1
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
2
|
Tsurumura T, Tsuge H. Substrate selectivity of bacterial monoacylglycerol lipase based on crystal structure. ACTA ACUST UNITED AC 2014; 15:83-9. [DOI: 10.1007/s10969-014-9181-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/22/2014] [Indexed: 01/09/2023]
|
3
|
Joshi AK, Witkowski A, Berman HA, Zhang L, Smith S. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase. Biochemistry 2005; 44:4100-7. [PMID: 15751987 DOI: 10.1021/bi047856r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A natural linker of approximately 20 residues connects the acyl carrier protein with the carboxy-terminal thioesterase domain of the animal fatty acid synthase. This study examines the effects of changes in the length and amino acid composition of this linker on catalytic activity, product composition, and segmental motion of the thioesterase domain. Deletion of 10 residues, almost half of the interdomain linker, had no effect on either mobility of the thioesterase domain, estimated from fluorescence polarization of a pyrenebutyl methylphosphono moiety bound covalently to the active site serine residue, or functionality of the fatty acid synthase; further shortening of the linker limited mobility of the thioesterase domain and resulted in reduced fatty acid synthase activity and an increase in product chain length from 16 to 18 and 20 carbon atoms. Surprisingly, however, even when the entire linker region was deleted, the fatty acid synthase retained 28% activity. Lengthening of the linker, by insertion of an unusually long acyl carrier protein-thioesterase linker from a modular polyketide synthase, increased mobility of the thioesterase domain without having any significant effect on catalytic properties of the complex. Interdomain linkers could also be used to tether, to the acyl carrier protein domain of the fatty acid synthase, a thioesterase active toward shorter chain length acyl thioesters generating novel short-chain fatty acid synthases. These studies reveal that although truncation of the interdomain linker partially impacts the ability of the thioesterase domain to terminate growth of the acyl chain, the overall integrity of the fatty acid synthase is quite tolerant to moderate changes in linker length and flexibility. The retention of fatty acid synthesizing activity on deletion of the entire linker region implies that the inherent flexibility of the phosphopantetheine "swinging arm" also contributes significantly to the successful docking of the long-chain acyl moiety in the thioesterase active site.
Collapse
Affiliation(s)
- Anil K Joshi
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| | | | | | | | | |
Collapse
|
4
|
The bile acid-inducible baiF gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A hydrolase. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33335-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Tesch C, Nikoleit K, Gnau V, Götz F, Bormann C. Biochemical and molecular characterization of the extracellular esterase from Streptomyces diastatochromogenes. J Bacteriol 1996; 178:1858-65. [PMID: 8606158 PMCID: PMC177879 DOI: 10.1128/jb.178.7.1858-1865.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An esterase of Streptomyces diastatochromogenes was purified to homogeneity from culture filtrate. The purified enzyme had a molecular mass of 30,862 +/- 5.8 Da, as determined by electrospray mass spectrometry. The esterase-encoding gene was cloned on a 5.1-kb MboI fragment from S. diastatochromogenes genomic DNA into Streptomyces lividans TK23 by using plasmid vector pIJ702. Nucleotide sequence analysis predicted a 978-bp open reading frame, estA, encoding a protein of 326 amino acids, a potential ribosome binding site, and a putative 35- or 36-residue signal peptide for secretion in S. lividans or S. diastatochromogenes, respectively. The transcriptional initiation site was mapped 29 nucleotides upstream from the predicted translational start codon of estA in S. diastatochromogenes. The protein sequence deduced from the estA gene was similar to that of the esterase from the plant pathogen Streptomyces scabies. Both enzymes lacked the conserved motif GXSXG carrying the active-site serine of hydrolytic enzymes. A serine modified by [1,3-3H]diisopropyl fluorophosphate was located at position 11 of the mature enzyme in the sequence GDSYT. This finding and results obtained by site-directed mutagenesis studies indicate that serine 11 may be the active-site nucleophile.
Collapse
Affiliation(s)
- C Tesch
- Mikrobielle Genetik, Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
6
|
Buchbinder JL, Witkowski A, Smith S, Fletterick RJ. Crystallization and preliminary diffraction studies of thioesterase II from rat mammary gland. Proteins 1995; 22:73-5. [PMID: 7675790 DOI: 10.1002/prot.340220111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thioesterase II from rat mammary gland has been crystallized in the presence of decanoic acid by the vapor diffusion method. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), and have cell dimensions, a = 52.7 A, b = 78.0 A, and c = 133.6 A. The asymmetric unit likely consists of two protein monomers based on predictions from its calculated Matthews coefficient. Crystals typically diffract to at least 2.5 A resolution and are suitable for X-ray crystallographic analysis.
Collapse
Affiliation(s)
- J L Buchbinder
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | | | | | |
Collapse
|
7
|
Camp L, Verkruyse L, Afendis S, Slaughter C, Hofmann S. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31641-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Merson-Davies LA, Cundliffe E. Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome. Mol Microbiol 1994; 13:349-55. [PMID: 7984112 DOI: 10.1111/j.1365-2958.1994.tb00428.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tyllBA region of the tylosin biosynthetic gene cluster of Streptomyces fradiae contains at least five open reading frames (ORFs). ORF1 (tylI) encodes a cytochrome P450 and mutations in this gene affect macrolide ring hydroxylation. The product of ORF2 (tylB) belongs to a widespread family of proteins whose functions are speculative, although tylB mutants are defective in the biosynthesis or addition of mycaminose during tylosin production. ORFs 3 and 4 (tylA1 and tylA2) encode delta TDP-glucose synthase and delta TDP-glucose dehydratase, respectively, enzymes responsible for the first two steps common to the biosynthesis of all three deoxyhexose sugars of tylosin via the common intermediate, delta TDP-4-keto, 6-deoxyglucose. ORF5 encodes a thioesterase similar to one encoded in the erythromycin gene cluster of Saccharopolyspora erythraea.
Collapse
|
9
|
Ferri S, Meighen E. An essential histidine residue required for fatty acylation and acyl transfer by myristoyltransferase from luminescent bacteria. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37429-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Witkowski A, Witkowska H, Smith S. Reengineering the specificity of a serine active-site enzyme. Two active-site mutations convert a hydrolase to a transferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42360-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Martín JF, Gutiérrez S, Fernández FJ, Velasco J, Fierro F, Marcos AT, Kosalkova K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 1994; 65:227-43. [PMID: 7847890 DOI: 10.1007/bf00871951] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genes pcbAB, pcbC and penDE encoding the enzymes (alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase, respectively) involved in the biosynthesis of penicillin have been cloned from Penicillin chrysogenum and Aspergillus nidulans. They are clustered in chromosome I (10.4 Mb) of P. chrysogenum, in chromosome II of Penicillium notatum (9.6 Mb) and in chromosome VI (3.0 Mb) of A. nidulans. Each gene is expressed as a single transcript from separate promoters. Enzyme regulation studies and gene expression analysis have provided useful information to understand the control of genes involved in penicillin biosynthesis. The enzyme isopenicillin N acyltransferase encoded by the penDE gene is synthesized as a 40 kDa protein that is (self)processed into two subunits of 29 and 11 kDa. Both subunits appear to be required for acyl-CoA 6-APA acyltransferase activity. The isopenicillin N acyltransferase was shown to be located in microbodies, whereas the isopenicillin N synthase has been reported to be present in vesicles of the Golgi body and in the cell wall. A mutant in the carboxyl-terminal region of the isopenicillin N acyltransferase lacking the three final amino acids of the enzymes was not properly located in the microbodies and failed to synthesize penicillin in vivo. In C. acremonium the genes involved in cephalosporin biosynthesis are separated in at least two clusters. Cluster I (pcbAB-pcbC) encodes the first two enzymes (alpha-aminoadipyl-cysteinyl) valine synthetase and isopenicillin N synthase) of the cephalosporin pathway which are very similar to those involved in penicillin biosynthesis. Cluster II (cefEF-cefG), encodes the last three enzymatic activities (deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase) of the cephalosporin pathway. It is unknown, at this time, if the cefD gene encoding isopenicillin epimerase is linked to any of these two clusters. Methionine stimulates cephalosporin biosynthesis in cultures of three different strains of A. chrysogenum. Methionine increases the levels of enzymes (isopenicillin N synthase and deacetylcephalosporin C acetyltransferase) expressed from genes (pcbC and cefG respectively) which are separated in the two different clusters of cephalosporin biosynthesis genes. This result suggests that both clusters of genes have regulatory elements which are activated by methionine. Methionine-supplemented cells showed higher levels of transcripts of the pcbAB, pcbC, cefEF genes and to a lesser extent of cefG than cells grown in absence of methionine. The levels of the cefG transcript were very low as compared to those of pcbAB, pcbC and cefEF.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J F Martín
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Díez B, Barredo JL, Martín JF. The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:323-32. [PMID: 8344300 DOI: 10.1111/j.1432-1033.1993.tb18038.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The isopenicillin-N acyltransferase of Penicillium chrysogenum catalyzes the conversion of the biosynthetic intermediate isopenicillin N to the hydrophobic penicillins. The isopenicillin-N acyltransferase copurified with the acyl-CoA:6-aminopenicillanic acid (6-APA) acyltransferase activity which transfers an acyl residue from acyl-CoA derivatives (e.g. phenylacetyl-CoA, phenoxyacetyl-CoA) to 6-APA. Other thioesters of phenylacetic acid were also used as substrates. An amino acid sequence similar to that of the active site of thioesterases was found in the isopenicillin-N acyltransferase, suggesting that this site is involved in the transfer of phenylacetyl residues from phenylacetyl thioesters. Purified isopenicillin-N acyltransferase also showed isopenicillin-N amidohydrolase, penicillin transacylase and penicillin amidase activities. The isopenicillin-N amidohydrolase (releasing 6-APA) showed a much lower specific activity than the isopenicillin-N acyltransferase of the same enzyme preparation, suggesting that in the isopenicillin-N acyltransferase reaction the 6-APA is not released and is directly converted into benzylpenicillin. Penicillin transacylase exchanged side chains between two hydrophobic penicillin molecules; or between one penicillin molecule and 6-APA. The penicillin amidase activity is probably the reverse of the biosynthetic acyl-CoA:6-APA acyltransferase. Four P. chrysogenum mutants deficient in acyl-CoA:6-APA acyltransferase lacked the other four related activities. Transformation of these mutants with the penDE gene restored all five enzyme activities.
Collapse
Affiliation(s)
- E Alvarez
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of Leon, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Jäger S, Demleitner G, Götz F. Lipase of Staphylococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis. FEMS Microbiol Lett 1992; 100:249-54. [PMID: 1478461 DOI: 10.1111/j.1574-6968.1992.tb14048.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study the putative catalytic triad Ser-His-Asp of the Staphylococcus hyicus ssp. hyicus lipase was investigated. Putative catalytic sites determined by homology comparisons of three staphylococcal and other non-staphylococcal lipases were altered by site-directed mutagenesis. Since the mutations did not influence the secretion of the lipase, the decrease in lipase activity of the mutants strongly supports the proposed involvement of Ser369 and His600 in catalysis. Asp559 is postulated to be the third amino acid of the triad.
Collapse
Affiliation(s)
- S Jäger
- Mikrobielle Genetik, Universität Tübingen, FRG
| | | | | |
Collapse
|
14
|
Jager S, Demleitner G, Gotz F. Lipase of Staphylococcus hyicus: Analysis of the catalytic triad by site-directed mutagenesis. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05711.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Utilization of an active serine 101—-cysteine mutant to demonstrate the proximity of the catalytic serine 101 and histidine 237 residues in thioesterase II. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36988-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50642-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Site-directed mutagenesis studies on the recombinant thioesterase domain of chicken fatty acid synthase expressed in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54802-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Witkowski A, Naggert J, Wessa B, Smith S. A catalytic role for histidine 237 in rat mammary gland thioesterase II. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55091-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
A lux-specific myristoyl transferase in luminescent bacteria related to eukaryotic serine esterases. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98772-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Gutiérrez S, Díez B, Montenegro E, Martín JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 1991; 173:2354-65. [PMID: 1706706 PMCID: PMC207788 DOI: 10.1128/jb.173.7.2354-2365.1991] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 24-kb region of Cephalosporium acremonium C10 DNA was cloned by hybridization with the pcbAB and pcbC genes of Penicillium chrysogenum. A 3.2-kb BamHI fragment of this region complemented the mutation in the structural pcbC gene of the C. acremonium N2 mutant, resulting in cephalosporin production. A functional alpha-aminoadipyl-cysteinyl-valine (ACV) synthetase was encoded by a 15.6-kb EcoRI-BamHI DNA fragment, as shown by complementation of an ACV synthetase-deficient mutant of P. chrysogenum. Two transcripts of 1.15 and 11.4 kb were found by Northern (RNA blot) hybridization with probes internal to the pcbC and pcbAB genes, respectively. An open reading frame of 11,136 bp was located upstream of the pcbC gene that matched the 11.4-kb transcript initiation and termination regions. It encoded a protein of 3,712 amino acids with a deduced Mr of 414,791. The nucleotide sequence of the gene showed 62.9% similarity to the pcbAB gene encoding the ACV synthetase of P. chrysogenum; 54.9% of the amino acids were identical in both ACV synthetases. Three highly repetitive regions occur in the deduced amino acid sequence of C. acremonium ACV synthetase. Each is similar to the three repetitive domains in the deduced sequence of P. chrysogenum ACV synthetase and also to the amino acid sequence of gramicidin synthetase I and tyrocidine synthetase I of Bacillus brevis. These regions probably correspond to amino acid activating domains in the ACV synthetase protein. In addition, a thioesterase domain was present in the ACV synthetases of both fungi. A similarity has been found between the domains existing in multienzyme nonribosomal peptide synthetases and polyketide and fatty acid synthetases. The pcbAB gene is linked to the pcbC gene, forming a cluster of early cephalosporin-biosynthetic genes.
Collapse
Affiliation(s)
- S Gutiérrez
- Department of Ecology, Genetics and Microbiology, University of León, Spain
| | | | | | | |
Collapse
|
21
|
The carboxyl-terminal region of thioesterase II participates in the interaction with fatty acid synthase. Use of electrospray ionization mass spectrometry to identify a carboxyl-terminally truncated form of the enzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39413-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Davis RC, Stahnke G, Wong H, Doolittle MH, Ameis D, Will H, Schotz MC. Hepatic lipase: site-directed mutagenesis of a serine residue important for catalytic activity. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39324-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
23
|
Naggert J, Williams B, Cashman DP, Smith S. Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland. Biochem J 1987; 243:597-601. [PMID: 3632637 PMCID: PMC1147896 DOI: 10.1042/bj2430597] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
cDNA clones coding for the medium-chain S-acyl fatty acid synthetase thioester hydrolase (thioesterase II) from rat mammary gland were identified in a bacteriophage lambda gt11 library and their nucleotide sequences were determined. The predicted coding region spans 263 amino acid residues and includes a sequence identical with that of a peptide derived from the enzyme active site. The rat thioesterase II cDNA sequence exhibits homology with that of a thioesterase found in duck uropygial glands.
Collapse
|
24
|
Randhawa ZI, Smith S. Complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase from rat mammary gland. Biochemistry 1987; 26:1365-73. [PMID: 3567174 DOI: 10.1021/bi00379a024] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated Mr of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis [Poulose, A.J., Rogers, L., Cheesbrough, T. M., & Kolattukudy, P. E. (1985) J. Biol. Chem. 260, 15953-15958]. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.
Collapse
|