1
|
Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. J Physiol 2006; 579:811-21. [PMID: 17185335 PMCID: PMC2151353 DOI: 10.1113/jphysiol.2006.123828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio.
Collapse
Affiliation(s)
- Lufang Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Tolstonog GV, Belichenko-Weitzmann IV, Lu JP, Hartig R, Shoeman RL, Traub U, Traub P. Spontaneously Immortalized Mouse Embryo Fibroblasts: Growth Behavior of Wild-Type and Vimentin-Deficient Cells in Relation to Mitochondrial Structure and Activity. DNA Cell Biol 2005; 24:680-709. [PMID: 16274292 DOI: 10.1089/dna.2005.24.680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dependent on the presence or absence of vimentin, primary mouse embryo fibroblasts exhibit different growth characteristics in vitro. While most Vim(+/+) fibroblasts stop dividing and die via apoptosis, a substantial fraction of cells immortalize and proliferate almost normally. Vim(-/-) fibroblasts cease to divide earlier, immortalize in vanishingly small numbers and thereafter proliferate extremely slowly. Early after immortalization, Vim(+/+) (imm) fibroblasts appear structurally almost normal, whereas Vim(-/-) (imm) fibroblasts equal postmitotic "crisis" cells, which are characterized by increased cell size, altered cell ultrastructure, nuclear enlargement, genome destabilization, structural degeneration of mitochondria, and diminution of mitochondrial respiratory activity. The differences between immortalized Vim(+/+) (imm) and Vim(-/-) (imm) fibroblasts persist during early cell cloning but disappear during serial subcultivation. At high cell passage, cloned, immortalized vim(-) fibroblasts grow nearly as fast as their cloned vim(+) counterparts, and also resemble them in size, ultrastructure, nuclear volume, and mitochondrial complement; they very likely employ redundancy to cope with the loss of vimentin function when adjusting structure and behavior to that of immortalized vim(+) fibroblasts. Reduction in nuclear size occurs via release of large amounts of filamentous chromatin into extracellular space; because it is complexed with extracellular matrix proteins, it tends to form clusters and to tightly stick to the surface of other cells, thus providing a potential for horizontal gene transfer. On the other hand, cloned vim(+) and vim(-) fibroblasts are equal in showing contact inhibition at young age and becoming anchorage-independent during serial subcultivation, as indicated by the formation of multilayered and -faceted cell sheets and huge spheroids on top of or in soft agar. With this, immortalized vim(-) fibroblasts reduce their adhesiveness to the substratum which, in their precrisis state and early after cloning, is much higher than that of their vim(+) counterparts. In addition, the coupling between the mitochondrial respiratory chain and oxidative phosphorylation is stronger in vim(+) than vim(-) fibroblasts. It appears from these data that after explantation of fibroblasts from the mouse embryo the primary cause of cell and mitochondrial degeneration, including genomic instability, is the mitochondrial production of reactive oxygen species in a vicious circle, and that vimentin provides partial protection from oxidative damage. As a matrix protein with specific in vitro and in vivo affinities for nuclear and mitochondrial, recombinogenic DNA, it may exert this effect preferentially at the genome level via its influence on recombination and repair processes, and in this way also assist the cells in immortalizing. Additional protection of mitochondria by vimentin may occur at the level of mitochondrial fatty acid metabolism.
Collapse
|
3
|
Hanley PJ, Dröse S, Brandt U, Lareau RA, Banerjee AL, Srivastava DK, Banaszak LJ, Barycki JJ, Van Veldhoven PP, Daut J. 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. J Physiol 2004; 562:307-18. [PMID: 15513944 PMCID: PMC1665522 DOI: 10.1113/jphysiol.2004.073932] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
5-Hydroxydecanoate (5-HD) blocks pharmacological and ischaemic preconditioning, and has been postulated to be a specific inhibitor of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, recent work has shown that 5-HD is activated to 5-hydroxydecanoyl-CoA (5-HD-CoA), which is a substrate for the first step of beta-oxidation. We have now analysed the complete beta-oxidation of 5-HD-CoA using specially synthesised (and purified) substrates and enzymes, as well as isolated rat liver and heart mitochondria, and compared it with the metabolism of the physiological substrate decanoyl-CoA. At the second step of beta-oxidation, catalysed by enoyl-CoA hydratase, enzyme kinetics were similar using either decenoyl-CoA or 5-hydroxydecenoyl-CoA as substrate. The last two steps were investigated using l-3-hydroxyacyl-CoA dehydrogenase (HAD) coupled to 3-ketoacyl-CoA thiolase. V(max) for the metabolite of 5-HD (3,5-dihydroxydecanoyl-CoA) was fivefold slower than for the corresponding metabolite of decanoate (l-3-hydroxydecanoyl-CoA). The slower kinetics were not due to accumulation of d-3-hydroxyoctanoyl-CoA since this enantiomer did not inhibit HAD. Molecular modelling of HAD complexed with 3,5-dihydroxydecanoyl-CoA suggested that the 5-hydroxyl group could decrease HAD turnover rate by interacting with critical side chains. Consistent with the kinetic data, 5-hydroxydecanoyl-CoA alone acted as a weak substrate in isolated mitochondria, whereas addition of 100 mum 5-HD-CoA inhibited the metabolism of decanoyl-CoA or lauryl-carnitine. In conclusion, 5-HD is activated, transported into mitochondria and metabolised via beta-oxidation, albeit with rate-limiting kinetics at the penultimate step. This creates a bottleneck for beta-oxidation of fatty acids. The complex metabolic effects of 5-HD invalidate the use of 5-HD as a blocker of mitochondrial K(ATP) channels in studies of preconditioning.
Collapse
Affiliation(s)
- Peter J Hanley
- Institut für Normale und Pathologische Physiologie, Universität Marburg, Deutschhausstrasse 2, 35037 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Michea L, Combs C, Andrews P, Dmitrieva N, Burg MB. Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells. Am J Physiol Renal Physiol 2002; 282:F981-90. [PMID: 11997314 DOI: 10.1152/ajprenal.00301.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Raising osmolality to 700 mosmol/kgH(2)O by the addition of NaCl rapidly kills most murine inner renal medullary collecting duct cells (mIMCD3), but they survive at 500 mosmol/kgH(2)O. At 300 and 500 mosmol/kgH(2)O, NADH autofluorescence is present in a mitochondria-associated, punctate perinuclear pattern. Within 45 s to 30 min at 700 mosmol/kgH(2)O, the autofluorescence spreads diffusely throughout the cell. This correlates with mitochondrial membrane depolarization, measured as decreased tetramethylrhodamine methyl ester perchlorate (TMRM) fluorescence. Mitochondrial dysfunction should increase the cellular ADP/ATP ratio. In agreement, this ratio increases within 1-6 h. Mitochondrial morphology (transmission electron microscopy) is unaffected, but nuclear hypercondensation becomes evident. Progressive apoptosis occurs beginning 1 h after osmolality is raised to 700, but not to 500, mosmol/kgH(2)O. General caspase activity and caspase-9 activity increase only after 6 h at 700 mosmol/kgH(2)O. The mitochondrial Bcl-2/Bax ratio decreases within 1-3 h, but no cytochrome c release is evident. The mitochondria contain little p53 at any osmolality. Adding urea to 700 mosmol/kgH(2)O does not change NADH or TMRM fluorescence. We conclude that extreme acute hypertonicity causes a mitochondrial dysfunction involved in the initiation of apoptosis.
Collapse
Affiliation(s)
- Luis Michea
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603,USA
| | | | | | | | | |
Collapse
|
5
|
Devin A, Espié P, Guérin B, Rigoulet M. Energetics of swelling in isolated hepatocytes: a comprehensive study. Mol Cell Biochem 1998. [PMID: 9746316 DOI: 10.1023/a:1006847214074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.
Collapse
Affiliation(s)
- A Devin
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux 2, France
| | | | | | | |
Collapse
|
6
|
Devin A, Guérin B, Rigoulet M. Response of isolated rat liver mitochondria to variation of external osmolarity in KCl medium: regulation of matrix volume and oxidative phosphorylation. J Bioenerg Biomembr 1997; 29:579-90. [PMID: 9559859 DOI: 10.1023/a:1022435102552] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
When isolated rat liver mitochondria are incubated in KCI medium, matrix volume, flux, and forces in both hypo- and hyperosmolarity are time-dependent. In hypoosmotic KCl medium, matrix volume is regulated via the K+/H+ exchanger. In hyperosmotic medium, the volume is regulated in such a manner that at steady state, which is reached within 4 min, it is maintained whatever the hyperosmolarity. This regulation is Pi- and deltamuH+-dependent, indicating Pi-K salt entry into the matrix. Under steady state, hyperosmolarity has no effect on isolated rat liver mitochondria energetic parameters such as respiratory rate, proton electrochemical potential difference, and oxidative phosphorylation yield. Hypoosmolarity decreases the NADH/NAD+ ratio, state 3 respiratory rate, and deltamuH+, while oxidative phosphorylation yield is not significantly modified. This indicates kinetic control upstream the respiratory chain. This study points out the key role of potassium on the regulation of matrix volume, flux, and forces. Indeed, while matrix volume is regulated in NaCl hyperosmotic medium, flux and force restoration in hyperosmotic medium occurs only in the presence of external potassium.
Collapse
Affiliation(s)
- A Devin
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux, France
| | | | | |
Collapse
|
7
|
Devin A, Guérin B, Rigoulet M. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:13-20. [PMID: 8573591 DOI: 10.1016/0005-2728(95)00130-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this work was a thermodynamic and kinetic study of the influence of varying external osmolarity on overall oxidative phosphorylations in isolated rat liver mitochondria. When external osmolarity is increased from 100 to 400 mosM by using a non-penetrant sugar: (i) matrix volume diminishes, (ii) state 3 respiratory rate decreases when state 4 slightly varies, (iii) states 3 and 4 protonmotive force and NAD(P)H level increase, whereas oxidative phosphorylation efficiency (ATP/O) decreases. Indeed, respiratory flux versus protonmotive force relationships depend on the osmolarity considered: the lower the external osmolarity, the higher the span of overall driving force necessary for the same respiratory rate. To further investigate the mechanism of the decrease in respiratory and ATP synthesis flux leading to a lowering in oxidative phosphorylation efficiency, we determined the adenine nucleotide carrier control coefficient on respiratory and ATP synthesis rates respectively. The main result is that the adenine nucleotide carrier control coefficient on respiratory rate decreases, and conversely that adenine nucleotide carrier control on ATP synthesis rate increases, from iso- to hyperosmolarity. Furthermore, whatever the osmolarity, when state 3 respiratory rate is titrated with carboxyatractyloside, the same relationship is observed between ATP/O ratio and respiratory flux. From many previous studies, it has been shown that an increase in external osmolarity and a consequent decrease in matrix volume inhibits almost all mitochondrial proton pumps (coupling site 1 and 2 of respiratory chain, ATPase) in different ways. In this work, we show that in phosphorylating mitochondria, the adenine nucleotide carrier plays a key role: its inhibition as the external osmolarity increases lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency.
Collapse
Affiliation(s)
- A Devin
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux 2, France
| | | | | |
Collapse
|
8
|
Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1213:263-76. [PMID: 8049240 DOI: 10.1016/0005-2760(94)00082-4] [Citation(s) in RCA: 391] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G D Lopaschuk
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
9
|
Eaton S, Turnbull DM, Bartlett K. Redox control of beta-oxidation in rat liver mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:671-81. [PMID: 8143722 DOI: 10.1111/j.1432-1033.1994.tb18668.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coupled rat liver mitochondria were incubated with [U-14C]hexadecanoate and carnitine which resulted in the formation of acyl-, 2-enoyl- and 3-hydroxyacyl-CoA and carnitine esters. The production of 2-enoyl-CoA and 3-hydroxyacyl-CoA esters was associated with a significant lowering of the NAD+/NADH ratio, in contrast to rat muscle mitochondria [Eaton, S., Bhuiyan, A. K. M. J., Kler, R. S., Turnbull, D. M. & Bartlett, K. (1993) Biochem. J. 289, 161-172], suggesting that control by the respiratory chain is important under normal conditions. When NAD+/NADH ratios were held low by succinate-induced reverse electron flow, 3-enoyl-CoA esters were also detected, probably formed by the action of 3,2-enoyl-CoA isomerase. Measurement of the flux of beta-oxidation at different osmolalities showed that flux was strongly dependent on osmolality changes in the physiological range. Measurement of the CoA and carnitine esters resulting from incubations made at different osmolalities showed that there was an increase in the amounts of the saturated acyl-CoA esters with respect to 2-enoyl-CoA and 3-hydroxyacyl-CoA esters, consistent with control by the electron-transfer flavoprotein-ubiquinone segment [Halestrap, A. P. & Dunlop, J. L. (1986) Biochem. J. 239, 559-565]. This however could not be the only factor operating as indicated by the continued presence of 2-enoyl-CoA and 3-hydroxyacyl-CoA esters at high osmolalities.
Collapse
Affiliation(s)
- S Eaton
- Department of Child Health, Medical School, University of Newcastle upon Tyne, England
| | | | | |
Collapse
|
10
|
Tosh D, Alberti KG, Agius L. Clofibrate induces carnitine acyltransferases in periportal and perivenous zones of rat liver and does not disturb the acinar zonation of gluconeogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:245-50. [PMID: 2775785 DOI: 10.1016/0304-4165(89)90081-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clofibrate induces hypertrophy and hyperplasia and marked changes in the activities of various enzymes in rat liver. We examined the effects of treatment of rats with clofibrate on enzyme induction and on rates of metabolic flux in hepatocytes isolated from the periportal and perivenous zones of the liver. Clofibrate induced the activities of carnitine acetyltransferase (90-fold), carnitine palmitoyltransferase (3-fold) and NADP-linked malic enzyme (3-fold) to the same level in periportal as in perivenous hepatocytes, suggesting that these enzymes were induced uniformly throughout the liver acinus. Increased rates of palmitate metabolism and ketogenesis after clofibrate treatment were associated with: a more oxidised mitochondrial redox state; diminished responsiveness to glucagon and loss of periportal/perivenous zonation. Despite the marked liver enlargement and hyperplasia caused by clofibrate, the normal periportal/perivenous zonation of alanine aminotransferase and gluconeogenesis was preserved in livers of clofibrate-treated rats, indicating that clofibrate-induced hyperplasia does not disrupt the normal acinar zonation of these metabolic functions.
Collapse
Affiliation(s)
- D Tosh
- Department of Medicine, University of Newcastle upon Tyne, U.K
| | | | | |
Collapse
|
11
|
Lê-Quôc D, Lê-Quôc K. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Arch Biochem Biophys 1989; 273:466-78. [PMID: 2774563 DOI: 10.1016/0003-9861(89)90506-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dysfunction of mitochondria after oxidation of endogenous NAD(P)H, especially after calcium accumulation, has been abundantly reported, but the causes of membrane perturbations did not receive a full explanation. In light of several additional observations reported in this study, we propose a general scheme which shows the sequential processes that are likely involved in the appearance of calcium-induced membrane leakiness. Addition of acetoacetate, oxaloacetate, or ketomalonate to rotenone-treated mitochondria led to a massive oxidation of both NADH and NADPH. Under these conditions, stimulation of fatty acid oxidation could be observed. This process was shown to be accompanied by a reduction of intramitochondrial NADP+. The reduction of NADP+ was inhibited by uncouplers, electron transfer inhibitors and N,N'-dicyclohexylcarbodiimide. It was thus probably catalyzed by the mitochondrial transhydrogenase. Oxidation of pyridine nucleotides in the presence of acetoacetate induced (i) a slight decrease in the number of sulfhydryl groups reactive with N-ethylmaleimide (but no change in the amount of intramitochondrial reduced glutathione) and (ii) modifications of the kinetics and the orientation of the ADP/ATP carrier. In the presence of calcium ions, acetoacetate-stimulated fatty acid oxidation promoted an extensive swelling of mitochondria. Uptake of calcium ions into the matrix was a critical factor for triggering the swelling. Thiols, if they were added at a sufficiently high concentration, suppressed the swelling. Also ligands of the ADP/ATP carrier which stabilized the m-state conformation of the protein, exerted an efficient protective action. Three essential interacting factors emerge from this study: (i) The crucial role of the ADP/ATP carrier orientation in promoting the calcium-induced membrane destabilization. More precisely, it has been shown that the ADP/ATP carrier adopts the c-state conformation (i.e., nucleotide binding site facing the cytoplasm) during fatty acid oxidation. (ii) The modification of a very small number of sulfhydryl groups of mitochondrial protein. These groups are probably in an oxidized state when the level of reduced pyridine nucleotides is low. (iii) The prevailing role of the transhydrogenase, the function of which is also intimately associated with fatty acid oxidation. After energization, transhydrogenase can hinder thiol oxidation and therefore partially protect the membrane structure.
Collapse
Affiliation(s)
- D Lê-Quôc
- Laboratoire de Biochimie, UA CNRS 531, UFR Sciences et Techniques, Besançon, France
| | | |
Collapse
|
12
|
Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 973:355-82. [PMID: 2647140 DOI: 10.1016/s0005-2728(89)80378-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this article is to describe briefly the methods by which the intra-mitochondrial volume may be measured both in vitro and in situ, to summarise the mechanisms thought to regulate the mitochondrial volume and then to review in more detail the evidence that changes in the intra-mitochondrial volume play an important part in the regulation of liver mitochondrial metabolism by glucogenic hormones such as glucagon, adrenaline and vasopressin. It will be shown that these hormones cause an increase in matrix volume sufficient to produce significant activation of fatty acid oxidation, respiration and ATP production, pyruvate carboxylation, citrulline synthesis and glutamine hydrolysis. These are all processes activated by such hormones in vivo. I will go on to demonstrate that the increase in matrix volume is brought about by an increase in mitochondrial [PPi]. This is able to stimulate K+ entry into the matrix, perhaps through an interaction with the adenine nucleotide translocase. The rise in matrix [PPi] is a consequence of an increase in cytosolic and hence mitochondrial [Ca2+] which inhibits mitochondrial pyrophosphatase. In the final section of the review I provide evidence that changes in mitochondrial volume may be important in the responses of a variety of tissues to hormones and other stimuli. I write as a metabolist with a working knowledge of bioenergetics rather than the converse, and this will certainly be reflected in the approach taken. If I cause offence to any dedicated experts in the field of bioenergetic by my ignorance or lack of understanding of their studies I can only offer my apologies and ask to be corrected.
Collapse
Affiliation(s)
- A P Halestrap
- Department of Biochemistry, University of Bristol, U.K
| |
Collapse
|
13
|
Kawamura N. Study of amino acid formation during palmitate oxidation in rat brain mitochondria. Neurochem Res 1989; 14:9-15. [PMID: 2565541 DOI: 10.1007/bf00969751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, alpha-ketoglutarate, and glutamate during palmitate oxidation, and also by assaying 14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or 14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase). Palmitate oxidation also resulted in alpha-ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase 14C-products and formation of alpha-ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or alpha-ketoglutarate was added exogenously. Exogenous alpha-ketoglutarate was found to decrease 14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added alpha-ketoglutarate, however, alpha-ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of alpha-ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for alpha-ketoglutarate in the same pool, and (b) the pool of alpha-ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.
Collapse
Affiliation(s)
- N Kawamura
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
14
|
Olubadewo JO, Cook GA, Heimberg M. Effects of 8-N,N-diethylamino-octyl-3,4,5-trimethoxybenzoate (TMB-8) HCl and verapamil on the metabolism of free fatty acid by hepatocytes. Biochem Pharmacol 1988; 37:1463-71. [PMID: 3358779 DOI: 10.1016/0006-2952(88)90007-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of calcium antagonists on hepatic lipid metabolism was investigated in freshly dispersed rat hepatocytes incubated with [1-14C]oleate and verapamil or 8-N,N-diethylamino-octyl-3,4,5-trimethoxybenzoate (TMB-8). Synthesis of triglyceride was calculated from the specific radioactivity of [1-14C]oleate in extracted total lipid, after separation of each lipid class by thin-layer chromatography. Ketogenesis was measured enzymatically or as the amount of radioactivity incorporated into neutralized acid-soluble extracts. Neither verapamil nor TMB-8 affected triglyceride synthesis. In contrast, TMB-8 and verapamil exerted a concentration-dependent inhibition of ketogenesis, with TMB-8 being more potent than verapamil (inhibition by 50 microM TMB-8 was 73 +/- 9% versus 38 +/- 2% inhibition by 50 microM verapamil). Increasing the concentrations of calcium (0 to 4.2 mM) or oleate (0 to 2.0 mM) increased the rate of ketogenesis but did not alter the antiketogenic potency of TMB-8 or verapamil, indicating that inhibition of ketogenesis by these drugs was not calcium dependent. Since the calcium antagonists did not affect ketogenesis from octanoic acid, and since carnitine stimulated ketogenesis from [1-14C]oleate by 25% and reversed the antiketogenic effects of TMB-8 and verapamil, it appeared that the two calcium antagonists inhibited ketogenesis by interfering with the activity of the outer mitochondrial carnitine palmitoyltransferase. In assays of the outer carnitine palmitoyltransferase in isolated mitochondria, both TMB-8 and verapamil were inhibitory. TMB-8 was the more potent inhibitor of this enzyme, and carnitine was able to overcome inhibition by each of the inhibitors. These results suggest that verapamil and TMB-8 may inhibit ketogenesis by mechanisms independent of their well known effects on cellular calcium concentrations, and that inhibition may be competitive with respect to carnitine concentration. However, direct inhibition of carnitine palmitoyltransferase may not explain completely the inhibition of ketogenesis by these drugs, since concentrations required for enzyme inhibition were greater than those required for inhibition of ketogenesis in isolated hepatocytes.
Collapse
Affiliation(s)
- J O Olubadewo
- Department of Pharmacology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
15
|
Halestrap AP, Dunlop JL. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J 1986; 239:559-65. [PMID: 3827814 PMCID: PMC1147323 DOI: 10.1042/bj2390559] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rat liver mitochondria were incubated in media of different osmolarities and in the presence of various substrates. Rates of oxygen consumption and mitochondrial matrix volumes were measured in the presence and absence of ADP and uncoupler. Duroquinol oxidation was insensitive to matrix volume, whereas other substrates tested showed increased rates of oxidation when the matrix volume increased from 1.0 to 1.5 microliter/mg of protein; this is the range of values measured in situ [Quinlan, Thomas, Armston & Halestrap (1983) Biochem. J. 214, 395-404]. Palmitoylcarnitine, octanoate and butyrate oxidations were particularly sensitive to the matrix volume, increasing from negligible rates to maximal rates within this range. Swelling induced by K+ uptake also stimulated palmitoylcarnitine oxidation. A similar effect of volume on substrate oxidation was seen when ferricyanide in the presence or absence of ubiquinone-1 replaced oxygen as terminal electron acceptor. Measurement of flavoprotein reduction (A 460-480) demonstrated that the locus of the effect of matrix volume is between the electron-transfer flavoprotein and ubiquinone. It is suggested that volume-mediated regulation of fatty acid and proline oxidation may be an important component of the hormonal stimulation of their oxidation.
Collapse
|
16
|
Quinlan PT, Halestrap AP. The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis. Biochem J 1986; 236:789-800. [PMID: 3024626 PMCID: PMC1146912 DOI: 10.1042/bj2360789] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of hormones on the cytochrome spectra of isolated hepatocytes were recorded under conditions of active gluconeogenesis from L-lactate. Glucagon, phenylephrine, vasopressin and valinomycin, at concentrations that caused stimulation of gluconeogenesis, increased the reduction of the components of the cytochrome bc1 complex, just as has been observed in liver mitochondria isolated from glucagon-treated rats [Halestrap (1982) Biochem. J. 204, 37-47]. The effects of glucagon and phenylephrine were additive. The time courses of the increased reduction of cytochrome c/c1 and NAD(P)H/NAD(P)+ caused by hormones, valinomycin, A23187 and ethanol were measured by dual-beam spectrophotometry and fluorescence respectively. Ethanol (14 mM) produced a substantial rise in NAD(P)H fluorescence, beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios, no change in cytochrome c/c1 reduction, a 10% decrease in O2 consumption and a 60% decrease in gluconeogenesis. Glucagon, phenylephrine and vasopressin caused a substantial and transient rise in NAD(P)H fluorescence, but a sustained increase in cytochrome c/c1 reduction and the rates of O2 consumption and gluconeogenesis. The transience of the fluorescence response was greater in the absence of Ca2+, when the cytochrome c/c1 response also became transient. The fluorescence response was smaller and less transient, but the cytochrome c/c1 response was greater, in the presence of fatty acids. Both responses were greatly decreased by the presence of 1 mM-pent-4-enoate. Valinomycin (2.5 nM) caused a decrease in NAD(P)H fluorescence coincident with an increase in cytochrome c/c1 reduction and the rate of gluconeogenesis and O2 consumption. A23187 (7.5 mM) caused increases in both NAD(P)H fluorescence and cytochrome c/c1 reduction. The effects of hormones and valinomycin on the time courses of NAD(P)H fluorescence, cytochrome c/c1 reduction and light-scattering by hepatocytes were compared with those of 0.5 microM-Ca2+ or 1 nM-valinomycin on the same parameters of isolated liver mitochondria. It is concluded that hormones increase respiration by hepatocytes in a biphasic manner. An initial Ca2+-dependent activation of mitochondrial dehydrogenases rapidly increases the mitochondrial [NADH], which is followed by a volume-mediated stimulation of fatty acid oxidation and electron flow between NADH and cytochrome c. 10. Amytal (0.5 mM) was able to reverse the effects of hormones on the reduction of cytochromes c/c1 and the rates of gluconeogenesis and O2 consumption without significantly lowering tissue [ATP].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
17
|
Otto DA, Chatzidakis C, Kasziba E, Cook GA. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation. Arch Biochem Biophys 1985; 242:23-31. [PMID: 4051503 DOI: 10.1016/0003-9861(85)90475-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.
Collapse
|
18
|
Johnson GD, Stay B, Rankin SM. Ultrastructure of corpora allata of known activity during the vitellogenic cycle in the cockroach Diploptera punctata. Cell Tissue Res 1985; 239:317-27. [PMID: 3978695 DOI: 10.1007/bf00218010] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ultrastructure was correlated with rates of juvenile hormone synthesis in corpora allata from females of the viviparous cockroach Diploptera punctata at seven daily intervals during the first vitellogenic cycle. Synthetic activity of the glands was determined by in vitro radiochemical assay before the glands were fixed for electron microscopic analysis. The cycle in rates of juvenile hormone synthesis progressed from about 20 pmol h-1 per gland pair (oocytes 0.60 mm long) to a maximum mean rate of 140 pmol h-1 per pair (oocytes 1.40-1.47 mm long) and declined to about 20 pmol h-1 per pair at ovulation (oocytes about 1.65 mm long). Conspicuous ultrastructural changes occurred with changing synthetic rates. In glands with increasing rates of synthesis, mitochondria showed less electron-dense matrix, greater diameter and more irregular shape. Smooth endoplasmic reticulum changed from easily seen to obscure tubules, networks, and vesicles. Rough endoplasmic reticulum appeared in longer, more curved segments. Newly formed autophagic vacuoles appeared in all glands of highest activity rates. In glands with decreasing rates of synthesis, the mitochondrial matrix became denser, width smaller, and shapes less irregular. Smooth endoplasmic reticulum again appeared tubular and distinct. Golgi complexes were more conspicuous. Rough endoplasmic reticulum in whorls and large numbers of autophagic vacuoles continued to be present.
Collapse
|
19
|
Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)47216-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
|
21
|
Ontko JA, Westbrook DJ. Dual effects of calcium on the oxidation of fatty acids to ketone bodies in liver mitochondria. Biochem Biophys Res Commun 1983; 116:173-9. [PMID: 6639656 DOI: 10.1016/0006-291x(83)90397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The addition of calcium ions (Ca2+) to rat liver mitochondria, under conditions of rapid accumulation of 10-40 nmol Ca2+/mg protein, inhibited the oxidation of long and medium chain fatty acids to ketone bodies, whereas higher quantities of Ca2+ activated the process. The mitochondrial NADH:NAD ratio exhibited corresponding depression and elevation. Both inhibitory and stimulatory actions of Ca2+ were operative in liver mitochondria from fed and fasted rats and appear to be localized in the mitochondrial inner membrane-matrix region. These observations may signify involvement of Ca2+ in the regulation of fatty acid oxidation and ketogenesis.
Collapse
|
22
|
Rapoport S, Dubiel W, Müller M. Calcium exerts an indirect effect on ATP-dependent proteolysis of rat liver mitochondria. FEBS Lett 1983; 160:134-6. [PMID: 6411489 DOI: 10.1016/0014-5793(83)80952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ATP-dependent proteolysis of rat liver mitochondria prepared in electrolyte-poor sucrose media requires the presence of Ca2+. Lanthanum, an inhibitor of Ca2+ uptake, inhibits the proteolysis. In contrast, proteolysis of mitochondria prepared in a salt medium does not require Ca2+, nor is it inhibited by lanthanum. It is concluded that Caa+ exerts its effect in an indirect manner, by causing swelling and thereby increasing the accessibility of the membrane proteins of the inner mitochondrial membrane.
Collapse
|