in a decrease in ATP production and increase in Ca2+-ATPase activity. The decrease in ATP content may cause the decrease in Ca2+-ATPase function resulting in the elevation in lens Ca2+. In SCR and ICR, excessive NO may cause an enhancement of lipid peroxidation resulting in the oxidative inhibition of Ca2+-ATPase. The decrease in Ca2+-ATPase activity may cause the elevation in the level of lens Ca2+, thus leading to lens opacification. Our findings show that the Ca2+ contents in the cataractous lenses of all three model rats are increased, the mechanisms for this Ca2+ enhancement is different in each rat model.
Collapse
|
14
|
Baruffini E, Ferrero I, Foury F. Mitochondrial DNA defects in Saccharomyces cerevisiae caused by functional interactions between DNA polymerase gamma mutations associated with disease in human. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1225-35. [PMID: 17980715 DOI: 10.1016/j.bbadis.2007.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 12/26/2022]
Abstract
The yeast mitochondrial DNA (mtDNA) replicase Mip1 has been used as a model to generate five mutations equivalent to POLG mutations associated with a broad spectrum of diseases in human. All mip1 mutations, alone or in combination in cis or in trans, increase mtDNA instability as measured by petite frequency and Ery(R) mutant accumulation. This phenotype is associated with decreased Mip1 levels in mitochondrial extracts and/or decreased polymerase activity. We have demonstrated that (1) in the mip1(G651S) (hG848S) mutant the high mtDNA instability and increased frequency of point Ery(R) mutations is associated with low Mip1 levels and polymerase activity; (2) in the mip1(A692T-E900G) (hA889T-hE1143G) mutant, A692T is the major contributor to mtDNA instability by decreasing polymerase activity, and E900G acts synergistically by decreasing Mip1 levels; (3) in the mip1(H734Y)/mip1(G807R) (hH932Y/hG1051R) mutant, H734Y is the most deleterious mutation and acts synergistically with G807R as a result of its dominant character; (4) the mip1(E900G) (h1143G) mutation is not neutral but results in a temperature-sensitive phenotype associated with decreased Mip1 levels, a property explaining its synergistic effect with mutations impairing the polymerase activity. Thus, the human E1143G mutation is not a true polymorphism.
Collapse
Affiliation(s)
- Enrico Baruffini
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
15
|
Adverse effects of excessive nitric oxide on cytochrome c oxidase in lenses of hereditary cataract UPL rats. Toxicology 2007; 242:7-15. [PMID: 17936468 DOI: 10.1016/j.tox.2007.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/03/2007] [Accepted: 09/03/2007] [Indexed: 11/22/2022]
Abstract
The UPL rat is a newly developed hereditary cataract model. We previously found that the ATP content in UPL rat lenses decreases during cataract development, and the decrease in ATP content causes Ca(2+)-ATPase dysfunction resulting in an elevation in Ca(2+) and cataract development. In addition, we reported that the oral administration of disulfiram and aminoguanidine ameliorates the decrease in ATP content and the elevation in Ca(2+) content in UPL rat lenses. In this study, we demonstrate the effect of nitric oxide (NO) on the expression and activity of cytochrome c oxidase (CCO) in normal and UPL rat lenses during cataract development. We also determined the effects of the oral administration of disulfiram and aminoguanidine on the mRNA expression and activity of CCO and NO production in UPL rat lenses. The expression of CCO-1 mRNA in UPL rat lenses, determined by a quantitative real-time RT-PCR method, decreased during cataract development. CCO activity in UPL rat lenses also decreased with aging. On the other hand, the oral administration of disulfiram and aminoguanidine attenuated the decrease in CCO-1 mRNA expression and CCO activity. These results suggest that excessive NO causes the decrease in CCO-1 mRNA expression and CCO activity, and that the decrease in CCO may cause the decrease in ATP production in UPL rat lenses. Disulfiram and aminoguanidine may attenuate the decrease in ATP production, resulting in a delay in cataract development.
Collapse
|
16
|
Baruffini E, Lodi T, Dallabona C, Foury F. A single nucleotide polymorphism in the DNA polymerase gamma gene of Saccharomyces cerevisiae laboratory strains is responsible for increased mitochondrial DNA mutability. Genetics 2007; 177:1227-31. [PMID: 17720904 PMCID: PMC2034627 DOI: 10.1534/genetics.107.079293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Saccharomyces cerevisiae strains used for genome sequencing and functional analysis, the mitochondrial DNA replicase Mip1p contains a single nucleotide polymorphism changing the strictly conserved threonine 661 to alanine. This substitution is responsible for the increased rate of mitochondrial DNA point mutations and deletions in these strains.
Collapse
Affiliation(s)
- Enrico Baruffini
- Unité de Biochimie Physiologique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
17
|
Barberio C, Bianchi L, Pinzauti F, Lodi T, Ferrero I, Polsinelli M, Casalone E. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain. Can J Microbiol 2007; 53:223-30. [PMID: 17496970 DOI: 10.1139/w06-132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.
Collapse
Affiliation(s)
- Claudia Barberio
- Department of Animal Biology and Genetics, University of Florence, via Romana 17, I-50125 Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
19 Analysis of Gene Function of Mitochondria. J Microbiol Methods 2007. [DOI: 10.1016/s0580-9517(06)36019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Abstract
We describe methods that allow isolation, identification, and counting of mitochondrial mutants that are resistant to antibiotics (ant(R)) or respiratory deficient (rho-). (1) Analysis of diploid and meiotic progenies generated in crosses between mutants and tester strains allows distinguishing nuclear from mitochondrial mutants, for either antibiotic resistance or respiratory deficiency. (2) The mutation rate of mitochondrial deoxyribonucleic acid (mtDNA) can be estimated from the average frequency of ant(R) mutants produced in a large number of independent clones. (3) The frequency of retention of mtDNA fragments in rho- genomes accumulating in nuclear respiratory-deficient mutants can be determined by a genetic test based on the ability of these rho- genomes to restore cellular growth on glycerol in crosses with selected mutants bearing punctual mutations in their mtDNA (mit-).
Collapse
|
20
|
Zeng X, Hourset A, Tzagoloff A. The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor. Genetics 2006; 175:55-63. [PMID: 17110482 PMCID: PMC1775023 DOI: 10.1534/genetics.106.065821] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
21
|
Schwimmer C, Rak M, Lefebvre-Legendre L, Duvezin-Caubet S, Plane G, di Rago JP. Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. Biotechnol J 2006; 1:270-81. [PMID: 16897707 DOI: 10.1002/biot.200500053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are rare diseases most often linked to energy in the form of ATP-depletion. The high number of nuclear- and mitochondrial-DNA-encoded proteins (>500), required for ATP production and other crucial mitochondrial functions such as NADH re-oxidation, explains the increasing number of reported disorders. In recent years, yeast has revealed to be a powerful model to identify responsible genes, to study primary effects of pathogenic mutations and to determine the molecular mechanisms leading to mitochondrial disorders. However, the clinical management of patients with mitochondrial disorders is still essentially supportive. Here we review some of the most fruitful yeast mitochondrial disorder models and propose to subject these models to highthroughput chemical library screening to prospect new therapeutic drugs against mitochondrial diseases.
Collapse
|
22
|
Liang HL, Ongwijitwat S, Wong-Riley MTT. Bigenomic functional regulation of all 13 cytochrome c oxidase subunit transcripts in rat neurons in vitro and in vivo. Neuroscience 2006; 140:177-90. [PMID: 16542778 DOI: 10.1016/j.neuroscience.2006.01.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c oxidase is a multisubunit, bigenomically encoded inner mitochondrial membrane protein. Its enzymatic activity and amount in the brain vary with metabolic demands, but the precise regulation of all 13 subunits to form a functional holoenzyme in a 1:1 stoichiometry is not well understood. To determine if all 13 subunit transcripts were coordinately regulated by functional alteration in neurons, cultured primary neurons were depolarized by potassium chloride for 5-24 h, or tetrodotoxin inactivated for 2-6 days. In vivo studies were done on rats monocularly enucleated for 4 days to 2 weeks. Expressions of cytochrome c oxidase subunit mRNAs were measured by real-time quantitative polymerase chain reaction. Results showed that in vitro, all 13 transcripts were significantly up-regulated after 5 h of depolarizing stimulation. With tetrodotoxin blockade, however, the three mitochondrial-encoded transcripts were down-regulated earlier than the 10 nuclear ones (2 days versus 4 days). In vivo, all three mitochondrial-encoded subunit mRNAs were also down-regulated earlier than the nuclear ones in deprived visual cortex (4 days versus 1 week after monocular enucleation). Cytochrome c oxidase activity and protein levels were significantly decreased in parallel after 4 days of deprivation in vitro and 1 week in vivo. Our results are consistent with a coordinated mechanism of up-regulation of all 13 transcripts in response to functional stimulation, but an earlier and more severe down-regulation of the mitochondrial transcripts than the nuclear ones in response to functional deprivation. Thus, the mitochondrial subunits may play a more important role in regulating cytochrome c oxidase protein amount and activity in neurons. Our results also point to the need of all 13 subunits to form a functional holoenzyme.
Collapse
Affiliation(s)
- H L Liang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
23
|
Dagsgaard C, Taylor LE, O'Brien KM, Poyton RO. Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus. J Biol Chem 2001; 276:7593-601. [PMID: 11099503 DOI: 10.1074/jbc.m009180200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eucaryotic cells contain at least two general classes of oxygen-regulated nuclear genes: aerobic genes and hypoxic genes. Hypoxic genes are induced upon exposure to anoxia while aerobic genes are down-regulated. Recently, it has been reported that induction of some hypoxic nuclear genes in mammals and yeast requires mitochondrial respiration and that cytochrome-c oxidase functions as an oxygen sensor during this process. In this study, we have examined the role of the mitochondrion and cytochrome-c oxidase in the expression of yeast aerobic nuclear COX genes. We have found that the down-regulation of these genes in anoxic cells is reflected in reduced levels of their subunit polypeptides and that cytochrome-c oxidase subunits I, II, III, Vb, VI, VII, and VIIa are present in promitochondria from anoxic cells. By using nuclear cox mutants and mitochondrial rho(0) and mit(-) mutants, we have found that neither respiration nor cytochrome-c oxidase is required for the down-regulation of these genes in cells exposed to anoxia but that a mitochondrial genome is required for their full expression under both normoxic and anoxic conditions. This requirement for a mitochondrial genome is unrelated to the presence or absence of a functional holocytochrome-c oxidase. We have also found that the down-regulation of these genes in cells exposed to anoxia and the down-regulation that results from the absence of a mitochondrial genome are independent of one another. These findings indicate that the mitochondrial genome, acting independently of respiration and oxidative phosphorylation, affects the expression of the aerobic nuclear COX genes and suggest the existence of a signaling pathway from the mitochondrial genome to the nucleus.
Collapse
Affiliation(s)
- C Dagsgaard
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | |
Collapse
|
24
|
Ikegaya H, Iwase H, Hatanaka K, Sakurada K, Yoshida K, Takatori T. Diagnosis of cyanide intoxication by measurement of cytochrome c oxidase activity. Toxicol Lett 2001; 119:117-23. [PMID: 11311573 DOI: 10.1016/s0378-4274(00)00297-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cytochrome c oxidase (CCO), a mitochondrial enzyme, is inactivated by cyanide or carbon monoxide (CO) intoxication. We measured CCO activity, in the major organs of the rat at various times after death caused by cyanide intoxication. Tissue samples were homogenized, and the CCO activity in the mitochondrial fraction was measured using ferrous cytochrome c as the substrate. The CCO activity inhibition was highest in the brain, although the cyanide concentration was lowest level. As a result of this and the clinical symptoms displayed, we consider the brain to be the primary organ of cyanide intoxication. As cyanide is highly toxic to humans, in small amounts and many patients and victims have already had some medical care, it is difficult to detect cyanide in criminal investigations. The CCO activities in various organs remained significantly low for 2 days after the cyanide intoxication, suggesting that the diagnosis may be possible by measuring not only the cyanide concentration but also the CCO activity.
Collapse
Affiliation(s)
- H Ikegaya
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Paul MF, Barrientos A, Tzagoloff A. A single amino acid change in subunit 6 of the yeast mitochondrial ATPase suppresses a null mutation in ATP10. J Biol Chem 2000; 275:29238-43. [PMID: 10867012 DOI: 10.1074/jbc.m004546200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an earlier study, the ATP10 gene of Saccharomyces cerevisiae was shown to code for an inner membrane protein required for assembly of the F(0) sector of the mitochondrial ATPase complex (Ackerman, S., and Tzagoloff, A. (1990) J. Biol. Chem. 265, 9952-9959). To gain additional insights into the function of Atp10p, we have analyzed a revertant of an atp10 null mutant that displays partial recovery of oligomycin-sensitive ATPase and of respiratory competence. The suppressor mutation in the revertant has been mapped to the OLI2 locus in mitochondrial DNA and shown to be a single base change in the C-terminal coding region of the gene. The mutation results in the substitution of a valine for an alanine at residue 249 of subunit 6 of the ATPase. The ability of the subunit 6 mutation to compensate for the absence of Atp10p implies a functional interaction between the two proteins. Such an interaction is consistent with evidence indicating that the C-terminal region with the site of the mutation and the extramembrane domain of Atp10p are both on the matrix side of the inner membrane. Subunit 6 has been purified from the parental wild type strain, from the atp10 null mutant, and from the revertant. The N-terminal sequences of the three proteins indicated that they all start at Ser(11), the normal processing site of the subunit 6 precursor. Mass spectral analysis of the wild type and mutants subunit 6 failed to reveal any substantive difference of the wild type and mutant proteins when the mass of the latter was corrected for Ala --> Val mutation. These data argue against a role of Atp10p in post-translational modification of subunit 6. Although post-translational modification of another ATPase subunit interacting with subunit 6 cannot be excluded, a more likely function for Atp10p is that it acts as a subunit 6 chaperone during F(0) assembly.
Collapse
Affiliation(s)
- M F Paul
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
26
|
Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000; 64:281-315. [PMID: 10839818 PMCID: PMC98995 DOI: 10.1128/mmbr.64.2.281-315.2000] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
27
|
Ikegaya H, Iwase H, Hatanaka K, Sakurada K, Matsuda Y, Kobayashi M, Takatori T. Postmortem changes in cytochrome c oxidase activity in various organs of the rat and in human heart. Forensic Sci Int 2000; 108:181-6. [PMID: 10737465 DOI: 10.1016/s0379-0738(99)00215-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome c oxidase (COX), a mitochondrial enzyme, is inactivated by cyanide or carbon monoxide (CO) intoxication. To test whether cytochrome c has potential as an indicator of these toxins in cadavers, we measured COX activity in the main organs of the rat, and in the human heart, at various times after death. Each tissue sample or organ was homogenized and the COX activity in the mitochondrial fraction was measured using ferrous cytochrome c as the substrate. COX activity was significantly higher in rat brain, heart and kidney than in lung and liver from 0 to 4 days after death. The loss of COX activity was significantly slower in the brain and heart than in the lung, liver and kidney. Most importantly, COX activity correlated with the time-since-death for each of the rat organs we tested (r2=0.70-0.95), but for the human heart (r2=0.47). It may be possible that COX activity is likely to be a useful indicator of the time-since-death, and is worth pursuing as an indicator of the tissue cyanide and CO content.
Collapse
Affiliation(s)
- H Ikegaya
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu S, Wong-Riley M. Disproportionate regulation of nuclear- and mitochondrial-encoded cytochrome oxidase subunit proteins by functional activity in neurons. Neuroscience 1995; 67:197-210. [PMID: 7477900 DOI: 10.1016/0306-4522(95)00043-i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome oxidase is the terminal enzyme in the mitochondrial respiratory chain engaged in oxidative metabolism and energy production. In mammals, the holoenzyme is composed of 13 subunits encoded by both nuclear and mitochondrial genomes. The goal of the present study was to compare the effect of afferent impulse blockade on the expression of these two genomes at the subunit protein level. It also aimed to determine the correlation between the level of cytochrome oxidase activity and the relative amount of subunit proteins. Relative enzyme activity was analysed histochemically, and relative amounts of subunits IV (nuclear-encoded) and II/III (mitochondrial-derived) proteins were obtained immunohistochemically by anti-subunit IV and anti-subunit II/III antibodies in the lateral geniculate nucleus and the primary visual cortex of adult monkeys. In the normal visual centers, similar staining patterns were found for all three markers. After three and seven days of tetrodotoxin treatment, levels of enzyme activity and subunit proteins declined disproportionately in the deprived laminae of the visual center. Densitometric analysis indicates that changes in enzyme activity and subunit IV proteins were significantly greater than those of subunit II/III proteins (P < 0.01). The finding that nuclear and mitochondrial genomes are disproportionately regulated at subunit protein levels by neuronal activity implies that the two genomes operate under different regulatory mechanisms. Changes in subunit IV paralleled most closely those of cytochrome oxidase activity (coefficient of determination r2 = 0.95). This suggests that nuclear-derived subunit IV protein may play a pivotal role in controlling cytochrome oxidase holoenzyme activity.
Collapse
Affiliation(s)
- S Liu
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
29
|
Costanzo MC, Fox TD. A point mutation in the 5'-untranslated leader that affects translational activation of the mitochondrial COX3 mRNA. Curr Genet 1995; 28:60-6. [PMID: 8536314 DOI: 10.1007/bf00311882] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 613-base 5'-untranslated leader (5'-UTL) of the Saccharomyces cerevisiae mitochondrial COX3 mRNA contains the target of an mRNA-specific translational activator complex composed of at least three nuclearly encoded proteins. We have genetically mapped a collection of cox3 point mutations, using a set of defined COX3 deletions, and found one to be located in the region coding the 5'-UTL. The strain carrying this allele was specifically defective in translation of the COX3 mRNA. Nucleotide-sequence analysis showed that the allele was in fact a double mutation comprised of a single-base insertion in the 5'-UTL (T inserted between bases -428 and -427 with respect to the start of translation) and a G to A substitution at +3 that changed the ATG initiation codon to ATA. Both mutations were required to block translation completely. The effects of the ATG to ATA mutation alone (cox3-1) had previously been analyzed in this laboratory: it reduces, but does not eliminate, translation, causing a slow respiratory growth phenotype. The T insertion in the 5'-UTL had no detectable respiratory growth phenotype as a single mutation. However, the 5'-UTL insertion mutation enhanced the respiratory defective phenotype of missense mutations in pet54, one of the COX3-specific translational-activator genes. This phenotypic enhancement suggests that the -400 region of the 5'-UTL, where the mutation is located, is important for Pet54p-COX3 mRNA interaction.
Collapse
Affiliation(s)
- M C Costanzo
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
30
|
Netter P, Robineau S, Lemaire C. Mutations in the mitochondrial split gene COXI are preferentially located in exons: a mapping study of 170 mutants. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:445-54. [PMID: 7891658 DOI: 10.1007/bf00290448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have analysed the precise location of a large number (170) of mutations affecting the structural gene for subunit I of the cytochrome c oxidase complex. This gene, COXI, is 12.9 kb long and the major part of the sequence (i.e. 11.3 kb) is composed of introns. Several conclusions can be drawn from this study: (1) A significant proportion (84/170) of the mutations cannot be assigned to a single position within the gene by deletion mapping, in spite of clearly being located in it. These mutations are probably large deletions or multiple mutations. (2) Four mutants carry distant double mutations, which have been individually localized. (3) Eighty-two mutants have lesions that are restricted to very short regions of the gene and we therefore conclude that they are most probably due to single hits; amongst these single mutations, 41 are unambiguously located in exons and 28 in introns. This result implies that, at least in this particular split gene, the probability of selection of a mutant phenotype in an exon is, on the average, 13.3 times greater than in an intron, in spite of the existence, within most of these introns, of open reading frames specifying intronic proteins. The evolutionary significance and biological implications of these results are discussed.
Collapse
Affiliation(s)
- P Netter
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|
31
|
Lemesle-Meunier D, Brivet-Chevillotte P, di Rago J, Slonimski P, Bruel C, Tron T, Forget N. Cytochrome b-deficient mutants of the ubiquinol-cytochrome c oxidoreductase in Saccharomyces cerevisiae. Consequence for the functional and structural characteristics of the complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82302-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Meunier B, Lemarre P, Colson AM. Genetic screening in Saccharomyces cerevisiae for large numbers of mitochondrial point mutations which affect structure and function of catalytic subunits of cytochrome-c oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:129-35. [PMID: 8386619 DOI: 10.1111/j.1432-1033.1993.tb17742.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new search for mitochondrial respiratory deficient mutants (Mit-) has been undertaken in order to accumulate a large number of point mutations in the coding portions of cytochrome-c-oxidase catalytic subunits and cytochrome b. Therefore, a mitochondrial DNA which retains the exons and lacks all the introns of the cytochrome oxidase subunit I and of the cytochrome-b split genes has been introduced into a strain carrying a nuclear recessive mutation affecting the adenine-nucleotide translocator, the op1 mutation, which is known to prevent the accumulation of large deletion petite mutants and this was used as the parental strain. After a moderate MnCl2 mutagenesis in order to limit multiple mutations, 105 Mit- mutants were isolated from 15,000 mutagenised clones in Saccharomyces cerevisiae. Mutations were mapped to the three catalytic subunits encoding genes (COX1, COX2 and COX3) of the cytochrome-c oxidase (70 mutations) and to the cytochrome-b gene (15 mutations). More than 50% of the mutants tested still exhibited mitochondrial translation products (subunits I, II and III), suggesting that they carry a missense mutation, rather than a nonsense mutation which would normally have led to a truncated protein. Mutations in the COX1 gene were allocated to four different subregions corresponding to exons 4 and 8 or to groups of exons, exons 1, 2, 3 or exons 5, 6, 7. Seven missense monosubstitution mutations and two frameshift mutations were also identified. The amino acid changes of the missense mutations were located in the vicinity of the CuB-heme alpha 3 binuclear centre ligands.
Collapse
Affiliation(s)
- B Meunier
- Unité de Génétique, Université Catholique de Louvain, Belgium
| | | | | |
Collapse
|
33
|
Bolotin-Fukuhara M, Grivell LA. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie Van Leeuwenhoek 1992; 62:131-53. [PMID: 1444332 DOI: 10.1007/bf00584467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.
Collapse
Affiliation(s)
- M Bolotin-Fukuhara
- Laboratoire de Génétique Moléculaire, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
34
|
Netter P, Robineau S, Sirand-Pugnet P, Fauvarque MO. The unusual reversion properties of a mitochondrial mutation in the structural gene of subunit I of cytochrome oxidase of Saccharomyces cerevisiae reveal a probable histidine ligand of the redox center. Curr Genet 1992; 21:147-51. [PMID: 1314705 DOI: 10.1007/bf00318474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have analyzed a mutation in the mitochondrial gene oxi3 coding for subunit I of cytochrome-oxidase in the yeast Saccharomyces cerevisiae. This mutation replaces one of the seven invariant histidines of the polypeptide (position 378) by a tyrosine, and leads to a respiratory deficient phenotype. A total of 157 revertants, which have recovered the ability to grow on a respiratory substrate, have been selected from this mutant (tyrosine 378). The nature of the reversion has been analysed by a rapid screening procedure and 32 of the revertants have been sequenced. They are all true back-mutations reintroducing the histidine in position 378. This very exceptional situation suggests that this histidine is a ligand of the redox center of cytochrome oxidase.
Collapse
Affiliation(s)
- P Netter
- Centre de Génétique Moléculaire, Laboratoire Propre du C.N.R.S. Associé à l'Université Pierre et Marie Curie, Gif sur Yvette, France
| | | | | | | |
Collapse
|
35
|
Tian GL, Macadre C, Kruszewska A, Szczesniak B, Ragnini A, Grisanti P, Rinaldi T, Palleschi C, Frontali L, Slonimski PP. Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15,000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae. J Mol Biol 1991; 218:735-46. [PMID: 1850804 DOI: 10.1016/0022-2836(91)90262-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weiller GF, Bruckner H, Kim SH, Pratje E, Schweyen RJ. A GC cluster repeat is a hotspot for mit- macro-deletions in yeast mitochondrial DNA. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:233-40. [PMID: 1851950 DOI: 10.1007/bf00273608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In a random collection of mit- mutations of the yeast strain 777-3A we find that deletions are exceptionally frequent in the OXI3 gene, a large mosaic gene coding for subunit I of cytochrome oxidase. About 10% of all oxi3-mutants carry the same macro-deletion, del-A, extending from the 5' non-translated leader of OXI3 to intron 5b of this gene. Determination of the respective wild-type sequences and of the del-A junction sequence revealed that the end-points of the deletion are in two GC clusters with 31 bp sequence identity which are located at a distance of 11.3 kb. We speculate that not only the sequence identity of the two GC clusters but also the palindromic structure of these putatively mobile elements of yeast mitochondrial DNA (mtDNA) plays a role in deletion formation.
Collapse
Affiliation(s)
- G F Weiller
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | | | | | | | |
Collapse
|
37
|
Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 1991; 194:149-65. [PMID: 1706458 DOI: 10.1016/0076-6879(91)94013-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
di Rago J, Netter P, Slonimski P. Intragenic suppressors reveal long distance interactions between inactivating and reactivating amino acid replacements generating three-dimensional constraints in the structure of mitochondrial cytochrome b. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55461-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Cherry JR, Denis CL. Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome. Curr Genet 1989; 15:311-7. [PMID: 2676204 DOI: 10.1007/bf00419910] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It was previously observed that increased dosages of the ADR1 gene, which encodes a yeast transcriptional activator required for alcohol dehydrogenase II (ADH II) expression, cause a decreased rate of growth in medium containing ethanol as the carbon source. Here we show that observed reduction in growth rate is mediated by the ADR1 protein which, when overexpressed, increases the frequency of cytoplasmic petites. Unlike previously characterized mutations known to potentiate petite formation, the ADR1 effect is dominant, with the petite frequency rising concomitantly with increasing ADR1 dosage. The ability of ADR1 to increase the frequency of mitochondrial mutation is correlated with its ability to activate ADH II transcription but is independent of the level of ADH II being expressed. Based on restoration tests using characterized mit- strains, ADR1 appears to cause non-specific deletions within the mitochondrial genome to produce rho- petites. Pedigree analysis of ADR1-overproducing strains indicates that only daughter cells become petite. This pattern is analogous to that observed for petite induction by growth at elevated temperature and by treatment with the acridine dye euflavine. One strain resistant to ADR1-induced petite formation displayed cross-resistance to petite mutation by growth at elevated temperature and euflavine treatment, yet was susceptible to petite induction by ethidium bromide. These results suggest that ADR1 overexpression disrupts the fidelity of mitochondrial DNA replication or repair.
Collapse
Affiliation(s)
- J R Cherry
- Department of Biochemistry, University of New Hampshire, Durham 03824
| | | |
Collapse
|
40
|
Poyton RO, Trueblood CE, Wright RM, Farrell LE. Expression and function of cytochrome c oxidase subunit isologues. Modulators of cellular energy production? Ann N Y Acad Sci 1988; 550:289-307. [PMID: 2854400 DOI: 10.1111/j.1749-6632.1988.tb35344.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R O Poyton
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | |
Collapse
|
41
|
Johnson MA, Kadenbach B, Droste M, Old SL, Turnbull DM. Immunocytochemical studies of cytochrome oxidase subunits in skeletal muscle of patients with partial cytochrome oxidase deficiencies. J Neurol Sci 1988; 87:75-90. [PMID: 2848095 DOI: 10.1016/0022-510x(88)90056-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Muscle biopsies from 17 patients with partial cytochrome oxidase deficiencies were investigated using immunocytochemical techniques for the localisation of cytochrome oxidase subunits. Antisera to subunits II/III (mitochondrially coded) and subunits IV, Vab, VIbc, VIIa, VIIbc and VIII (nuclear coded) showed clear particulate immunoreactivity in the muscle fibres of normal control biopsies. In the patients studied, muscle fibres with absent or decreased cytochrome oxidase activity also showed decreased immunoreactivity affecting all enzyme subunits. Particularly close correlation was seen between percentages of fibres showing absent enzyme activity and those showing decreased immunoreactivity for subunits II/III which are catalytic in function. The regulatory subunits IV-VIII were affected to varying degrees with different patterns of subunit loss occurring in individual muscle fibres.
Collapse
Affiliation(s)
- M A Johnson
- Department of Neurology, University of Newcastle upon Tyne, U.K
| | | | | | | | | |
Collapse
|
42
|
Fox TD, Sanford JC, McMullin TW. Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci U S A 1988; 85:7288-92. [PMID: 2459701 PMCID: PMC282171 DOI: 10.1073/pnas.85.19.7288] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial gene oxi1, carried on a bacterial plasmid, has been used to transform the mitochondria of a yeast strain lacking mtDNA (rho0). The plasmid DNA behaved in a manner entirely consistent with the known properties of normal yeast rho- mtDNA after its introduction by high-velocity microprojectile bombardment. Like the mtDNA sequences retained in natural rho- strains, the plasmid DNA in the transformants was reiterated into concatemers whose size was indistinguishable from that of wild-type mtDNA. The oxi1 sequences in the transformants were surrounded by restriction sites derived from the plasmid that were not present in wild-type mtDNA. oxi1 genetic information in these "synthetic rho-" strains could be expressed in diploids either after "marker rescue" by recombination with rho+ mtDNA carrying an appropriate oxi1 point mutation or in trans during the growth of diploids heteroplasmic for both the plasmid-derived oxi1 sequences and rho+ mtDNA with oxi1 deleted. The ability to generate such "synthetic rho-" strains by transformation will allow transfer of mutations generated in vitro to wild-type rho+ mtDNA as well as examination of the function of altered genes in trans.
Collapse
Affiliation(s)
- T D Fox
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
43
|
Japa S, Beattie DS. Cytochrome b is necessary for the assembly of subunit VII in the cytochrome b-c1 complex of yeast mitochondria. Arch Biochem Biophys 1988; 264:231-7. [PMID: 2840025 DOI: 10.1016/0003-9861(88)90589-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis and assembly of subunit VII, the Q-binding protein of the cytochrome b-c1 complex, into the inner mitochondrial membrane has been compared in wild-type yeast cells and in a mutant cell line lacking cytochrome b. Both immunoblotting and immunoprecipitation analysis with specific antiserum against subunit VII indicated that this subunit is not detectable in the mutant as compared to the wild-type mitochondria. However, labeling in vivo of the cytochrome b deficient yeast cells in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone clearly demonstrated that subunit VII was synthesized in the mutant cells to the same extent as in the wild-type cells. Incubation of subunit VII, synthesized in vitro in a reticulocyte lysate programmed with yeast RNA, with mitochondria isolated from both wild-type and cytochrome b deficient yeast cells revealed that the subunit VII was transported into the wild-type mitochondria into a compartment where it was resistant to digestion by exogenous proteinase K. By contrast, subunit VII was bound in lowered amounts to the cytochrome b deficient mitochondria where it remained sensitive to digestion by exogenous proteinase K, suggesting that the import of subunit VII may be impaired due to the lack of cytochrome b. Furthermore, subunit VII was synthesized both in vivo and in vitro with the same molecular mass as the mature form of this protein.
Collapse
Affiliation(s)
- S Japa
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown 26506
| | | |
Collapse
|
44
|
van der Veen R, de Haan M, Grivell LA. RNA splicing in yeast mitochondria: DNA sequence analysis of mit- mutants deficient in the excision of introns aI1 and aI2 of the gene for subunit I of cytochrome c oxidase. Curr Genet 1988; 13:219-26. [PMID: 2838183 DOI: 10.1007/bf00387767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have characterized two yeast mutants deficient in the splicing of transcripts of the mitochondrial gene for cytochrome c oxidase subunit I (coxI). Both map to the first intron (aI1). RNA blot analysis shows that in addition to a reduced (mutant M15-190) or blocked (mutant M12-193) excision of the mutated intron aI1, the mutants are unable to excise the adjacent aI2 intron, the reading frame of which displays an amino acid sequence similarity to aI1. Splicing of the downstream introns is not affected, however. Sequence analysis of the first mutant DNA (M12-193) reveals a premature termination of the intron-encoded open reading frame, followed by two alterations at a short distance downstream. The other (M15-190) contains 11 separate changes. Although these occur in the intron reading frame, their main effect on RNA splicing may be exerted through the disturbance of intron secondary structure proposed for the 5' end of several group II introns. The implications of these findings in relation to maturase function and structure of intron aI1 are discussed.
Collapse
Affiliation(s)
- R van der Veen
- Section for Molecular Biology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
45
|
Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol Cell Biol 1988. [PMID: 2824990 DOI: 10.1128/mcb.7.10.3520] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, COX5a and COX5b encode two distinct forms of cytochrome c oxidase subunit V, Va and Vb, respectively. To determine the relative contribution of COX5a and COX5b to cytochrome c oxidase function, we have disrupted each gene. Cytochrome c oxidase activity levels and respiration rates of strains carrying null alleles of COX5a or COX5b or both indicate that some form of subunit V is required for cytochrome c oxidase function and that COX5a is much more effective than COX5b in providing this function. Wild-type respiration is supported by a single copy of either COX5a or COX5ab (a constructed chimeric gene sharing 5' sequences with COX5a). In contrast, multiple copies of COX5b or COX5ba (a chimeric gene with 5' sequences from COX5b) are required to support wild-type respiration. These results suggest that the decreased effectiveness of COX5b is due to inefficiency in gene expression rather than to any deficiency in the gene product, Vb. This conclusion is supported by two observations: (i) a COX5a-lacZ fusion gene produces more beta-galactosidase than a COX5b-lacZ fusion gene, and (ii) the COX5a transcript is significantly more abundant than the COX5b transcript or the COXsba transcript. We conclude that COX5a is expressed more efficiently than COX5b and that, although mature subunits Va and Vb are only 67% homologous, they do not differ significantly in their ability to assemble and function as subunits of the holoenzyme.
Collapse
|
46
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
47
|
Trueblood CE, Poyton RO. Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol Cell Biol 1987; 7:3520-6. [PMID: 2824990 PMCID: PMC368004 DOI: 10.1128/mcb.7.10.3520-3526.1987] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, COX5a and COX5b encode two distinct forms of cytochrome c oxidase subunit V, Va and Vb, respectively. To determine the relative contribution of COX5a and COX5b to cytochrome c oxidase function, we have disrupted each gene. Cytochrome c oxidase activity levels and respiration rates of strains carrying null alleles of COX5a or COX5b or both indicate that some form of subunit V is required for cytochrome c oxidase function and that COX5a is much more effective than COX5b in providing this function. Wild-type respiration is supported by a single copy of either COX5a or COX5ab (a constructed chimeric gene sharing 5' sequences with COX5a). In contrast, multiple copies of COX5b or COX5ba (a chimeric gene with 5' sequences from COX5b) are required to support wild-type respiration. These results suggest that the decreased effectiveness of COX5b is due to inefficiency in gene expression rather than to any deficiency in the gene product, Vb. This conclusion is supported by two observations: (i) a COX5a-lacZ fusion gene produces more beta-galactosidase than a COX5b-lacZ fusion gene, and (ii) the COX5a transcript is significantly more abundant than the COX5b transcript or the COXsba transcript. We conclude that COX5a is expressed more efficiently than COX5b and that, although mature subunits Va and Vb are only 67% homologous, they do not differ significantly in their ability to assemble and function as subunits of the holoenzyme.
Collapse
Affiliation(s)
- C E Trueblood
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
48
|
Oudshoorn P, Van Steeg H, Swinkels BW, Schoppink P, Grivell LA. Subunit II of yeast QH2:cytochrome-c oxidoreductase. Nucleotide sequence of the gene and features of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:97-103. [PMID: 3028797 DOI: 10.1111/j.1432-1033.1987.tb10741.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence of a 2.5 X 10(3)-base segment of yeast nuclear DNA, containing the structural gene for the 40-kDa subunit II of the ubiquinol:cytochrome-c oxidoreductase, has been determined. The region contains only one single reading frame of length sufficient to encode a protein of the size of subunit II. The mature protein is predicted to have a length of 352 amino acids, with a molecular mass of 38714 Da. It is predominantly hydrophilic, with an overall polarity of 45%. Comparison of the sequence of the reading frame with that derived from direct sequence analysis of the N terminus of the mature 40-kDa protein shows that subunit II is synthesized as a longer precursor and shows that the extension is N-terminal. The presequence is 16 amino acids long and it contains a number of positively charged residues and lacks acidic ones. It is also rich in neutral, polar amino acids. S1 nuclease protection analysis of DNA X RNA hybrids identifies two major and one minor transcript of the gene, whose 5' termini map approximately 55, 65 and 75 nucleotides upstream of the initiation codon. Sequences 5' of these termini lack obvious homology to the regulatory sequences of other imported mitochondrial proteins, whose synthesis is controlled by oxygen and by catabolite repression. A mutant lacking a functional subunit II gene has been constructed by a one-step gene-disruption procedure. This mutant grows only slowly on glycerol and still displays a low level of QH2: cytochrome-c oxidoreductase activity (approx. 5% of that of wild type). The implications of this finding for the possible role of subunit II in the complex are discussed.
Collapse
|
49
|
Sen K, Beattie DS. Cytochrome b is necessary for the effective processing of core protein I and the iron-sulfur protein of complex III in the mitochondria. Arch Biochem Biophys 1986; 251:239-49. [PMID: 3024574 DOI: 10.1016/0003-9861(86)90071-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in a mutant of yeast (W-267, Box 6-2) that lacks a spectrally detectable cytochrome b and synthesizes a shortened form of apocytochrome b. We recently reported that several cytochrome b-deficient mutants contained significantly diminished amounts of core proteins I and II as well as the iron-sulfur protein, but contained equal amounts of cytochrome c1 compared to the wild type (K. Sen and D. S. Beattie, Arch. Biochem. Biophys. 242, 393-401, 1985). In the present study, the time course of processing of precursors of both core protein I and the iron-sulfur protein which had accumulated in cells treated with the uncoupler carbonyl m-chlorophenyl hydrazone (CCCP) was noted to be significantly lower in the mutant compared to the wild type. The amounts of the mature forms of these proteins in mitochondria pulse labeled under different conditions was also considerably decreased at all times studied. The synthesis of both proteins appeared to be unaffected in the mutant, as the precursor forms of both proteins accumulated to the same extent when processing in vivo was blocked by CCCP. Furthermore, translation of RNA in a reticulocyte lysate in vitro indicated that the messenger RNAs for both proteins were present in the mutant and translated with equal efficiency. The import into isolated mitochondria of the precursor forms of the iron-sulfur protein synthesized in the cell-free system was also decreased in the mutant mitochondria. In addition, the precursor form was bound to the exterior of the mitochondrial membrane where it was sensitive to digestion with proteases. By contrast, the synthesis and processing of cytochrome c1 appeared to be unaffected in these mutants. These results suggest that cytochrome b is necessary for the proper processing and assembly of both core protein I and the iron-sulfur protein, but not for cytochrome c1, into complex III of the inner mitochondrial membrane.
Collapse
|
50
|
Genga A, Bianchi L, Foury F. A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67658-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|