1
|
Mudryk K, Lee C, Tomaník L, Malerz S, Trinter F, Hergenhahn U, Neumark DM, Slavíček P, Bradforth S, Winter B. How Does Mg 2+(aq) Interact with ATP (aq)? Biomolecular Structure through the Lens of Liquid-Jet Photoemission Spectroscopy. J Am Chem Soc 2024; 146:16062-16075. [PMID: 38802319 PMCID: PMC11177255 DOI: 10.1021/jacs.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.
Collapse
Affiliation(s)
- Karen Mudryk
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chin Lee
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Lukáš Tomaník
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Sebastian Malerz
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Florian Trinter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straße
1, 60438 Frankfurt
am Main, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel M. Neumark
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Stephen Bradforth
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
2
|
Ilhami FB, Birhan YS, Cheng CC. Hydrogen-Bonding Interactions from Nucleobase-Decorated Supramolecular Polymer: Synthesis, Self-Assembly and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:234-254. [PMID: 38103183 DOI: 10.1021/acsbiomaterials.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The fabrication of supramolecular materials for biomedical applications such as drug delivery, bioimaging, wound-dressing, adhesion materials, photodynamic/photothermal therapy, infection control (as antibacterial), etc. has grown tremendously, due to their unique properties, especially the formation of hydrogen bonding. Nevertheless, void space in the integration process, lack of feasibility in the construction of supramolecular materials of natural origin in living biological systems, potential toxicity, the need for complex synthesis protocols, and costly production process limits the actual application of nanomaterials for advanced biomedical applications. On the other hand, hydrogen bonding from nucleobases is one of the strategies that shed light on the blurred deployment of nanomaterials in medical applications, given the increasing reports of supramolecular polymers that promote advanced technologies. Herein, we review the extensive body of literature about supramolecular functional biomaterials based on nucleobase hydrogen bonding pertinent to different biomedical applications. It focuses on the fundamental understanding about the synthesis, nucleobase-decorated supramolecular architecture, and novel properties with special emphasis on the recent developments in the assembly of nanostructures via hydrogen-bonding interactions of nucleobase. Moreover, the challenges, plausible solutions, and prospects of the so-called hydrogen bonding interaction from nucleobase for the fabrication of functional biomaterials are outlined.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos 00000, Ethiopia
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
3
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Xie Y, Dai L, Xie T, Zhang Y, Wang Y, Yang H. Ni2P/biocarbon composite derived from an unusual phosphorus-rich precursor as a superior catalyst for 4-nitrophenol reduction. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Hunsicker-Wang LM, Vogt MJ, Hoogstraten CG, Cosper NJ, Davenport AM, Hendon CH, Scott RA, Britt RD, DeRose VJ. Spectroscopic characterization of Mn2+ and Cd2+ coordination to phosphorothioates in the conserved A9 metal site of the hammerhead ribozyme. J Inorg Biochem 2022; 230:111754. [DOI: 10.1016/j.jinorgbio.2022.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
|
6
|
Jastrzab R, Nowak M, Zabiszak M, Odani A, Kaczmarek MT. Significance and properties of the complex formation of phosphate and polyphosphate groups in particles present in living cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zeng HH, Yu K, Huang J, Liu F, Zhang ZY, Chen SP, Zhang F, Guan SP, Qiu L. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf B Biointerfaces 2021; 204:111796. [PMID: 33933879 DOI: 10.1016/j.colsurfb.2021.111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
The efficiency of energy transfer from guanine nucleotide to terbium ion (Tb3+) is affected by the phosphate group significantly. Compared with the biomolecules 5'-GMP (guanosine monophosphate), guanosine diphosphate (GDP) exhibits better sensitize ability to Tb3+ ions luminescence. Assisted with the carboxycoumarin ligand, we synthesized a more stable optical Coumarin@GDP-Tb polymer with the characteristic emission peaks located on 440 nm and 545 nm in this work. The Coumarin@GDP-Tb polymer is not only rich in metal binding sites, but also maintains a moderate ionic binding force, which helps metal ions to bind or leave it easily. Experiment result shows that Coumarin@GDP-Tb polymer has the appropriate binding force for Fe2+ ions, which can be destroyed by sulfur ions (S2-) as the formation of FeS precipitation. Based on this, Coumarin@GDP-Tb was designed as the ratio fluorescence probe for sulfur ions detection, where the fluorescence at 545 nm can be selectively quenched by Fe2+ ions, while that at 440 nm was unaffected, in the presence of S2- ions, the quenched fluorescence can be recovered remarkably. With the increasing S2- ions from 0.1-45 μM, the ratio of fluorescence intensity at 545 nm to 440 nm (F545/F440) is linear to S2- concentration, and the detection limit of S2- was calculated to be 0.073 μM. Contrast to those fluorescence probes with single wavelength emission, Coumarin@GDP-Tb displays a comparable sensitivity, the introduced self-adjust wavelength improved the detection accuracy efficiently. The above 98.1 % recovery rates of S2- ions in the actual water sample demonstrated the practicability of Coumarin@GDP-Tb fluorescence probe.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Kun Yu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Jian Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Zhi-Yi Zhang
- Jiangxi Institute of Analyzing and Testing, Nanchang, 330029, China
| | - Shi-Ping Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fei Zhang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Shu-Ping Guan
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Li Qiu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
8
|
Penkov NV, Penkova N. Key Differences of the Hydrate Shell Structures of ATP and Mg·ATP Revealed by Terahertz Time-Domain Spectroscopy and Dynamic Light Scattering. J Phys Chem B 2021; 125:4375-4382. [PMID: 33882673 DOI: 10.1021/acs.jpcb.1c02276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATP is one of the main biological molecules. Many of its biological and physicochemical properties, such as energy capacity of the phosphate bonds, significantly depend on hydration. However, the structure of the hydration shell of the ATP molecule is still a matter of discussion. In this work, the hydration shells of ATP in water and MgCl2 solutions were examined by terahertz time-domain spectroscopy and dynamic light scattering. Terahertz spectroscopy reveals the distorted water structure in the ATP water solution displaying tightly bound water molecules, which could be explained by the hydration of phosphate groups. Upon ATP binding to a Mg2+ ion, the situation is principally different: Instead of the distorted water structure, its arranged structure with increased hydrogen bond number is observed. Dynamic light scattering showed that the hydrodynamic diameter of ATP increases by 0.5 nm after Mg2+ binding. Meanwhile, according the characteristics of scattering, the increase of the shell size occurs via formation of a layer with a refraction coefficient similar to water. This layer can be interpreted as hydration shell differing from unaltered water by increased number of hydrogen bonds.
Collapse
Affiliation(s)
- Nikita V Penkov
- Institute of Cell Biophysics RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| | - Nadezda Penkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
9
|
Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Int J Mol Sci 2019; 20:E6279. [PMID: 31842432 PMCID: PMC6940986 DOI: 10.3390/ijms20246279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The four member family of "Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.
Collapse
Grants
- ETORTEK IE05-147 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- IE07-202 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- 7/13/08/2006/11 Diputación Foral de Bizkaia
- 7/13/08/2005/14 Diputación Foral de Bizkaia
- BFU2010-17857 Ministerio de Ciencia e Innovación
- BFU2013-47531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2014-068464 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BFU2016-77408-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2017-080435 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CSD2008-00005 MICINN CONSOLIDER-INGENIO 2010 Program
- BAG MX20113 Diamond Light source
- 2013111114 Gobierno Vasco-Departamento de Salud
- SAF2017-87301-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO15/CA/014 EITB Maratoia
- SEV-2016-0644 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 12.01.134/2bT4 Berlin Institute of Health
- #343439 Canadian Institute for Health Research
- MX15832-9 Diamond Light Source
- MX15832-10 Diamond Light Source
- PGC2018-096049-B100 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83810-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI2010-17 Departamento de Educación, Universidades e Investigación del Gobierno Vasco
- BAG 2019073624 ALBA Synchrotron
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Iker Oyenarte
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Carmen Fernández-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - María Ángeles Corral-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Igone Campos-Zarraga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Elie Kostantin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Serge Hardy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Antonio Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - Mara Zubillaga Lizeaga
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Francisco J. Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Irene Díaz Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts medizin, 13353 Berlin, Germany;
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| |
Collapse
|
11
|
Chen C, Yuan Q, Ni P, Jiang Y, Zhao Z, Lu Y. Fluorescence assay for alkaline phosphatase based on ATP hydrolysis-triggered dissociation of cerium coordination polymer nanoparticles. Analyst 2019; 143:3821-3828. [PMID: 30010688 DOI: 10.1039/c8an00787j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkaline phosphatase (ALP) is a significant biomarker for diagnostics. Simple, selective and sensitive detection of ALP activity is thus of critical importance. In this study, an artful fluorescence assay for ALP is proposed based on adenosine triphosphate (ATP) hydrolysis-triggered disassociation and fluorescence quenching of cerium coordination polymer nanoparticles (CPNs). ATP, a recognized natural substrate of phosphatase, can serve as a superb "antenna" to sensitize the luminescence of Ce3+ with the aid of tris(hydroxymethyl) aminomethane (Tris), forming Ce3+-ATP-Tris CPNs. In the presence of ALP, ATP will be catalytically converted into adenosine and inorganic orthophosphate, however neither of them can sensitize Ce3+ in alkaline media. As a result, the obtained CPNs are disassociated, inducing the quenching of the fluorescence. On this basis, a straightforward fluorescence assay for ALP activity is rationally developed. The fluorescence quenching efficiency shows a linear relationship for ALP within the activity range from 0.1 to 10 mU mL-1 with a detection limit of 0.09 mU mL-1 under the optimal experimental conditions. Moreover, this facile yet effective fluorescence method featured simplicity, cost-effectiveness, high sensitivity and high selectivity and can be successfully utilized for the quantitative detection of ALP in human serum samples.
Collapse
Affiliation(s)
- Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Zeng HH, Qiu WB, Zhang L, Liang RP, Qiu JD. Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection. Anal Chem 2016; 88:6342-8. [PMID: 27220993 DOI: 10.1021/acs.analchem.6b00630] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthanide coordination polymer nanoparticles (Ln-CPNs) have been recently demonstrated as excellent platforms for biomolecule detection. In this work, we synthesized novel cerium coordination polymer nanoparticles ATP-Ce-Tris CPNs in a simple and quick way using ATP molecules as the biocompatible ligands to Ce(3+) ions in tris(hydroxymethyl)aminomethane hydrochloric (Tris-HCl) solution. In view of the excellent free radical scavenging property of cerium compounds, which is ascribed to the mixed valence state (Ce(3+), Ce(4+)) and the reversible switch from Ce(3+) to Ce(4+), the synthesized ATP-Ce-Tris CPNs was used as artificial peroxidase to selectively and sensitively detect H2O2. The sensing mechanism depends on the oxidation of the fluorescent ATP-Ce(III)-Tris CPNs to nonfluorescent ATP-Ce(IV)-Tris CPNs by H2O2. Compared with those inorganic cerium oxide sensors, this kind of fluoresence ATP-Ce-Tris CPNs sensor needs no additional organic redox dye, such as ABTS (2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), TMB (3,3,5,5-tetramethylbenzidine), or fluorescein as signal molecules. Moreover, such ATP-Ce-Tris CPNs sensor exhibited a more sensitive response to H2O2 with a detection limit down to 0.6 nM, which is 2 orders of magnitude lower than those of cerium oxide sensors. This sensing platform was further extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| | - Wei-Bin Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Li Zhang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| |
Collapse
|
14
|
Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure 2015; 23:2331-2340. [PMID: 26585512 DOI: 10.1016/j.str.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.
Collapse
Affiliation(s)
- Amit Das
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Oksana Gerlits
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
15
|
Zhou P, Shi R, Yao JF, Sheng CF, Li H. Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochem J 2015; 464:23-34. [PMID: 25184538 DOI: 10.1042/bj20140409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.
Collapse
|
17
|
Akabayov SR, Akabayov B, Wagner G. Human translation initiation factor eIF4G1 possesses a low-affinity ATP binding site facing the ATP-binding cleft of eIF4A in the eIF4G/eIF4A complex. Biochemistry 2014; 53:6422-5. [PMID: 25255371 PMCID: PMC4204880 DOI: 10.1021/bi500600m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Eukaryotic
translation initiation factor 4G (eIF4G) plays a crucial
role in translation initiation, serving as a scaffolding protein binding
several other initiation factors, other proteins, and RNA. Binding
of eIF4G to the ATP-dependent RNA helicase eukaryotic translation
initiation factor 4A (eIF4A) enhances the activity of eIF4A in solution
and in crowded environments. Previously, this activity enhancement
was solely attributed to eIF4G, conferring a closed, active conformation
upon eIF4A. Here we show that eIF4G contains a low-affinity binding
site at the entrance to the ATP-binding cleft on eIF4A, suggesting
that regulation of the local ATP concentration may be an additional
reason for the enhancement in activity.
Collapse
Affiliation(s)
- Sabine R Akabayov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Longwood Avenue, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
18
|
Wang Y, Xu H, Harich KC, White RH. Identification and Characterization of a Tyramine–Glutamate Ligase (MfnD) Involved in Methanofuran Biosynthesis. Biochemistry 2014; 53:6220-30. [DOI: 10.1021/bi500879h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yu Wang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Kim C. Harich
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Utyanskaya EZ, Lidskii BV. Effect of additional metal ions on the ratio between the rates of the transformation of the intermediate products of the hydrolysis of adenosine-5′-triphosphoric acid catalyzed the Cu2+ ion (Communication 2: Mathematical modeling of the kinetics of the hydrolysis in the presence of additional Mg2+ ions). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2013. [DOI: 10.1134/s1990793112060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids. Met Ions Life Sci 2013; 11:191-274. [PMID: 23430775 DOI: 10.1007/978-94-007-5179-8_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.
Collapse
|
21
|
Toroney R, Hull CM, Sokoloski JE, Bevilacqua PC. Mechanistic characterization of the 5'-triphosphate-dependent activation of PKR: lack of 5'-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD. RNA (NEW YORK, N.Y.) 2012; 18:1862-74. [PMID: 22912486 PMCID: PMC3446709 DOI: 10.1261/rna.034520.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/13/2012] [Indexed: 05/22/2023]
Abstract
The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5'-triphosphate (ppp)-dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5'-triphosphate, but not the nucleobase at the 5'-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither activated in the presence of γ-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This indicates that the binding site for ATP is selective, which contrasts with the site for the 5' end of ppp-ssRNA. Activation experiments reveal that short dsRNAs compete with 5'-triphosphate RNAs and heparin for activation, and likewise gel-shift assays reveal that activating 5'-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR's dsRBD. The dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5'-triphosphate-containing, weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks 5'-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens.
Collapse
Affiliation(s)
- Rebecca Toroney
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorsE-mail E-mail
| | - Chelsea M. Hull
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E. Sokoloski
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
22
|
Kapinos LE, Operschall BP, Larsen E, Sigel H. Understanding the acid-base properties of adenosine: the intrinsic basicities of N1, N3 and N7. Chemistry 2011; 17:8156-64. [PMID: 21626581 DOI: 10.1002/chem.201003544] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 12/23/2022]
Abstract
Adenosine (Ado) can accept three protons, at N1, N3, and N7, to give H(3) (Ado)(3+) , and thus has three macro acidity constants. Unfortunately, these constants do not reflect the real basicity of the N sites due to internal repulsions, for example, between (N1)H(+) and (N7)H(+). However, these macroconstants are still needed for the evaluations and the first two are taken from our own earlier work, that is, pK(H)(H(3))((Ado)) = -4.02 and pK(H)(H(2))((Ado)) = -1.53; the third one was re-measured as pK(H)(H)((Ado)) = 3.64 ± 0.02 (25 °C; I=0.5 M, NaNO(3)), because it is the main basis for evaluating the intrinsic basicities of N7 and N3. Previously, contradicting results had been published for the micro acidity constant of the (N7)H(+) site; this constant has now been determined in an unequivocal manner, and that of the (N3)H(+) site was obtained for the first time. The micro acidity constants, which describe the release of a proton from an (N)H(+) site under conditions for which the other nitrogen atoms are free and do not carry a proton, decrease in the order pk(N7-N1)(N7(Ado)N1·H)) = 3.63 ± 0.02 > pk(N7-N1)(H·N7(Ado)N1) = 2.15 ± 0.15 > pk(N3-N1,N7)(H·N3(Ado)N1,N7) =1.5 ± 0.3, reflecting the decreasing basicity of the various nitrogen atoms, that is, N1>N7>N3. Application of the above-mentioned microconstants allows one to calculate the percentages (formation degrees) of the tautomers formed for monoprotonated adenosine, H(Ado)(+) , in aqueous solution; the results are 96.1, 3.2, and 0.7% for N7(Ado)N1·H(+), (+)H·N7(Ado)N1, and (+)H·N3(Ado)N1,N7, respectively. These results are in excellent agreement with theoretical DFT calculations. Evidently, H(Ado)(+) exists to the largest part as N7(Ado)N1·H(+) having the proton located at N1; the two other tautomers are minority species, but they still form. These results are not only meaningful for adenosine itself, but are also of relevance for nucleic acids and adenine nucleotides, as they help to understand their metal ion-binding properties; these aspects are briefly discussed.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
23
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Rachmilovich-Calis S, Masarwa A, Meyerstein N, Meyerstein D. The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction. J Inorg Biochem 2011; 105:669-74. [PMID: 21450270 DOI: 10.1016/j.jinorgbio.2011.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
It has been recently reported that pyrophosphate, tri-polyphosphate, ATP and analogous ligands considerably decrease the yield of hydroxyl radicals by the Fenton reaction under conditions where [H(2)O(2)]>>[Fe(II)L(n)]. It was suggested that this effect is due to the slowing down of the Fenton reaction by these ligands. This suggestion seemed surprising as polyphosphate ligands stabilize Fe(III). Indeed, a kinetic study points out that these ligands accelerate the rate of the Fenton reaction by several orders of magnitude. Thus it is suggested that the effect of the ligands on the yield of the hydroxyl radicals is due to the stabilization of the Fe(III) complexes which slows down, or inhibits, their reduction by the radicals formed in the system and thus decreases the overall yield of hydroxyl radicals.
Collapse
|
25
|
The rate-limiting step of sulfiredoxin is associated with the transfer of the γ-phosphate of ATP to the sulfinic acid of overoxidized typical 2-Cys peroxiredoxins. FEBS Lett 2011; 585:574-8. [PMID: 21237158 DOI: 10.1016/j.febslet.2011.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 11/20/2022]
Abstract
The eukaryotic sulfiredoxin (Srx) catalyzes the reduction of overoxidized typical 2-Cys peroxiredoxins PrxSO(2) via ATP/Mg(2+)-dependent phosphorylation of the sulfinic acid group, followed by formation of a PrxSO-SSrx thiolsulfinate intermediate. Using real-time kinetics of wild-type and C84A Srxs, and pH-rate profiles with ATP/Mg(2+) analogues, we show that the rate-limiting step of the reaction is associated with the chemical process of transfer of the γ-phosphate of ATP to the sulfinic acid, in contrast to that described by Jönsson et al. Two pK(apps) of 6.2 and 7.5 were extracted from the bell-shaped pH-rate profile, corresponding to the γ-phosphate of ATP, and to an acid-base catalyst, respectively.
Collapse
|
26
|
Jastrzab R, Hnatejko Z, Runka T, Odani A, Lomozik L. Stability and mode of coordination complexes formed in the silver(i)/nucleoside systems. NEW J CHEM 2011. [DOI: 10.1039/c1nj20230h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Sigel RKO, Sigel H. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res 2010; 43:974-84. [PMID: 20235593 DOI: 10.1021/ar900197y] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional architecture and function of nucleic acids strongly depend on the presence of metal ions, among other factors. Given the negative charge of the phosphate-sugar backbone, positively charged species, mostly metal ions, are necessary for compensation. However, these ions also allow and induce folding of complicated RNA structures. Furthermore, metal ions bind to specific sites, stabilizing local motifs and positioning themselves correctly to aid (or even enable) a catalytic mechanism, as, for example, in ribozymes. Many nucleic acids thereby exhibit large differences in folding and activity depending not only on the concentration but also on the kind of metal ion involved. As a consequence, understanding the role of metal ions in nucleic acids requires knowing not only the exact positioning and coordination sphere of each specifically bound metal ion but also its intrinsic site affinity. However, the quantification of metal ion affinities toward certain sites in a single-stranded (though folded) nucleic acid is a demanding task, and few experimental data exist. In this Account, we present a new tool for estimating the binding affinity of a given metal ion, based on its ligating sites within the nucleic acid. To this end, we have summarized the available affinity constants of Mg(2+), Ca(2+), Mn(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) for binding to nucleobase residues, as well as to mono- and dinucleotides. We have also estimated for these ions the stability constants for coordinating the phosphodiester bridge. In this way, stability increments for each ligand site are obtained, and a clear selectivity of the ligating atoms, as well as their discrimination by different metal ions, can thus be recognized. On the basis of these data, we propose a concept that allows one to estimate the intrinsic stabilities of nucleic acid-binding pockets for these metal ions. For example, the presence of a phosphate group has a much larger influence on the overall affinity of Mg(2+), Ca(2+), or Mn(2+) compared with, for example, that of Cd(2+) or Zn(2+). In the case of Cd(2+) and Zn(2+), the guanine N7 position is the strongest intrinsic binding site. By adding up the individual increments like building blocks, one derives an estimate not only for the overall stability of a given coordination sphere but also for the most stable complex if an excess of ligating atoms is available in a binding pocket saturating the coordination sphere of the metal ion. Hence, this empirical concept of adding up known intrinsic stabilities, like building blocks, to an estimated overall stability will help in understanding the accelerating or inhibiting effects of different metal ions in ribozymes and DNAzymes.
Collapse
Affiliation(s)
- Roland K. O. Sigel
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland,
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
28
|
Carrascal N, Green DF. Energetic decomposition with the generalized-born and Poisson-Boltzmann solvent models: lessons from association of G-protein components. J Phys Chem B 2010; 114:5096-116. [PMID: 20355699 DOI: 10.1021/jp910540z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuum electrostatic models have been shown to be powerful tools in providing insight into the energetics of biomolecular processes. While the Poisson-Boltzmann (PB) equation provides a theoretically rigorous approach to computing electrostatic free energies of solution in such a model, computational cost makes its use for large ensembles of states impractical. The generalized-Born (GB) approximation provides a much faster alternative, although with a weaker theoretical framework. While much attention has been given to how GB recapitulates PB energetics for the overall stability of a biomolecule or the affinity of a complex, little attention has been given to how the contributions of individual functional groups are captured by the two methods. Accurately capturing these individual electrostatic components is essential both for the development of a mechanistic understanding of biomolecular processes and for the design of variant sequences and structures with desired properties. Here, we present a detailed comparison of the group-wise decomposition of both PB and GB electrostatic free energies of binding, using association of various components of the heterotrimeric-G-protein complex as a model. We find that, while net binding free energies are strongly correlated in the two models, the correlations of individual group contributions are highly variable; in some cases, strong correlation is seen, while in others, there is essentially none. Structurally, the GB model seems to capture the magnitude of direct, short-range electrostatic interactions quite well but performs more poorly with moderate-range "action-at-a-distance" interactions--GB has a tendency to overestimate solvent screening over moderate distances, and to underestimate the costs of desolvating charged groups somewhat removed from the binding interface. Despite this, however, GB does seem to be quite effective as a predictor of those groups that will be computed to be most significant in a PB-based model.
Collapse
Affiliation(s)
- Noel Carrascal
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | | |
Collapse
|
29
|
Dhathathreyan KS, Diebler H. Studies on the Interactions of Co2+ and Zn2+ with the Polynucleotides Poly(A) and Poly(C). ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19910950807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Bastian M, Sigel H. Stability and Structure of Binary and Ternary Metal Ion Complexes of Orotidinate 5′-Monophosphate (OMP3-) in Aqueous Solution. J COORD CHEM 2009. [DOI: 10.1080/00958979109408247] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Matthias Bastian
- a Institute of Inorganic Chemistry, University of Basel , Spitalstrasse 51, CH-4056 , Basel , Switzerland
| | - Helmut Sigel
- a Institute of Inorganic Chemistry, University of Basel , Spitalstrasse 51, CH-4056 , Basel , Switzerland
| |
Collapse
|
31
|
Belon CA, Frick DN. Fuel specificity of the hepatitis C virus NS3 helicase. J Mol Biol 2009; 388:851-64. [PMID: 19332076 DOI: 10.1016/j.jmb.2009.03.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 11/28/2022]
Abstract
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3'-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2' and 3' carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn(2+) supporting about 10 times faster unwinding than Mg(2+). Unlike Mg(2+), Mn(2+) does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.
Collapse
Affiliation(s)
- Craig A Belon
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
32
|
|
33
|
|
34
|
Petersen J, Fisher K, Lowe DJ. Structural basis for VO2+ inhibition of nitrogenase activity (A): 31P and 23Na interactions with the metal at the nucleotide binding site of the nitrogenase Fe protein identified by ENDOR spectroscopy. J Biol Inorg Chem 2008; 13:623-35. [PMID: 18351402 DOI: 10.1007/s00775-008-0360-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/27/2008] [Indexed: 11/30/2022]
Abstract
We previously reported the vanadyl hyperfine couplings of VO(2+)-ATP and VO(2+)-ADP complexes in the presence of the nitrogenase Fe protein from Klebsiella pneumoniae (Petersen et al. in Biochemistry 41:13253-13263, 2002). It was demonstrated that different VO(2+)-nucleotide coordination environments coexist and are distinguishable by electron paramagnetic resonance (EPR) spectroscopy. Here orientation-selective continuous-wave electron-nuclear double resonance (ENDOR) spectra have been investigated especially in the low-radio-frequency range in order to identify superhyperfine interactions with nuclei other than protons. Some of these resonances have been attributed to the presence of a strong interaction with a 31P nucleus although no resolvable superhyperfine structure due to 31P or other nuclei was detected in the EPR spectra. The superhyperfine coupling component is determined to be about 25 MHz. Such a 31P coupling is consistent with an interaction of the metal with phosphorus from a directly, equatorially coordinated nucleotide phosphate group(s). Additionally, novel more prominent 31P ENDOR signals are detected in the low-frequency region. Some of these correspond to a relatively weak 31P coupling. This coupling is present with ATP for all pH forms but is absent with ADP. The ENDOR resonances of these weakly coupled 31P are likely to originate from an interaction of the metal with a nucleotide phosphate group of the nucleoside triphosphate and are attributed to a phosphorus with axial characteristics. Another set of resonances, split about the nuclear Zeeman frequency of 23Na, was detected, suggesting that a monovalent Na+ ion is closely associated with the divalent metal-nucleotide binding site. Na+ replacement by K+ unambiguously confirmed that ENDORs at radio frequencies between 3.0 and 4.5 MHz arise from an interaction with Na+ ions. In contrast to the low-frequency 31P signal, these resonances are present in spectra with both ADP and ATP, and for both low- and neutral-pH forms, although slight differences are detected, showing that these are sensitive to the nucleotide and pH.
Collapse
Affiliation(s)
- Jan Petersen
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
35
|
Mucha A, Knobloch B, Jezowska-Bojczuk M, Kozłowski H, Sigel RKO. Effect of the ribose versus 2'-deoxyribose residue on the metal ion-binding properties of purine nucleotides. Dalton Trans 2008:5368-77. [PMID: 18827944 DOI: 10.1039/b805911j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between metal ions and nucleotides is well characterized, as is their importance for metabolic processes, e.g. in the synthesis of nucleic acids. Hence, it is surprising to find that no detailed comparison is available of the metal ion-binding properties between nucleoside 5'-phosphates and 2'-deoxynucleoside 5'-phosphates. Therefore, we have measured here by potentiometric pH titrations the stabilities of several metal ion complexes formed with 2'-deoxyadenosine 5'-monophosphate (dAMP2-), 2'-deoxyadenosine 5'-diphosphate (dADP3-) and 2'-deoxyadenosine 5'-triphosphate (dATP4-). These results are compared with previous data measured under the same conditions and available in the literature for the adenosine 5'-phosphates, AMP(2-), ADP(3-) and ATP(4-), as well as guanosine 5'-monophosphate (GMP(2-)) and 2'-deoxyguanosine 5'-monophosphate (dGMP(2-)). Hence, in total four nucleotide pairs, GMP(2-)/dGMP(2-), AMP(2-)/dAMP(2-), ADP(3-)/dADP(3-) and ATP(4-)/dATP(4-) (= NP/dNP), could be compared for the four metal ions Mg2+, Ni2+, Cu2+ and Zn2+ (= M2+). The comparisons show that complex stability and extent of macrochelate formation between the phosphate-coordinated metal ion and N7 of the purine residue is very similar (or even identical) for the AMP(2-)/dAMP(2-) and ADP(3-)/dADP(3-) pairs. In the case of the complexes formed with ATP(4-)/dATP(4-) the 2'-deoxy complexes are somewhat more stable and show also a slightly enhanced tendency for macrochelate formation. This is different for guanine nucleotides: the stabilities of the M(dGMP) complexes are clearly higher, as are the formation degrees of their macrochelates, than is the case with the M(GMP) complexes. This enhanced complex stability and greater tendency to form macrochelates can be attributed to the enhanced basicity (DeltapKaca. 0.2) of N7 in the 2'-deoxy compound. These results allow general conclusions regarding nucleic acids to be made.
Collapse
Affiliation(s)
- Ariel Mucha
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Structural basis for VO2+-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe–protein identified by ENDOR spectroscopy. J Biol Inorg Chem 2008; 13:637-50. [DOI: 10.1007/s00775-008-0364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
38
|
Enyedy EA, Lakatos A, Horváth L, Kiss T. Interactions of insulin-mimetic zinc(II) complexes with cell constituents: glutathione and ATP. J Inorg Biochem 2008; 102:1473-85. [PMID: 18282604 DOI: 10.1016/j.jinorgbio.2008.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 11/17/2022]
Abstract
Ternary complex formation of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 3-hydroxy-1,2-dimethyl-pyridinone with (O,O), 2-picolinic acid and 6-methylpicolinic acid with (N,O) and the tridentate 2,6-dipicolinic acid with (O,N,O) coordination modes was studied in aqueous solutions by pH-potentiometry and spectroscopic (UV, CD, ESI-MS) methods in the presence of critical cell constituents such as L-glutathione reduced (GSH) and adenosine 5'-triphosphate (ATP). Results showed that formation of the ternary complexes was hindered in the case of 2,6-dipicolinic acid, especially with ATP, while it was favoured with the bidentate ligands in the physiological pH range. Driving force of the formation of mixed-ligand species was found to be a more enhanced coordination of GSH and ATP as second ligands in the ternary complexes than in their binary ones due to steric and electrostatic reasons. The mitochondrial dehydrogenase activity of the zinc(II) complexes, as an indirect indicator for the glucose intake, was measured on Mono Mac and 3T3-L1 adipocyte cell lines. The activity of the complexes up to approximately 10-100 microM concentration was in the range of the effect of 0.75-1.5 microM insulin, while at higher concentration it was broken down due to the sensitivity of the cells to toxicity of the complexes.
Collapse
Affiliation(s)
- Eva Anna Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, P.O. Box 440, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
39
|
Freisinger E, Sigel RK. From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2007.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Spoerner M, Nuehs A, Herrmann C, Steiner G, Kalbitzer HR. Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPgammaS. FEBS J 2007; 274:1419-33. [PMID: 17302736 DOI: 10.1111/j.1742-4658.2007.05681.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The guanine nucleotide-binding protein Ras occurs in solution in two different conformational states, state 1 and state 2 with an equilibrium constant K(12) of 2.0, when the GTP analogue guanosine-5'-(beta,gamma-imido)triphosphate or guanosine-5'-(beta,gamma-methyleno)triphosphate is bound to the active centre. State 2 is assumed to represent a strong binding state for effectors with a conformation similar to that found for Ras complexed to effectors. In the other state (state 1), the switch regions of Ras are most probably dynamically disordered. Ras variants that exist predominantly in state 1 show a drastically reduced affinity to effectors. In contrast, Ras(wt) bound to the GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) leads to (31)P NMR spectra that indicate the prevalence of only one conformational state with K(12) > 10. Titration with the Ras-binding domain of Raf-kinase (Raf-RBD) shows that this state corresponds to effector binding state 2. In the GTPgammaS complex of the effector loop mutants Ras(T35S) and Ras(T35A) two conformational states different to state 2 are detected, which interconvert over a millisecond time scale. Binding studies with Raf-RBD suggest that both mutants exist mainly in low-affinity states 1a and 1b. From line-shape analysis of the spectra measured at various temperatures an activation energy DeltaH(|) (1a1b) of 61 kJ.mol(-1) and an activation entropy DeltaS(|) (1a1b) of 65 J.K(-1).mol(-1) are derived. Isothermal titration calorimetry on Ras bound to the different GTP-analogues shows that the effective affinity K(A) for the Raf-RBD to Ras(T35S) is reduced by a factor of about 20 compared to the wild-type with the strongest reduction observed for the GTPgammaS complex.
Collapse
Affiliation(s)
- Michael Spoerner
- Universität Regensburg, Institut für Biophysik und physikalische Biochemie, Universitätsstrasse 31, Regensburg D-93040, Germany
| | | | | | | | | |
Collapse
|
41
|
Gharib F, Kheradman T, Amani P. Complexation of thallium(I) with adenosine 5'-monophosphate in aqueous methanol solutions. ANAL SCI 2007; 21:945-9. [PMID: 16122165 DOI: 10.2116/analsci.21.945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The formation constants of the species formed in the systems H+ + thallium(I) + AMP and H+ + AMP have been determined in aqueous solutions of methanol at 25 degrees C and constant ionic strength 0.1 mol dm(-3) sodium perchlorate, using spectrophotometric and potentiometric techniques. Thallium(I) forms two mononuclear 1:1 complexes with AMP of the type TlHL and TlL- in the pH range of study (1-11), where L2- represents the fully dissociated ligand. The formation constants in various media were analyzed in terms of Kamlet and Taft's parameters. Single-parameter correlation of the formation constants, beta111, and beta101, versus alpha (hydrogen-bond donor acidity), beta (hydrogen-bond accepter basicity), and for pi* (dipolarity/polarizability) are relatively poor in all solutions, but multi-parameter correlation represents significant improvement with regard to the single-parameter models. Finally, the results are discussed in terms of the effect of the solvent on complexation.
Collapse
Affiliation(s)
- Farrokh Gharib
- Chemistry Department, Shahid Beheshti University, Tehran, Evin, Iran.
| | | | | |
Collapse
|
42
|
Dutta SJ, Liu J, Stemmler AJ, Mitra B. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 2007; 46:3692-703. [PMID: 17326661 DOI: 10.1021/bi0616394] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ZntA from Escherichia coli belongs to the P1B-ATPase transporter family and mediates resistance to toxic levels of selected divalent metal ions. P1B-type ATPases can be divided into subgroups based on substrate cation selectivity. ZntA has the highest selectivity for Pb2+, followed by Zn2+ and Cd2+; it also shows low levels of activity with Cu2+, Ni2+, and Co2+. It has two high-affinity metal-binding sites, one each in the N-terminus and the transmembrane domains. Ligands to the transmembrane metal site in ZntA include the cysteine residues of the conserved 392CPC394 motif in the sixth transmembrane helix. Pro393 is invariant in all P-type ATPases. For ZntA homologues with different metal ion selectivity, the cysteines are replaced by serine, histidine, and threonine. To test the effect on activity and metal ion selectivity, single alanine, histidine, and serine substitutions at Cys392 or Cys394 in ZntA were characterized, as well as double substitutions of both cysteines by histidine or serine. P393A was also characterized. C392A, C394A, and P393A lost the ability to bind a metal ion with high affinity in the transmembrane domain. Histidine and serine substitutions at Cys392 and Cys394 resulted in loss of binding of Pb2+ at the transmembrane site, indicating that both cysteines of the CPC motif are required for binding Pb2+ with high affinity in ZntA homologues. However, C392H, C392S, C394H, C394S, C392S/C394S, and C392H/C394H could bind other divalent metal ions at the transmembrane site and retained low but measurable activity. Interestingly, these mutants lost the predominant selectivity for Zn2+ and Cd2+ shown by wtZntA. Therefore, conserved residues contribute to metal selectivity by supplying ligands that bind metal ions not only with high affinity, as for Pb2+, but also with the most favorable binding geometry that results in efficient catalysis.
Collapse
Affiliation(s)
- Sabari J Dutta
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
43
|
Sigel RKO, Pyle AM. Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry. Chem Rev 2006; 107:97-113. [PMID: 17212472 DOI: 10.1021/cr0502605] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roland K O Sigel
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
44
|
Swiatek J. REVIEW: INTERACTIONS OF METAL IONS WITH NUCLEIC ACIDS AND THEIR SUBUNITS. AN ELECTROCHEMICAL APPROACH. J COORD CHEM 2006. [DOI: 10.1080/00958979408024278] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jolanta Swiatek
- a Department of Basic Medical Sciences , Medical Academy of Wroclaw , Kochanowskiego, 14, 51-601, Wroclaw , Poland
| |
Collapse
|
45
|
Richter Y, Fischer B. Nucleotides and inorganic phosphates as potential antioxidants. J Biol Inorg Chem 2006; 11:1063-74. [PMID: 16896806 DOI: 10.1007/s00775-006-0143-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Highly reactive OH radicals, formed in an iron-ion catalyzed Fenton reaction, are implicated in many pathological conditions. The quest for Fenton reaction inhibitors, either radical scavenger or metal-ion chelator antioxidants, spans the previous decades. Purine nucleotides were previously studied as natural modulators of the Fenton reaction; however, the modulatory role of purine nucleotides remained in dispute. Here, we have resolved this long-standing dispute and demonstrated a concentration-dependent biphasic modulation of the Fenton reaction by nucleotides. By electron spin resonance measurements with 0.1 mM Fe(II), we observed an increase of *OH production at low purine nucleotide concentrations (up to 0.15 mM), while at higher nucleotide concentrations, an exponential decay of *OH concentration was observed. We found that the phosphate moiety, not the nucleoside, determines the pro/antioxidant properties of a nucleotide, suggesting a chelation-based modulation. Furthermore, the biphasic modulation mode is probably due to diverse nucleotide-Fe(II) complexes formed in a concentration-dependent manner. At ATP concentrations much greater than Fe(II) concentrations, multiligand chelates are formed which inhibit the Fenton reaction owing to a full Fe(II) coordination sphere. In addition to natural nucleotides, we investigated a series of base- or phosphate-modified nucleotides, dinucleotides, and inorganic phosphates, as potential biocompatible antioxidants. Ap5A, inorganic thiophosphate and ATP-gamma-S proved highly potent antioxidants with IC50 values of 40, 30, and 10 microM, respectively. ATP-gamma-S proved 100 and 20 times more active than ATP and the potent antioxidant Trolox, respectively. In the presence of 30 microM ATP-gamma-S no *OH was detected after 5 min in the Fenton reaction mixture. The most potent antioxidants identified inhibit the Fenton reaction by forming full coordination sphere chelates.
Collapse
Affiliation(s)
- Yael Richter
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | |
Collapse
|
46
|
Wu CC, Gardarin A, Catty P, Guillain F, Mintz E. CadA, the Cd2+-ATPase from Listeria monocytogenes, can use Cd2+ as co-substrate. Biochimie 2006; 88:1687-92. [PMID: 16889884 DOI: 10.1016/j.biochi.2006.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/18/2006] [Indexed: 10/24/2022]
Abstract
CadA is a membrane protein of the P-type ATPase family which is the major determinant of the resistance to Cd2+ in Listeria monocytogenes. During its catalytic cycle, CadA undergoes auto-phosphorylation from ATP at Asp398, which allows Cd2+ translocation across the membrane. In the reverse mode, Asp398 is phosphorylated from Pi. From the data obtained so far, the CadA catalytic mechanism is similar to that proposed for the sarcoplasmic reticulum Ca2+-ATPase, the model of the P-type ATPase family. We show here that CadA is sensitive to two different ranges of Cd2+ concentration. The 0.1-10 microM range of added CdCl2 corresponds to Cd2+ binding at the transport site of unphosphorylated CadA which induces the reaction of the enzyme with ATP and impairs its reaction with Pi. The 0.1-1 mM range of added CdCl2 could correspond to Cd2+ binding to the transport site accessible from the extracellular medium. In addition, although it is widely accepted that the actual substrate of P-type ATPases is the MgATP complex, we show here that CadA can also perform its cycle in the absence of Mg2+, using CdATP in the place of MgATP at the catalytic site.
Collapse
Affiliation(s)
- C C Wu
- CEA, DSV, DRDC, Laboratoire de Biophysique Moléculaire et Cellulaire, UMR 5090 CEA-CNRS-Université Joseph-Fourier, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
47
|
Utyanskaya EZ, Lidskii BV, Goryachev SV, Shilov AE. Kinetics and mechanism of adenosine 5′-triphosphate hydrolysis catalyzed by the Cu2+ ion: The role of conformation and the catalytic effect of the OH− ion. KINETICS AND CATALYSIS 2006. [DOI: 10.1134/s0023158406040057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
49
|
Jezowska-Bojczuk M, Kaczmarek P, Bal W, Kasprzak KS. Coordination mode and oxidation susceptibility of nickel(II) complexes with 2'-deoxyguanosine 5'-monophosphate and l-histidine. J Inorg Biochem 2005; 98:1770-7. [PMID: 15522404 DOI: 10.1016/j.jinorgbio.2004.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/16/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The formation of binary and ternary complexes of Ni(II) with two biologically relevant molecules, 2'-deoxyguanosine 5'-monophosphate (dGMP) and l-histidine (histidine or His) was characterized by potentiometry and UV-visible spectroscopy. For dGMP, the mononuclear complexes with stoichiometries NiH(2)L(+), NiHL and NiL(-) were found. In the mixed system the ternary complexes NiH(2)LA, NiHLA(-) and NiLA(2-) were detected. In binary systems, the Ni(II) ion coordinates to dGMP through the N-7 atom of its purine ring and indirectly through a water molecule bonded to the phosphate group, while in ternary complexes Ni(II) is bonded to all three histidine donors and directly to the phosphate group of dGMP. Both binary and ternary complexes are susceptible to oxidation by H(2)O(2), with the increased formation of 8-oxo-dGMP in the ternary system. The toxicological relevance of these findings stems from possible disturbance by the major biological Ni(II)-His complex of the nucleotide pools homeostasis through the formation of ternary species and oxidation promotion, as well as from 8-oxo-dGMP capacity to inhibit enzymatic elimination of promutagenic oxidized nucleotides from such pools.
Collapse
|
50
|
Kaczmarek P, Szczepanik W, Jezowska-Bojczuk M. Acid-base, coordination and oxidative properties of systems containing ATP, L-histidine and Ni(II) ions. Dalton Trans 2005:3653-7. [PMID: 16258616 DOI: 10.1039/b508962j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentiometric measurements of ATP-His system proved an existence of five adducts in the solution with stoichiometries ranging from H(5)(ATP)(His) to H(ATP)(His)(4-). Their formation is a consequence of electrostatic interactions only. In the ternary Ni(II)-ATP-His system, two complex species NiH(ATP)(His)(2-) and Ni(ATP)(His)(3-), were found. In the former, stacking interaction between the aromatic moiety of ATP and the imidazole ring of l-histidine is crucial to the adduct stability. All studied systems are able to generate single strand lesions of plasmid DNA in the presence of hydrogen peroxide. However, only binary systems produce linear form of DNA, which is a consequence of the accumulation of the single-stranded breaks.
Collapse
Affiliation(s)
- Piotr Kaczmarek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | |
Collapse
|