1
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Joppe M, D’Imprima E, Salustros N, Paithankar KS, Vonck J, Grininger M, Kühlbrandt W. The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase. IUCRJ 2020; 7:220-227. [PMID: 32148850 PMCID: PMC7055384 DOI: 10.1107/s2052252519017366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Single-particle electron cryo-microscopy (cryoEM) has undergone a 'resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.
Collapse
Affiliation(s)
- Mirko Joppe
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Edoardo D’Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Nina Salustros
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Makarova M, Peter M, Balogh G, Glatz A, MacRae JI, Lopez Mora N, Booth P, Makeyev E, Vigh L, Oliferenko S. Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Curr Biol 2020; 30:367-380.e8. [PMID: 31956022 PMCID: PMC6997885 DOI: 10.1016/j.cub.2019.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Collapse
Affiliation(s)
- Maria Makarova
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nestor Lopez Mora
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Paula Booth
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Eugene Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
4
|
Xie M, An F, Yue X, Liu Y, Shi H, Yang M, Cao X, Wu J, Wu R. Characterization and comparison of metaproteomes in traditional and commercial dajiang, a fermented soybean paste in northeast China. Food Chem 2019; 301:125270. [PMID: 31377619 DOI: 10.1016/j.foodchem.2019.125270] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Dajiang is a popular Chinese fermented soybean condiment. Here, a comparative metaproteomic analysis of traditional and commercial dajiang was performed during fermentation. A total of 4250 and 1421 peptide sequences were obtained from 3493 and 1987 proteins in traditional and commercial dajiang, respectively. 4299 differentially expressed microbial proteins show a high metabolic heterogeneity between the two types of dajiang. The KEGG annotation indicated that there were some pathways related to human diseases, which suggest that some microbes in traditional dajiang fermentation may have greater food safety hazards. In combination with qualitative metabolomic analysis, we further traced metabolic intermediates and key enzymes in several main fermentation pathways of dajiang to be mainly affiliated with Penicillium, Tetracoccus and Bacillus in traditional samples, as well as Aspergilus in commercial samples. These results could provide information for the selection of strains that are more suitable to produce high quality dajiang and other fermented products.
Collapse
Affiliation(s)
- Mengxi Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yiming Liu
- College of Foreign Languages, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
5
|
D'Imprima E, Floris D, Joppe M, Sánchez R, Grininger M, Kühlbrandt W. Protein denaturation at the air-water interface and how to prevent it. eLife 2019; 8:42747. [PMID: 30932812 PMCID: PMC6443348 DOI: 10.7554/elife.42747] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
Electron cryo-microscopy analyzes the structure of proteins and protein complexes in vitrified solution. Proteins tend to adsorb to the air-water interface in unsupported films of aqueous solution, which can result in partial or complete denaturation. We investigated the structure of yeast fatty acid synthase at the air-water interface by electron cryo-tomography and single-particle image processing. Around 90% of complexes adsorbed to the air-water interface are partly denatured. We show that the unfolded regions face the air-water interface. Denaturation by contact with air may happen at any stage of specimen preparation. Denaturation at the air-water interface is completely avoided when the complex is plunge-frozen on a substrate of hydrophilized graphene.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Davide Floris
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Mirko Joppe
- Buchmann Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ricardo Sánchez
- Sofja Kovalevskaja Group, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Martin Grininger
- Buchmann Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
6
|
Aly MRES, El Ashry ESH. Recent Advances Toward Robust N-Protecting Groups for Glucosamine as Required for Glycosylation Strategies. Adv Carbohydr Chem Biochem 2016; 73:117-224. [PMID: 27816106 DOI: 10.1016/bs.accb.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2-Amino-2-deoxy-d-glucose (d-glucosamine) is among the most abundant monosaccharides found in natural products. This constituent, recognized for its ubiquity, is presented in most instances as its N-acetyl derivative 2-acetamido-2-deoxy-d-glucopyranose (N-acetylglucosamine, GlcNAc, NAG). It occurs as the β-linked pyranosyl group in polysaccharides and oligosaccharides, and sometimes as the monosaccharide itself, either in its native state or as a glycoconjugate. The compound's acylation profile and other aspects of its structure are important elements in determining the variety of reactivities and functions of the molecule as a whole. Methods elaborated to investigate these challenges have been intensively reviewed; however, a relatively more comprehensive reviewing of this subject is introduced here to cover some aspects that have not been sufficiently covered. This might enable those who are beginners in this field to be aware of the subject in a more comprehensive context. 2-Amino-2-deoxy-d-glucosylation strategies demand robust amino-protecting groups that survive under a variety of chemical conditions, yet provide groups that can be deprotected under relatively mild conditions. At the end of this review, a table that includes all the N-protecting groups that have been used for glucosamine is provided to introduce them at a glance to aid in constructing building blocks that will act as useful 2-amino-2-deoxy-d-glucosyl donors.
Collapse
Affiliation(s)
- Mohamed Ramadan El Sayed Aly
- Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia; Faculty of Science, Port Said University, Port Said, Egypt
| | - El Sayed H El Ashry
- Faculty of Science, Alexandria University, Alexandria, Egypt; Universität Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Fischer M, Rhinow D, Zhu Z, Mills DJ, Zhao ZK, Vonck J, Grininger M. Cryo-EM structure of fatty acid synthase (FAS) from Rhodosporidium toruloides provides insights into the evolutionary development of fungal FAS. Protein Sci 2015; 24:987-95. [PMID: 25761671 DOI: 10.1002/pro.2678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/07/2022]
Abstract
Fungal fatty acid synthases Type I (FAS I) are up to 2.7 MDa large molecular machines composed of large multifunctional polypeptides. Half of the amino acids in fungal FAS I are involved in structural elements that are responsible for scaffolding the elaborate barrel-shaped architecture and turning fungal FAS I into highly efficient de novo producers of fatty acids. Rhodosporidium toruloides is an oleaginous fungal species and renowned for its robust conversion of carbohydrates into lipids to over 70% of its dry cell weight. Here, we use cryo-EM to determine a 7.8-Å reconstruction of its FAS I that reveals unexpected features; its novel form of splitting the multifunctional polypeptide chain into the two subunits α and β, and its duplicated ACP domains. We show that the specific distribution into α and β occurs by splitting at one of many possible sites that can be accepted by fungal FAS I. While, therefore, the specific distribution in α and β chains in R. toruloides FAS I is not correlated to increased protein activities, we also show that the duplication of ACP is an evolutionary late event and argue that duplication is beneficial for the lipid overproduction phenotype.
Collapse
Affiliation(s)
- Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Daniel Rhinow
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Zhiwei Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
| | - Deryck J Mills
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, China
| | - Janet Vonck
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60438, Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
9
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
10
|
Lomakin IB, Xiong Y, Steitz TA. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 2007; 129:319-32. [PMID: 17448991 DOI: 10.1016/j.cell.2007.03.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/23/2007] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
In yeast, the whole metabolic pathway for making 16- and 18-carbon fatty acids is carried out by fatty acid synthase, a 2.6 megadalton molecular-weight macromolecular assembly containing six copies of all eight catalytic centers. We have determined its crystal structure, which illuminates how this enzyme is initially activated and then carries out multiple steps of synthesis in each of six sterically isolated reaction chambers. Six of the catalytic sites are in the wall of the assembly facing an acyl carrier protein (ACP) bound to the ketoacyl synthase domain. Two-dimensional diffusion of substrates to the catalytic sites may be achieved by the electrostatically negative ACP swinging to each of the six electrostatically positive catalytic sites. The phosphopantetheinyl transferase domain lies outside the shell of the assembly, inaccessible to ACP that lies inside, suggesting that the attachment of the pantetheine arm to ACP must occur before complete assembly of the complex.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
11
|
Siess EA, Hofstetter MM. Purification of Mg2+-dependent phosphatidate phosphohydrolase from rat liver: new steps and aspects. Biol Chem 2006; 386:1197-201. [PMID: 16307486 DOI: 10.1515/bc.2005.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new procedure for the partial purification of Mg2+-dependent, N-ethylmaleimide-sensitive phosphatidate phosphohydrolase (Mg2+-PAP; EC 3.1.3.4) from rat liver cytosol is described, using protein precipitation with MgCl2, gel filtration on Sephacryl S-400, chromatography on DEAE-cellulose and affinity chromatography on calmodulin-agarose. From the parallel change in staining intensity and in the level of the specific activity of enzyme fractions, a relationship between a 90-kDa SDS gel band, identified as the beta-isoform of the 90-kDa heat shock protein, and Mg2+-PAP could be detected.
Collapse
Affiliation(s)
- Elmar A Siess
- Klinikum der Ludwig-Maximilians-Universität München, Medizinische Poliklinik Innenstadt, Pettenkoferstrasse 8a, D-80336 München, Germany.
| | | |
Collapse
|
12
|
Wenzel SC, Müller R. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 2006; 9:447-58. [PMID: 16107321 DOI: 10.1016/j.cbpa.2005.08.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/03/2005] [Indexed: 11/30/2022]
Abstract
Microorganisms produce an immense variety of natural products with useful biological activities. These compounds are often biosynthesized by multifunctional megasynthetases known as polyketide synthases and nonribosomal peptide synthetases. Recent literature on these natural product assembly lines suggests that they have a much greater mechanistic diversity than originally anticipated.
Collapse
Affiliation(s)
- Silke C Wenzel
- Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
13
|
McCarthy AD, Hardie DG. The Multifunctional Polypeptide Chains of Rabbit-Mammary Fatty-Acid Synthase. ACTA ACUST UNITED AC 2005; 130:185-93. [PMID: 6549986 DOI: 10.1111/j.1432-1033.1983.tb07135.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several methods have been used to label active centres on the multifunctional polypeptide chains of rabbit mammary fatty acid synthase. Experiments using [14C]acetyl-CoA or [14C]malonyl-CoA have shown that there is a single non-thiol site which binds either acetyl or malonyl groups, present at a stoichiometry of two per enzyme dimer, and representing an intermediate in the acyl transferase reaction. This adds further support to the view that the two subunits are identical and that each polypeptide chain contains up to seven active centres. However, two novel and independent methods for the quantification of the pantetheine thiol demonstrate that this prosthetic group can be present in sub-stoichiometric amounts. By studying intermediates during limited elastase digestion of fatty acid synthase labelled in different active centres, we have been able to map the positions of four active centres within the polypeptide chain. The thioesterase domain is present in a terminal location on both polypeptide chains as previously reported. The acyl carrier domain (pantetheine thiol) is located in a region of molecular weight 9000 immediately adjacent to the thioesterase domain. The acyl transferase (acyl-O-ester site) and the 3-oxoacylsynthase thiol are located in a region of molecular weight 110000 at the opposite end of the polypeptide chain to the thioesterase domain. The relationship between the disposition of the activities on the multifunctional polypeptide chains of yeast and mammalian fatty acid synthase is discussed.
Collapse
|
14
|
Aly MR, Ibrahim el-S I, Ashry el-S H, Schmidt RR. Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group. Carbohydr Res 1999; 316:121-32. [PMID: 10420591 DOI: 10.1016/s0008-6215(99)00051-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.
Collapse
Affiliation(s)
- M R Aly
- Fakultät Chemie, Universität Konstanz, Germany
| | | | | | | |
Collapse
|
15
|
E. Aly MR, Castro-Palomino JC, I. Ibrahim ES, El-Ashry ESH, Schmidt RR. The Dimethylmaleoyl Group as Amino Protective Group – Application to the Synthesis of Glucosamine-Containing Oligosaccharides. European J Org Chem 1998. [DOI: 10.1002/(sici)1099-0690(199811)1998:11<2305::aid-ejoc2305>3.0.co;2-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Pavel J, Harter C, Wieland FT. Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex. Proc Natl Acad Sci U S A 1998; 95:2140-5. [PMID: 9482852 PMCID: PMC19276 DOI: 10.1073/pnas.95.5.2140] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
COPI-coated vesicles mediate protein transport within the early secretory pathway. Their coat consists of ADP ribosylation factor (ARF1, a small guanosine nucleotide binding protein), and coatomer, a cytosolic complex composed of seven subunits, alpha- to zeta-coat proteins (COPs). For coat formation that initiates budding of a vesicle, ARF1 is recruited to the Golgi membrane from the cytosol in its GTP-bound form, and subsequently, coatomer can bind to the membrane. To identify a minimal structure of coatomer capable to bind to Golgi membranes in an ARF1-dependent manner, we have established a procedure to dissociate coatomer under conditions that allow reassociation of the subunits to a complete and functional complex. After dissociation, subunits or subcomplexes can be isolated and may be expected to be functional. Herein we describe isolation of a subcomplex of coatomer consisting of beta- and delta-COPs that is able to bind to Golgi membranes in an ARF1- and GTP-dependent manner.
Collapse
Affiliation(s)
- J Pavel
- Biochemie-Zentrum Heidelberg Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
17
|
Affiliation(s)
- B J Rawlings
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
18
|
Kolodziej SJ, Penczek PA, Schroeter JP, Stoops JK. Structure-function relationships of the Saccharomyces cerevisiae fatty acid synthase. Three-dimensional structure. J Biol Chem 1996; 271:28422-9. [PMID: 8910467 DOI: 10.1074/jbc.271.45.28422] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The three-dimensional structure of the Saccharomyces cerevisie fatty acid synthase was computed from electron microscopy of stain images. The barrel-shaped structure (point group symmetry 32) has major and minor axes of approximately 245 x 220 A, respectively, and consists of two different subunits organized in an alpha6beta6 complex (Mr = 2.5 x 10(6)). Two sets of three beta subunits form triangle-shaped caps that enclose the ends of the barrel. The wall of the barrel appears to consist of three N-shaped alpha subunit pairs each with an over and underlying arch-shaped beta subunit. Inside the molecule there are three major interconnected cavities that are tilted approximately 20 degrees with respect to its major axis. An axle-shaped structure extends the length of the cavity on the 3-fold axis and is connected to the two ends of the barrel. The cavities are partially divided on the equator of the molecule by three spokes that extend from the axle on the 2-fold axis to the exterior wall. We propose that these six cavities constitute the six equivalent sites of fatty acid synthesis resulting in an extraordinary structure-function relationship with the 42 catalytic sites involved in fatty acid synthesis inside the molecule. The six cavities each have two funnel-shaped openings ( approximately 20 A in diameter) which may serve to permit the diffusion of substrates and products in and out of these functional units. The subunits appear to be arranged in a manner that affords extensive intermolecular interactions contributing to the stability of this macromolecular complex.
Collapse
Affiliation(s)
- S J Kolodziej
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
19
|
Saitoh S, Takahashi K, Nabeshima K, Yamashita Y, Nakaseko Y, Hirata A, Yanagida M. Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase. J Cell Biol 1996; 134:949-61. [PMID: 8769419 PMCID: PMC2120970 DOI: 10.1083/jcb.134.4.949] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two fission yeast temperature-sensitive mutants, cut6 and lsd1, show a defect in nuclear division. The daughter nuclei differ dramatically in size (the phenotype designated lsd, large and small daughter). Fluorescence in situ hybridization (FISH) revealed that sister chromatids were separated in the lsd cells, but appeared highly compact in one of the two daughter nuclei. EM showed asymmetric nuclear elongation followed by unequal separation of nonchromosomal nuclear structures in these mutant nuclei. The small nuclei lacked electron-dense nuclear materials and contained highly compacted chromatin. The cut6+ and lsd1+ genes are essential for viability and encode, respectively, acetyl CoA carboxylase and fatty acid synthetase, the key enzymes for fatty acid synthesis. Gene disruption of lsd1+ led to the lsd phenotype. Palmitate in medium fully suppressed the phenotypes of lsd1. Cerulenin, an inhibitor for fatty acid synthesis, produced the lsd phenotype in wild type. The drug caused cell inviability during mitosis but not during the G2-arrest induced by the cdc25 mutation. A reduced level of fatty acid thus led to impaired separation of non-chromosomal nuclear components. We propose that fatty acid is directly or indirectly required for separating the mother nucleus into two equal daughters.
Collapse
Affiliation(s)
- S Saitoh
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ricard J, Mulliert G, Kellershohn N, Giudici-Orticoni MT. Dynamics of enzyme reactions and metabolic networks in living cells. A physico-chemical approach. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1994; 13:1-80. [PMID: 8162231 DOI: 10.1007/978-3-642-78581-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Ricard
- Institut Jacques Monod, C.N.R.S.-Université Paris VII, France
| | | | | | | |
Collapse
|
21
|
Ward OP, Young CS. Reductive biotransformations of organic compounds by cells or enzymes of yeast. Enzyme Microb Technol 1990; 12:482-93. [PMID: 1366632 DOI: 10.1016/0141-0229(90)90063-v] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae catalyses the asymmetric reductive biotransformation of a variety of compounds containing a carbonyl group or carbon-carbon double bond. Oxidoreductases participating in these reactions which have commercial potential in biotransformation processes are likely to have relatively broad substrate specificity. Important carbonyl reductases falling into this category include YADH- and yeast NADP-dependent beta-ketoester reductases. The enoyl reductase component of the FAS complex may have a role in asymmetric yeast reduction of carbon-carbon double bonds of unnatural substrates. Other nicotinamide-requiring oxidoreductases of yeast are also surveyed to rationalize observed biotransformations of whole yeast cells in terms of specific enzymes. Genetic and protein engineering may enable enzymes to be tailored to accept new substrates. A greater understanding of the enzymes and reactions involved will facilitate further optimization and exploitation of these catalytic systems in industrial processes.
Collapse
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
22
|
Enzymes of Fatty Acid Synthesis. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461013-2.50018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Mohamed AH, Chirala SS, Mody NH, Huang WY, Wakil SJ. Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37757-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
24
|
Chirala S, Kuziora M, Spector D, Wakil S. Complementation of mutations and nucleotide sequence of FAS1 gene encoding beta subunit of yeast fatty acid synthase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61337-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Srivastava DK, Bernhard SA. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. CURRENT TOPICS IN CELLULAR REGULATION 1986; 28:1-68. [PMID: 3539532 DOI: 10.1016/b978-0-12-152828-7.50003-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Schweizer M, Lebert C, Höltke J, Roberts LM, Schweizer E. Molecular cloning of the yeast fatty acid synthetase genes, FAS1 and FAS2: illustrating the structure of the FAS1 cluster gene by transcript mapping and transformation studies. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:457-65. [PMID: 6330502 DOI: 10.1007/bf00425558] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
From a Saccharomyces cerevisiae gene bank contained in the novel yeast cosmid shuttle vector pMS201 the fatty acid synthetase (FAS) genes FAS1 and FAS2 were isolated. FAS clones were identified by in situ colony hybridization using two yeast DNA probes apparently capable of producing avian FAS cross-reacting material (J. Carbon, personal communication). Classification as FAS1 or FAS2 clones was achieved by their specific transformation of fas1 and fas2 yeast mutants. By transcription mapping FAS1 was assigned to about 5.3 kb within 14.8 kb of chromosomal DNA covered by two genomically adjacent BamHI fragments. The FAS2 gene was localized on a single BamHI fragment of 25 kb. One of the FAS clones ( FAS2 ) produces immunologically cross-reacting material in Escherichia coli. High frequency transformation of fas1 mutants was only observed with one subclone, pMS3021 , containing the intact FAS1 locus. Other DNA segments cloned in the same self-replicating vector but representing only part of FAS1 exhibited drastically lower transformation rates. As evident from this and from FAS1 /TRP1-cotransformation rates only the intact FAS1 gene in pMS3021 is capable of fas1 -mutant complementation. With partial FAS1 genes, even when coding for an intact equivalent of the mutated domain, their chromosomal integration is necessary for the expression of FAS. In integrative transformants the coexistence of integrated and autonomously replicating plasmid DNA was demonstrated. Both, the extrachromosomal and chromosomally integrated FAS DNA was mitotically unstable. Transformation studies using subcloned FAS1 DNA segments revealed the relative locations of the enoyl reductase and dehydratase domains within this pentafunctional cluster gene.
Collapse
|
27
|
Schweizer E. Chapter 3 Genetics of fatty acid biosynthesis in yeast. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0167-7306(08)60121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
28
|
Karam GA, Arslanian MJ. A rapid method for the purification of fatty acid synthetase from the yeast Saccharomyces cerevisiae. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1984; 16:667-73. [PMID: 6381160 DOI: 10.1016/0020-711x(84)90036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rapid method for the isolation and purification of small quantities of highly active fatty acid synthetase (FAS) from several strains of the yeast Saccharomyces cerevisiae, is presented. The purification procedure which is the shortest reported to this date (18 hr), involves the release of the enzyme by either cell wall digestion with Zymolyase 60000 or cell wall disruption by glass beads, followed by 35-50% ammonium sulfate fractionation, desalting by Sephadex G-25 chromatography, then calcium phosphate gel treatment, concentration by 50% ammonium sulfate precipitation, sedimentation of the enzyme in the ultracentrifuge and finally, column chromatography on DEAE Bio-Gel A. Fatty acid synthetase prepared by the cell breakage method, was found to be homogeneous according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), SDS-Tris-glycine disc gel electrophoresis and immunoelectrophoresis criteria. However, enzyme prepared from Zymolyase treated cells showed several proteolytic bands in addition to FAS bands, on SDS-PAGE. Enzyme obtained by both methods of cell breakage, showed a similar behavior throughout the purification procedure and gave a similar yield of enzyme of high specific activity (4800-7200 nmol/min/mg) that remained stable for several months at -85 degrees C.
Collapse
|
29
|
Abstract
So far, reviews that have appeared on fungal lipids present data mainly on the lipid composition of these organisms and the influence of lipids on their physiology. These reviews provide little information about the enzymes of lipid metabolism in these organisms and it is assumed, by most workers, that lipid synthesis in all fungi takes place as in Saccharomyces cervesiae, the only fungus in which the complete pathways of phospholipid biosynthesis have been worked out. During the last few years, literature has accumulated on lipid metabolic enzymes of other fungi, as investigators became increasingly interested in this area of research. The present review, after an introduction, will be divided into different sections and each section will deal, comparatively, with various aspects of fungal lipid metabolism and physiology. This review will, therefore, bring out the differences or similarities of lipid metabolism in diverse fungal species.
Collapse
|
30
|
McCarthy AD, Aitken A, Hardie DG. The multifunctional polypeptide chain of rabbit mammary fatty acid synthase contains a domain homologous with the acyl carrier protein of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 136:501-8. [PMID: 6357793 DOI: 10.1111/j.1432-1033.1983.tb07769.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The phosphopantetheine thiol of rabbit mammary fatty acid synthase was specifically alkylated using chloro[14C]acetyl-CoA and a radioactive fragment generated by limited elastase digestion of the modified protein was purified by gel filtration. We have previously mapped this fragment to an internal location in the 250 000-Mr polypeptide adjacent to the thioesterase domain [Eur. J. Biochem. 130, 185-193 (1983)]. The purified fragment had apparent molecular weights of 23 000 by gel filtration and 10 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, while amino acid analysis indicated a minimal molecular weight of 10 400. We have determined the amino acid sequence of the first 64 residues of the fragment. The phosphopantetheine moiety is esterified to a serine at residue 38 in the sequence. When the sequences of the rabbit acyl carrier fragment and the 8847-Mr acyl carrier protein of Escherichia coli are aligned, 17 out of 64 residues are identical. These results suggest that the limited proteolysis delineates an internal acyl carrier domain within the rabbit protein and provide the first clear evidence that multifunctional fatty acid synthases have arisen by fusion of ancestral monofunctional proteins.
Collapse
|
31
|
McCarthy AD, Goldring JP, Hardie DG. Evidence that the multifunctional polypeptides of vertebrate and fungal fatty acid synthases have arisen by independent gene fusion events. FEBS Lett 1983; 162:300-4. [PMID: 6354747 DOI: 10.1016/0014-5793(83)80776-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The enoyl reductase (NADPH binding site) of rabbit mammary fatty acid synthase has been radioactively labelled using pyridoxal phosphate and sodium [3H]borohydride. Using this method we have been able to add this site to the four sites whose location has already been mapped within the multifunctional polypeptide chain of the protein. The results show that the enoyl reductase lies between the 3-oxoacylsynthase and the acyl carrier. This confirms that the active sites occur in a different order on the single multifunctional polypeptide of vertebrate fatty acid synthase and the two multifunctional polypeptides of fungal fatty acid synthase, and suggests that these two systems have arisen by independent gene fusion events.
Collapse
|
32
|
Shoukry S, Stoops JK, Wakil SJ. Inactivation of yeast fatty acid synthetase by modifying the beta-ketoacyl reductase active lysine residue with pyridoxal 5'-phosphate. Arch Biochem Biophys 1983; 226:224-30. [PMID: 6416172 DOI: 10.1016/0003-9861(83)90288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Treatment of yeast fatty acid synthetase with pyridoxal 5'-phosphate inhibited the enzyme. Assays of the partial activities of the pyridoxal phosphate-treated synthetase showed that only the beta-ketoacyl reductase was significantly inhibited. NADPH prevented inactivation of the enzyme by pyridoxal phosphate, indicating that pyridoxal modifies a residue near or in the beta-ketoacyl reductase site. The pyridoxal-treated synthetase shows a fluorescence spectrum with a maximum of 426 nm after uv irradiation at 325 nm. Binding of the pyridoxal phosphate to the synthetase is reversible as shown by the disappearance of the fluorescence band after dialysis of pyridoxal-treated enzyme. Reduction with NaBH4 of the pyridoxal-treated enzyme eliminates this fluorescence maximum and causes the appearance of a new band at 393 nm. These observations suggest that pyridoxal phosphate interacts with the synthetase by forming a Schiff base with lysine residue at the beta-ketoacyl reductase site. Amino acid analyses of the HCl hydrolysates of the borohydride-reduced, pyridoxal-treated synthetase showed the presence of 6 mol of N6-pyridoxal derivative of lysine per mole of fatty acid synthetase, indicating the presence of six sites of beta-ketoacyl reductase in the native enzyme. Autoradiography of sodium dodecyl sulfate-polyacrylamide gels of the pyridoxal phosphate enzyme reduced with NaB3H4 indicates that the alpha subunit contains the beta-ketoacyl reductase domain. These findings are consistent with the proposed structure of the alpha 6 beta 6 complex required for palmitoyl-CoA synthesis.
Collapse
|
33
|
Kuziora MA, Chalmers JH, Douglas MG, Hitzeman RA, Mattick JS, Wakil SJ. Molecular cloning of fatty acid synthetase genes from Saccharomyces cerevisiae. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44277-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
1 Structure and Mechanism of Fatty Acid Synthetase. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s1874-6047(08)60299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Clements PR, Barden RE, Ahmad PM, Chisner MB, Ahmad F. Irreversible inhibition of fatty acid synthase from rat mammary gland with S-(4-bromo-2,3-dioxobutyl)-CoA. Effect on the partial reactions, protection by substrates and stoichiometry studies. Biochem J 1982; 207:291-6. [PMID: 7159383 PMCID: PMC1153859 DOI: 10.1042/bj2070291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fatty acid synthase from lactating rat mammary gland is rapidly and irreversibly inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. Of the seven partial reactions catalysed by the enzyme, the inhibition of the overall catalytic activity is closely paralleled only by inhibition of the beta-oxoacyl synthase (condensing) partial reaction. Three partial reactions. Beta-oxoacyl reductase, beta-hydroxyacyl dehydratase and enoyl reductase, are inhibited to a modest degree. The three partial reactions known to involve an acyl-CoA/CoA-binding site, acetyl acyltransferase, malonyl acyltransferase and palmitoyl thioesterase, are not inhibited by S-(4-bromo-2,3-dioxobutyl)-CoA. The modification process does not cause the enzyme to dissociate into catalytically incompetent monomers. Stoichiometric studies suggest that approx. 6 mol of reagent are incorporated per mol of totally inhibited enzyme (dimer). The formation of acylated enzyme from either acetyl-CoA or malonyl-CoA protects the enzyme equally well against S-(4-bromo-2,3-dioxobutyl)-CoA. Also, pretreatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid), a thiol-specific reagent reported to block essential thiol groups in the condensing partial reaction, protects against inhibition by the reagent. On the other hand, the presence of up to 770 microM-S-acetonyl-CoA or dethio-CoA does not protect the enzyme from irreversible inhibition. Together, the results suggest that the primary inhibitory process is a bimolecular reaction resulting in alkylation of essential thiol groups in the condensing partial reaction: this process does not require the obligatory formation of a Michaelis-Menten complex of enzyme and reagent before the alkylation reaction.
Collapse
|
36
|
McCarthy AD, Hardie DG. Reaction of chloroacetyl-CoA with rabbit fatty acid synthase. A new method to label specifically and quantify pantetheine prosthetic groups. FEBS Lett 1982; 147:256-60. [PMID: 7173396 DOI: 10.1016/0014-5793(82)81054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The substrate analogue chloroacetyl-CoA inhibits fatty acid synthase by reacting with the 'central' or pantetheine thiol and not the 'peripheral' or beta-ketoacylsynthase thiol as previously reported. This was demonstrated by the isolation of [14C]carboxymethylcysteamine after acid hydrolysis of enzyme labelled with chloro[14C]acetyl-CoA, and by the demonstration that more than one of the partial reactions is inhibited. This reagent now represents a simple and convenient tool both for quantification of the pantetheine thiol and for labelling this site for peptide mapping and isolation.
Collapse
|
37
|
Caughey I, Kekwick RG. The characteristics of some components of the fatty acid synthetase system in the plastids from the mesocarp of avocado (Persea americana) fruit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 123:553-61. [PMID: 7075600 DOI: 10.1111/j.1432-1033.1982.tb06568.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preparations of NADH-specific and NADPH-specific 3-oxoacyl-[acyl-carrier-protein] reductase enzymes (EC 1.1.1.100), enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.9) and [acyl-carrier-protein] malonyltransferase (EC 2.3.1.39) have been purified from preparations of avocado mesocarp plastids and characterised. The enzymes are quite similar in molecular and kinetic characteristics to analogous enzymes known in Escherichia coli and Euglena and are clearly components of a type-II fatty acid synthetase system.
Collapse
|
38
|
Kumar S, Srinivasan KR. Inactivation of chicken liver fatty acid synthetase by malonyl coenzyme A. Effects of acetyl coenzyme A and nicotinamide adenine dinucleotide phosphate. Biochemistry 1981; 20:3393-400. [PMID: 7260044 DOI: 10.1021/bi00515a014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chicken liver fatty acid synthetase complex is irreversibly inactivated by one of the substrates, malonyl-CoA. Acetyl-CoA has a dual role. At concentrations less than or comparable to those of malonyl-CoA, the rate of inactivation is enhanced, whereas at acetyl-CoA/malonyl-CoA ratios greater than 2, the rte of inactivation is slowed down. NADP+ at low concentrations (25 microM) affords considerable protection against malonyl-CoA mediated inactivation whereas NAD+ even at 1.0 mM concentration has no effect. The inactivation process does not lead to the dissociation of the enzyme complex and is accompanied by subtle conformational changes as measured by circular dichroism measurements. Of all the model partial reactions, decarboxylation of malonyl-CoA and the condensation--CO2 exchange are the only reactions which are not catalyzed by the modified species. The process of inactivation is accompanied by enhanced covalent binding of malonyl groups such that approximately 6 mol of the acyl group is bound per mol of the enzyme at complete inactivation. The available evidence suggests that the inactivation of the enzyme results from the binding of malonyl group(s) at or near the condensing site of the enzyme.
Collapse
|
39
|
Werkmeister K, Johnston RB, Schweizer E. Complementation in vitro between purified mutant fatty acid synthetase complexes of yeast. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:303-9. [PMID: 7018906 DOI: 10.1111/j.1432-1033.1981.tb05334.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Decker K. Feodor Lynen (1911–1979). Rev Physiol Biochem Pharmacol 1981. [DOI: 10.1007/bfb0034077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
|
42
|
Werkmeister K, Wieland F, Schweizer E. Coenzyme A: fatty acid synthetase apoenzyme 4'-phosphopantetheine transferase in yeast. Biochem Biophys Res Commun 1980; 96:483-90. [PMID: 6254516 DOI: 10.1016/0006-291x(80)91240-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Fox JL, Lynen F. Characterization of the flavoenzyme enoyl reductase of fatty acid synthetase from yeast. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 109:417-24. [PMID: 6997049 DOI: 10.1111/j.1432-1033.1980.tb04810.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Enoyl reductase in the fatty acid synthetase from brewer's yeast, a flavoenzyme function, has been used as a specific probe for one partial activity of the multi-functional enzyme. The enzyme has an absorption maximum at 460 nm with epsilon = 18600 M-1 cm-1 and A280 = 1.37 mg-1 ml. The circular dichroism spectrum shows negative peaks at 373 and 466 nm. The fluorescence maximum is at 540 nm. The apoenzyme has an absorption maximum at 279 nm and shows fluorescence at 345 nm. The association constant for the FMN is 4 X 10(7) M-1. The redox potential was determined as Eh = --0.193 V. The reductase is characterized as a 'true' transhydrogenase as no flavin free radical can be obtained by photochemical or chemical reduction or oxidation, i.e. it only functions via two-electron steps. An interpretation of the hydrophobic nature of the flavin binding site based on spectral data is presented.
Collapse
|
44
|
NAD-specific glutamate dehydrogenase of Neurospora crassa. Limited action of trypsin and the presence of two distinct domains. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)43931-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|