1
|
Mendoza-Porras O, Nguyen TV, Shah RM, Thomas-Hall P, Bastin L, Deaker DJ, Motti CA, Byrne M, Beale DJ. Biochemical metabolomic profiling of the Crown-of-Thorns Starfish (Acanthaster): New insight into its biology for improved pest management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160525. [PMID: 36574554 DOI: 10.1016/j.scitotenv.2022.160525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The Crown-of-Thorns Starfish (COTS), Acanthaster species, is a voracious coral predator that destroys coral reefs when in outbreak status. The baseline metabolite and lipid biomolecules of 10 COTS tissues, including eggs from gravid females, were investigated in this study to provide insight into their biology and identify avenues for control. Targeted and untargeted metabolite- and lipidomics-based mass spectrometry approaches were used to obtain tissue-specific metabolite and lipid profiles. Across all COTS tissues, 410 metabolites and 367 lipids were identified. Most abundant were amino acids and peptides (18.7%) and wax esters (17%). There were 262 metabolites and 192 lipids identified in COTS eggs. Wax esters were more abundant in the eggs (30%) followed by triacylglycerols (TG), amino acids, and peptides. The diversity of asterosaponins in eggs (34) was higher than in tissues (2). Several asterosaponins known to modulate sperm acrosome reaction were putatively identified, including glycoside B, asterosaponin-4 (Co-Aris III), and regularoside B (asterosaponin A). The saponins saponin A, thornasteroside A, hillaside B, and non-saponins dictyol J and axinellamine B which have been shown to possess defensive properties, were found in abundance in gonads, skin, and radial nerve tissues. Inosine and 2-hexyldecanoic acid are the most abundant metabolites in tissues and eggs. As a secondary metabolite of purine degradation, inosine plays an important role in purine biosynthesis, while 2-hexyldecanoic acid is known to suppress side-chain crystallization during the synthesis of amphiphilic macromolecules (i.e., phospholipids). These significant spatial changes in metabolite, lipid, and asterosaponin profiles enabled unique insights into key biological tissue-specific processes that could be manipulated to better control COTS populations. Our findings highlight COTS as a novel source of molecules with therapeutic and cosmetic properties (ceramides, sphingolipids, carnosine, and inosine). These outcomes will be highly relevant for the development of strategies for COTS management including chemotaxis-based biocontrol and exploitation of COTS carcasses for the extraction of commercial molecules.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Peter Thomas-Hall
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Lee Bastin
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Dione J Deaker
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Maria Byrne
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
2
|
Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 2015; 12:8803-22. [PMID: 25295776 DOI: 10.1039/c4ob01652a] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.
Collapse
Affiliation(s)
- Joseph H Lorent
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology (FACM), Avenue Mounier 73, B1.73.05, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
3
|
Jha NK, Latinovic O, Martin E, Novitskiy G, Marin M, Miyauchi K, Naughton J, Young JAT, Melikyan GB. Imaging single retrovirus entry through alternative receptor isoforms and intermediates of virus-endosome fusion. PLoS Pathog 2011; 7:e1001260. [PMID: 21283788 PMCID: PMC3024281 DOI: 10.1371/journal.ppat.1001260] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/15/2010] [Indexed: 12/31/2022] Open
Abstract
A large group of viruses rely on low pH to activate their fusion proteins that merge the viral envelope with an endosomal membrane, releasing the viral nucleocapsid. A critical barrier to understanding these events has been the lack of approaches to study virus-cell membrane fusion within acidic endosomes, the natural sites of virus nucleocapsid capsid entry into the cytosol. Here we have investigated these events using the highly tractable subgroup A avian sarcoma and leukosis virus envelope glycoprotein (EnvA)-TVA receptor system. Through labeling EnvA pseudotyped viruses with a pH-sensitive fluorescent marker, we imaged their entry into mildly acidic compartments. We found that cells expressing the transmembrane receptor (TVA950) internalized the virus much faster than those expressing the GPI-anchored receptor isoform (TVA800). Surprisingly, TVA800 did not accelerate virus uptake compared to cells lacking the receptor. Subsequent steps of virus entry were visualized by incorporating a small viral content marker that was released into the cytosol as a result of fusion. EnvA-dependent fusion with TVA800-expressing cells occurred shortly after endocytosis and delivery into acidic endosomes, whereas fusion of viruses internalized through TVA950 was delayed. In the latter case, a relatively stable hemifusion-like intermediate preceded the fusion pore opening. The apparent size and stability of nascent fusion pores depended on the TVA isoforms and their expression levels, with TVA950 supporting more robust pores and a higher efficiency of infection compared to TVA800. These results demonstrate that surface receptor density and the intracellular trafficking pathway used are important determinants of efficient EnvA-mediated membrane fusion, and suggest that early fusion intermediates play a critical role in establishing low pH-dependent virus entry from within acidic endosomes.
Collapse
Affiliation(s)
- Naveen K. Jha
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Olga Latinovic
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Erik Martin
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gennadiy Novitskiy
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mariana Marin
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kosuke Miyauchi
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - John Naughton
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Gregory B. Melikyan
- Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Bánhegyi G, Marcolongo P, Burchell A, Benedetti A. Heterogeneity of glucose transport in rat liver microsomal vesicles. Arch Biochem Biophys 1998; 359:133-8. [PMID: 9799571 DOI: 10.1006/abbi.1998.0888] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose transport across the membrane of rat liver microsomal vesicles was studied by a rapid filtration method in three different experimental systems: (i) inward transport in the presence of extravesicular glucose, (ii) efflux from passively preloaded vesicles, and (iii) efflux of glucose generated intravesicularly by glucose-6-phosphatase upon addition of glucose 6-phosphate were investigated. The apparent intravesicular glucose space estimated with the rapid filtration method was lower than the total microsomal glucose accessible space both the in the steady-state phase of uptake and at the starting point of efflux: 0.5 versus 2.3 microl/mg protein. The initial rate of influx/efflux was dependent on the extravesicular/intravesicular glucose concentration and was much lower than the rate of influx estimated previously by the light-scattering technique. Both influx and efflux could be inhibited by N-ethylmaleimide and possibly became saturable at high (>100 mM) glucose concentration. Known inhibitors of GLUT transporters (genistein, cytochalasin B, phloretin, and hexoses) did not affect glucose influx. The time course of glucose efflux from vesicles preincubated in the presence of glucose 6-phosphate was similar to that from glucose-loaded vesicles. These data together with that obtained previously (by a light-scattering technique; Marcolongo, P., Fulceri, R., Giunti, R., Burchell, A., and Benedetti, A. (1996) Biochem. Biophys. Res. Commun. 219, 916-922) indicate that microsomal vesicles are heterogeneous regarding their glucose-transporting properties and that glucose transport is bidirectional and its feature meets the requirements of a facilitative transport.
Collapse
Affiliation(s)
- G Bánhegyi
- Istituto di Patologia Generale, Università di Siena, Siena, 53100, Italy
| | | | | | | |
Collapse
|
5
|
Abstract
We developed new biochemical approaches to demonstrate the presence of inositol 1,4,5-triphosphate (InsP3)-gated calcium channels in presynaptic plasma membranes (SPM) and their involvement in the presynaptic receptor-mediated Ca2+ influx into nerve terminals. In perfusion experiments using SPM vesicles preloaded with 45Ca2+, InsP3 elicited the release of 45CA2+ into perfusates in a saturable manner. The InsP3- evoked 45Ca2+ release from resealed SPM vesicles was more potent than that from resealed vesicles using any other subcellular fractions. Here we also report the involvement of InsP3-gated mechanisms in the presynaptic receptor-mediated Ca2+ influx into synaptosomes (nerve terminals) by use of such resealed vesicles reconstituted with purified Gi1.
Collapse
|
6
|
Ishida H, Hirota Y, Nakazawa H. Effect of sub-skinning concentrations of saponin on intracellular Ca2+ and plasma membrane fluidity in cultured cardiac cells. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1145:58-62. [PMID: 8422413 DOI: 10.1016/0005-2736(93)90381-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To determine the underlying mechanisms of the positive inotropic effect of sub-skinning concentrations of saponin, we studied changes in the intracellular Ca2+ ([Ca2+]i) and plasma membrane fluidity after exposure to digitonin (a representative saponin) in cultured cardiac cells. [Ca2+]i was measured by use of the fluorescent calcium indicator Calcium Green-1. The membrane fluidity was evaluated by measuring the diffusion coefficient using the method of fluorescence recovery after photobleaching. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate was used as the fluorescent probe. Digitonin at a sub-skinning concentration (0.1 to 1 microM) produced an increase in cell motion and an augmentation of [Ca2+]i. Membrane fluidity which is evaluated by the diffusion coefficient (from 0.34.10(-8) to 0.28.10(-8) cm2/s; P < 0.05), decreased in the presence of 0.2 microM digitonin while the cell maintained an augmented motion and an increased [Ca2+]i. The skinning concentration of digitonin (5 microM) produced a rapid contracture with a marked increase in [Ca2+]i. The membrane fluidity was further reduced (diffusion coefficient: 0.24.10(-8) cm2/s; P < 0.001). These results suggest that saponin at the sub-skinning concentration also causes holes in the plasma membrane by interaction with cholesterol, as was shown with the skinning concentration, and it increases [Ca2+]i, which thereby induces a positive inotropic effect.
Collapse
Affiliation(s)
- H Ishida
- Department of Physiology 2, School of Medicine, Tokai University, Kanagawa, Japan
| | | | | |
Collapse
|
7
|
Fulceri R, Bellomo G, Gamberucci A, Romani A, Benedetti A. Physiological concentrations of inorganic phosphate affect MgATP-dependent Ca2+ storage and inositol trisphosphate-induced Ca2+ efflux in microsomal vesicles from non-hepatic cells. Biochem J 1993; 289 ( Pt 1):299-306. [PMID: 8424767 PMCID: PMC1132164 DOI: 10.1042/bj2890299] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. MgATP-dependent 45Ca2+ uptake by microsomes obtained from various non-hepatic tissues, namely rat brain, rat solid Morris hepatoma 3924A and human platelets, was measured in the presence of P(i) at low, cytosol-like, concentrations. 2. Increasing P(i) concentrations (0.5-3 mM) caused a progressive enlargement of the 45Ca(2+)-storage capacity of all the microsomal fractions. 3. As a result of P(i) stimulation of Ca2+ uptake, 45Ca2+ and [32P]P(i) were co-accumulated by the three microsomal fractions. 4. The time course for 45Ca2+ and [32P]P(i) accumulation in brain microsomes revealed a biphasic 45Ca2+ uptake: a rapid phase was followed by a second, slower, phase, which depended on the presence of P(i). During the P(i)-dependent phase, the uptake of 45Ca2+ was paralleled by the uptake of [32P]Pi. 5. The passive efflux of Ca2+ was paralleled by the efflux of P(i) and vice versa. In fact, the inhibition of active Ca2+ uptake by excess EGTA, or lowering the P(i) concentration of the incubation system by dilution, caused the release of 45Ca2+ and [32P]P(i) from 45Ca2+ or [32P]P(i) pre-loaded brain microsomes. The Ca2+ ionophore A23187 also released 45Ca2+ and [32P]P(i). 6. Ca2+ efflux by A23187 was rapid (t 1/2 approx. 2 s) and independent of the extent of intravesicular Ca2+ loading, which indicates that Ca2+ and P(i) do not form intravesicular insoluble complexes. 7. The progressive increase in Ca2+ accumulation, depending on P(i) stimulation, resulted in a proportional increase in the amount of Ca2+ releasable by InsP3 in the three non-hepatic microsomal fractions and in digitonin-permeabilized platelets. 8. Concomitantly to Ca2+, microsomal P(i) was also released by InsP3.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, University of Siena, Italy
| | | | | | | | | |
Collapse
|
8
|
Satoh M, Ueda H, Tamura S, Yoshihara Y, Fukushima N. Inositol 1,4,5-trisphosphate activates Ca2+ channels in the plasma membranes of rat brain nerve terminals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 287:97-110. [PMID: 1662018 DOI: 10.1007/978-1-4684-5907-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
9
|
Alderson BH, Volpe P. Distribution of endoplasmic reticulum and calciosome markers in membrane fractions isolated from different regions of the canine brain. Arch Biochem Biophys 1989; 272:162-74. [PMID: 2544141 DOI: 10.1016/0003-9861(89)90207-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four regions of the canine brain (frontal lobe, parieto-occipital lobe, brainstem, and cerebellum) were each fractionated by differential centrifugation into a crude mitochondrial pellet (P2) and a crude microsomal pellet (P3). Markers of endoplasmic reticulum (glucose-6-phosphate phosphatase and rotenone-insensitive NADPH cytochrome c reductase) and markers of the 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store ([3H]IP3 binding and IP3-induced Ca2+ release) were measured. No correlation was found between the two classes of markers, which suggests that the IP3 receptor does not belong to the endoplasmic reticulum in canine brain. Cerebellum P2 and P3 fractions displayed levels of [3H]IP3 binding 10- to 30-fold higher, and rates of IP3-induced Ca2+ release greater than 15-fold faster than the homologous cerebrum and brainstem fractions. Actively accumulated Ca2+ was only partially released by IP3, both before and after saponin disruption of the plasma membrane compartment. The proportion of the IP3-sensitive Ca2+ store relative to that of the total (IP3-sensitive and IP3-insensitive) Ca2+ store was variable; i.e., it was larger in cerebellum P2 (approximately 90%) than in cerebrum fractions (less than 30%). Cerebellum fractions constitute the best source from which an IP3-sensitive Ca2+ storing organelle can be purified.
Collapse
Affiliation(s)
- B H Alderson
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
10
|
Jean T, Klee CB. Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (NG108-15) microsomes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66582-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Enomoto Y, Ito K, Kawagoe Y, Morio Y, Yamasaki Y. Positive inotropic action of saponins on isolated atrial and papillary muscles from the guinea-pig. Br J Pharmacol 1986; 88:259-67. [PMID: 3708218 PMCID: PMC1917120 DOI: 10.1111/j.1476-5381.1986.tb09494.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effects of several saponins of animal and plant origin on the contractile activity of atrial and papillary muscles of the guinea-pig were tested. In a concentration of 1 X 10(-5)M, holothurin-A (HL-A), holothurin-B, echinoside-A, echinoside-B and sakuraso-saponin (Saku) exhibited positive inotropic and chronotropic actions whereas desacyl-jego-saponin and ginsenoside-Rd did not. Saponins having a positive inotropic action caused haemolysis of rabbit erythrocytes whereas those without inotropic action did not cause haemolysis. The positive inotropic action of saponins was not affected by practolol, chlorpheniramine, cimetidine and indomethacin. Verapamil (10(-6)M) inhibited the inotropic actions due to HL-A and isoprenaline (10(-8)M) to the same extent but had a small effect on those due to ouabain (10(-7)M). In high K+ (30 mM K+) medium where the action potential and the contraction were depressed, HL-A, Saku and isoprenaline restored the action potential and the contraction of the 'slow response' type whereas ouabain failed to do so. In normal medium HL-A and Saku reduced the resting membrane potential by 15-20 mV. These results suggest that modification of the Ca channel is involved in the positive inotropic action of saponins.
Collapse
|
12
|
Yamamoto H, van Breemen C. Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells. J Gen Physiol 1986; 87:369-89. [PMID: 3514788 PMCID: PMC2217615 DOI: 10.1085/jgp.87.3.369] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A method for saponin skinning of primary cultured rat aortic smooth muscle cells was established. The saponin-treated cells could be stained with trypan blue and incorporated more 45Ca2+ than the nontreated cells under the same conditions. At low free Ca2+ concentration, greater than 85% of 45Ca2+ uptake into the skinned cells was dependent on the extracellularly supplied MgATP. In the intact cells, both caffeine and norepinephrine increased 45Ca2+ efflux. In the skinned cells, caffeine increased 45Ca2+ efflux, whereas norepinephrine did not. The caffeine-releasable 45Ca2+ uptake fraction in the skinned cells appeared at 3 X 10(-7) M Ca2+, increased gradually with the increase in free Ca2+ concentration, and reached a plateau at 1 X 10(-5) M Ca2+. The 45Ca2+ uptake fraction, which was significantly suppressed by sodium azide, appeared at 1 X 10(-5) M Ca2+ and increased monotonically with increasing free Ca2+ concentration. The results suggest that the caffeine-sensitive Ca2+ store, presumably the sarcoplasmic reticulum, plays a physiological role by releasing Ca2+ in response to norepinephrine or caffeine and by buffering excessive Ca2+. The 45Ca2+ uptake by mitochondria appears too insensitive to be important under physiological conditions.
Collapse
|
13
|
Kwan CY. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 819:148-52. [PMID: 2931116 DOI: 10.1016/0005-2736(85)90206-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Saponin, a cell-skinning reagent which perforates the cell membrane via its specific interaction with plasmalemmal cholesterol, was used to identify the subcellular origin of ATP-dependent Ca2+ accumulation in the presence and absence of inorganic phosphate and oxalate by microsomal fractions isolated from rat vas deferens and dog aorta. The purified plasma membranes from rat gastric fundus muscle, which elicit the stimulation of ATP-dependent Ca2+ accumulation by inorganic phosphate but not by oxalate, were used as a control reference. Saponin at concentrations effective for skinning smooth muscle fibres (10-50 micrograms/ml) inhibited Ca2+ binding in the absence of ATP to a similar extent in all fractions, but the inhibition of ATP-dependent Ca2+ accumulation was more pronounced in dog aorta microsomes and rat gastric fundus muscle plasma membranes than in rat vas deferens microsomes. The resistance of phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation to inhibition by saponin was much greater in rat vas deferens than in dog aorta microsomes. Our results suggest that phosphate- and oxalate-stimulated ATP-dependent Ca2+ accumulation also occurs in plasma membrane vesicles isolated from smooth muscle and is by no means an unique property of endoplasmic reticulum.
Collapse
|
14
|
SUEMATSU EIICHI, NISHIMURA JUNJI, HIRATA MASATO, INAMITSU TETSUAKI, IBAYASHI HIROSHI. INOSITOL 1,4,5-TRISPHOSPHATE AND INTRACELLULAR Ca2+ STORE SITES IN HUMAN PERIPHERAL LYMPHOCYTES . Biomed Res 1985. [DOI: 10.2220/biomedres.6.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - MASATO HIRATA
- Department of Biochemistry, Faculty of Debtistry, Kyushu University
| | | | | |
Collapse
|