1
|
Hernández Delgado JG, Acedos MG, de la Calle F, Rodríguez P, García JL, Galán B. Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22. Mar Drugs 2024; 22:418. [PMID: 39330299 PMCID: PMC11432991 DOI: 10.3390/md22090418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins' biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.
Collapse
Affiliation(s)
- J Gerardo Hernández Delgado
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Miguel G Acedos
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | | | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain
| | - José Luis García
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Beatriz Galán
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Liang F, Sun S, Zhou Y, Peng T, Xu X, Li B, Tan G. Escherichia coli alcohol dehydrogenase YahK is a protein that binds both iron and zinc. PeerJ 2024; 12:e18040. [PMID: 39282118 PMCID: PMC11397123 DOI: 10.7717/peerj.18040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Previous studies have highlighted the catalytic activity of Escherichia coli alcohol dehydrogenase YahK in the presence of coenzyme nicotinamide adenine dinucleotide (NAD) and metal zinc. Notably, competitive interaction between iron and zinc ligands has been shown to influence the catalytic efficiency of several key proteases. This study aims to unravel the intricate mechanisms underlying YahK's catalytic action, with a particular focus on the pivotal roles played by metal ions zinc and iron. Methods The purified YahK protein from E. coli cells cultivated in LB medium was utilized to investigate its metal-binding properties through UV-visible absorption measurements and determination of metal content. Subsequently, the effects of excess zinc and iron on the metal-binding ability and alcohol dehydrogenase activity of the YahK protein were explored using M9 minimal medium. Furthermore, site-directed mutagenesis technology was employed to determine the iron-binding site location within the YahK protein. Polyacrylamide gel electrophoresis was conducted to examine the relationship between iron and zinc with respect to the YahK protein. Results The study confirmed the presence of iron and zinc in the YahK protein, with the zinc-bound form exhibiting enhanced catalytic activity in alcohol dehydrogenation reactions. Conversely, the presence of iron appears to play a pivotal role in maintaining overall stability of the YahK protein. Furthermore, experimental findings indicate that excessive zinc within M9 minimal medium can competitively bind to iron-binding sites on YahK, thereby augmenting its alcohol dehydrogenase activity. Conclusion The dynamic binding of YahK to iron and zinc unveils its intricate regulatory mechanism as an alcohol dehydrogenase, thereby highlighting the possible physiological role of YahK in E. coli and its significance in governing cellular metabolic processes. This discovery provides a novel perspective for further investigating the specific impact of metal ion binding on YahK and E. coli cell metabolism.
Collapse
Affiliation(s)
- Feng Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, Shandong, China
| | - YongGuang Zhou
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiantian Peng
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianxian Xu
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
4
|
Dynamic changes in fecal bacterial microbiota of dairy cattle across the production line. BMC Microbiol 2022; 22:132. [PMID: 35568809 PMCID: PMC9107139 DOI: 10.1186/s12866-022-02549-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Background Microbiota play important roles in the gastrointestinal tract (GIT) of dairy cattle as the communities are responsible for host health, growth, and production performance. However, a systematic characterization and comparison of microbial communities in the GIT of cattle housed in different management units on a modern dairy farm are still lacking. We used 16S rRNA gene sequencing to evaluate the fecal bacterial communities of 90 dairy cattle housed in 12 distinctly defined management units on a modern dairy farm. Results We found that cattle from management units 5, 6, 8, and 9 had similar bacterial communities while the other units showed varying levels of differences. Hutch calves had a dramatically different bacterial community than adult cattle, with at least 10 genera exclusively detected in their samples but not in non-neonatal cattle. Moreover, we compared fecal bacteria of cattle from every pair of the management units and detailed the number and relative abundance of the significantly differential genera. Lastly, we identified 181 pairs of strongly correlated taxa in the community, showing possible synergistic or antagonistic relationships. Conclusions This study assesses the fecal microbiota of cattle from 12 distinctly defined management units along the production line on a California dairy farm. The results highlight the similarities and differences of fecal microbiota between cattle from each pair of the management units. Especially, the data indicate that the newborn calves host very different gut bacterial communities than non-neonatal cattle, while non-neonatal cattle adopt one of the two distinct types of gut bacterial communities with subtle differences among the management units. The gut microbial communities of dairy cattle change dramatically in bacterial abundances at different taxonomic levels along the production line. The findings provide a reference for research and practice in modern dairy farm management. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02549-3.
Collapse
|
5
|
Kavanaugh DW, Porrini C, Dervyn R, Ramarao N. The pathogenic biomarker alcohol dehydrogenase protein is involved in Bacillus cereus virulence and survival against host innate defence. PLoS One 2022; 17:e0259386. [PMID: 34982789 PMCID: PMC8726459 DOI: 10.1371/journal.pone.0259386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a spore forming bacteria recognized among the leading agents responsible for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic human pathogen inducing local and systemic infections. The real incidence of such infection is likely underestimated and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We have recently analyzed a large strain collection of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified among the leading candidates. This family of proteins has been demonstrated to be involved in the virulence of several bacterial species. The relevant gene was knocked out to elucidate its function with regards to resistance to host innate immune response, both in vitro and in vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in vivo toxicity. These properties may explain the pathogenic potential of strains carrying this newly identified virulence factor.
Collapse
Affiliation(s)
- Devon W. Kavanaugh
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Constance Porrini
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rozenn Dervyn
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nalini Ramarao
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
6
|
Lin GH, Hsieh MC, Shu HY. Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. Int J Mol Sci 2021; 22:ijms22189921. [PMID: 34576087 PMCID: PMC8465190 DOI: 10.3390/ijms22189921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Most bacteria possess alcohol dehydrogenase (ADH) genes (Adh genes) to mitigate alcohol toxicity, but these genes have functions beyond alcohol degradation. Previous research has shown that ADH can modulate quorum sensing in Acinetobacter baumannii, a rising opportunistic pathogen. However, the number and nature of Adh genes in A. baumannii have not yet been fully characterized. We identified seven alcohol dehydrogenases (NAD+-ADHs) from A. baumannii ATCC 19606, and examined the roles of three iron-containing ADHs, ADH3, ADH4, and ADH6. Marker-less mutation was used to generate Adh3, Adh4, and Adh6 single, double, and triple mutants. Disrupted Adh4 mutants failed to grow in ethanol-, 1-butanol-, or 1-propanol-containing mediums, and recombinant ADH4 exhibited strongest activity against ethanol. Stress resistance assays with inorganic and organic hydroperoxides showed that Adh3 and Adh6 were key to oxidative stress resistance. Virulence assays performed on the Galleria mellonella model organism revealed that Adh4 mutants had comparable virulence to wild-type, while Adh3 and Adh6 mutants had reduced virulence. The results suggest that ADH4 is primarily involved in alcohol metabolism, while ADH3 and ADH6 are key to stress resistance and virulence. Further investigation into the roles of other ADHs in A. baumannii is warranted.
Collapse
Affiliation(s)
- Guang-Huey Lin
- Master Program of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (G.-H.L.); (M.-C.H.)
- Department of Microbiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- International College, Tzu Chi University, Hualien 97004, Taiwan
| | - Ming-Chuan Hsieh
- Master Program of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (G.-H.L.); (M.-C.H.)
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
- Correspondence: ; Tel.: +886-6-278-5123 (ext. 3211); Fax: +886-6-278-5010
| |
Collapse
|
7
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu SA, Miles MF, Vladimirov VI. Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC. PLoS One 2020; 15:e0243857. [PMID: 33332381 PMCID: PMC7745987 DOI: 10.1371/journal.pone.0243857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). We further investigated potential mRNA/miRNA interactions at the network and individual gene expression levels to identify the neurobiological mechanisms underlying AD in the brain. By using genotyped and imputed SNP data, we identified expression quantitative trait loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated with AD. At a Bonferroni corrected p≤0.05, we identified significant mRNA (NAc = 6; PFC = 3) and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed modules preserved between PFC and NAc to be enriched for immune response processes, whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection were enriched in NAc modules only. At a Bonferroni corrected p≤0.05, we identified significant mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual transcript level implicated miR-449a/b as potential regulators for cellular morphogenesis/localization in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17, miRNA = 16) which potentially mediate alcohol's effect in a brain region-specific manner. Our study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific molecular changes that may impact the development of alcohol addiction.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas, United States of America
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas, United States of America
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020; 8:50. [PMID: 32143280 PMCID: PMC7148483 DOI: 10.3390/biomedicines8030050] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.
Collapse
Affiliation(s)
- Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Li T, Wu YR, He J. Heterologous expression, characterization and application of a new β-xylosidase identified in solventogenic Clostridium sp. strain BOH3. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ikeyama S, Amao Y. The effect of the functional ionic group of the viologen derivative on visible-light driven CO2 reduction to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase. Photochem Photobiol Sci 2018; 17:60-68. [DOI: 10.1039/c7pp00277g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effect of the functional ionic group of 4,4′-bipyridinium salt on the visible-light driven CO2 conversion to formic acid with the system consisting of zinc porphyrin and formate dehydrogenase was investigated.
Collapse
Affiliation(s)
- S. Ikeyama
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
| | - Y. Amao
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre for Artificial Photosynthesis (ReCAP)
| |
Collapse
|
11
|
Frey J, Rusche H, Schink B, Schleheck D. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus. BMC Microbiol 2016; 16:280. [PMID: 27884109 PMCID: PMC5123277 DOI: 10.1186/s12866-016-0899-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. Results The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD+ but not NADPH/NADP+ as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C3 - C5-aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg−1 protein), butanal to butanol (300 ± 24 mU mg−1), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg−1), however, the enzyme also oxidized 3-hydroxybutanal with NAD+ to acetoacetaldehyde (83 ± 18 mU mg−1). Conclusion The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0899-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasmin Frey
- Department of Biology, University of Konstanz, Postbox 649, D-78457, Konstanz, Germany
| | - Hendrik Rusche
- Department of Biology, University of Konstanz, Postbox 649, D-78457, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Postbox 649, D-78457, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Postbox 649, D-78457, Konstanz, Germany.
| |
Collapse
|
12
|
Ken CF, Tzeng SJ, Wen L, Lin CT. A Rigidoporus VinctusAlcohol Dehydrogenase and Its Characterization. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Bueno M, Carrascón V, Ferreira V. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:608-617. [PMID: 26653972 DOI: 10.1021/acs.jafc.5b04634] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.
Collapse
Affiliation(s)
- Mónica Bueno
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza , 50009, Zaragoza, Spain
| | - Vanesa Carrascón
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza , 50009, Zaragoza, Spain
| | - Vicente Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza , 50009, Zaragoza, Spain
| |
Collapse
|
14
|
Loderer C, Morgenstern F, Ansorge-Schumacher M. A Zinc-Dependent Alcohol Dehydrogenase (ADH) from Thauera aromatica, Reducing Cyclic α- and β-Diketones. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Baig U, Gondal MA, Alam MF, Laskar AA, Alam M, Younus H. Enzyme immobilization and molecular modeling studies on an organic–inorganic polypyrrole–titanium(iv)phosphate nanocomposite. NEW J CHEM 2015. [DOI: 10.1039/c5nj01463h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polypyrrole–titanium(iv)phosphate nanocomposite was synthesized by using facile chemical oxidative polymerization of pyrrole in the presence of titanium(iv)phosphate for YADH immobilization.
Collapse
Affiliation(s)
- Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
- Laser Research Group
| | - Mohammed Ashraf Gondal
- Center of Excellence for Scientific Research Collaboration with MIT
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
- Laser Research Group
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Amaj Ahmed Laskar
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mahboob Alam
- Division of Bioscience
- Dongguk University
- Gyeongju 780-714
- Republic of Korea
| | - Hina Younus
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
16
|
Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat Commun 2014; 5:5031. [PMID: 25248664 DOI: 10.1038/ncomms6031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022] Open
Abstract
Increasingly complex metabolic pathways have been engineered by modifying natural pathways and establishing de novo pathways with enzymes from a variety of organisms. Here we apply retro-biosynthetic screening to a modular pathway design to identify a redox neutral, theoretically high yielding route to a branched C6 alcohol. Enzymes capable of converting natural E. coli metabolites into 4-methyl-pentanol (4MP) via coenzyme A (CoA)-dependent chemistry were taken from nine different organisms to form a ten-step de novo pathway. Selectivity for 4MP is enhanced through the use of key enzymes acting on acyl-CoA intermediates, a carboxylic acid reductase from Nocardia iowensis and an alcohol dehydrogenase from Leifsonia sp. strain S749. One implementation of the full pathway from glucose demonstrates selective carbon chain extension and acid reduction with 4MP constituting 81% (90±7 mg l(-1)) of the observed alcohol products. The highest observed 4MP titre is 192±23 mg l(-1). These results demonstrate the ability of modular pathway screening to facilitate de novo pathway engineering.
Collapse
|
17
|
Kanoh Y, Uehara S, Iwata H, Yoneda K, Ohshima T, Sakuraba H. Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium. ACTA ACUST UNITED AC 2014; 70:1271-80. [PMID: 24816096 DOI: 10.1107/s1399004714002363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022]
Abstract
Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D-glucose and D-galactose, but does not utilize aldopentoses such as D-xylose as substrates. In the present study, the crystal structures of substrate/cofactor-free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D-glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH-1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino-acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH-1. Structural comparison revealed that a decreased number of interactions between the C3-hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D-xylose.
Collapse
Affiliation(s)
- Yoshitaka Kanoh
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Seiichiroh Uehara
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Hideyuki Iwata
- Thermostable Enzyme Laboratory, 5-5-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
18
|
Pampa KJ, Lokanath NK, Kunishima N, Rai RV. The first crystal structure of NAD-dependent 3-dehydro-2-deoxy-D-gluconate dehydrogenase from Thermus thermophilus HB8. ACTA ACUST UNITED AC 2014; 70:994-1004. [PMID: 24699644 DOI: 10.1107/s1399004713034925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022]
Abstract
2-Keto-3-deoxygluconate (KDG) is one of the important intermediates in pectin metabolism. An enzyme involved in this pathway, 3-dehydro-3-deoxy-D-gluconate 5-dehydrogenase (DDGDH), has been identified which converts 2,5-diketo-3-deoxygluconate to KDG. The enzyme is a member of the short-chain dehydrogenase (SDR) family. To gain insight into the function of this enzyme at the molecular level, the first crystal structure of DDGDH from Thermus thermophilus HB8 has been determined in the apo form, as well as in complexes with the cofactor and with citrate, by X-ray diffraction methods. The crystal structures reveal a tight tetrameric oligomerization. The secondary-structural elements and catalytically important residues of the enzyme were highly conserved amongst the proteins of the NAD(P)-dependent SDR family. The DDGDH protomer contains a dinucleotide-binding fold which binds the coenzyme NAD(+) in an intersubunit cleft; hence, the observed oligomeric state might be important for the catalytic function. This enzyme prefers NAD(H) rather than NADP(H) as the physiological cofactor. A structural comparison of DDGDH with mouse lung carbonyl reductase suggests that a significant difference in the α-loop-α region of this enzyme is associated with the coenzyme specificity. The structural data allow a detailed understanding of the functional role of the conserved catalytic triad (Ser129-Tyr144-Lys148) in cofactor and substrate recognition, thus providing substantial insights into DDGDH catalysis. From analysis of the three-dimensional structure, intersubunit hydrophobic interactions were found to be important for enzyme oligomerization and thermostability.
Collapse
Affiliation(s)
- Kudigana J Pampa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Neratur K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Naoki Kunishima
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ravishankar Vittal Rai
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
19
|
Urbanova V, Kohring GW, Klein T, Wang Z, Mert O, Emrullahoglu M, Buran K, Demir AS, Etienne M, Walcarius A. Sol-gel Approaches for Elaboration of Polyol Dehydrogenase-Based Bioelectrodes. ACTA ACUST UNITED AC 2013. [DOI: 10.1524/zpch.2013.0324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
This review describes the input of sol-gel chemistry to the immobilization of polyol dehydrogenases on electrodes, for applications in bioelectrocatalysis. The polyol dehydrogenases are described and their application for biosensing, biofuel cell and electrosynthesis are briefly discussed. The immobilization of proteins via sol-gel approaches is described, including a discussion on the difficulty to maintain the activity of proteins in a silica matrix and the strategies developed to offer a proper environment to the proteins by developing optimal organic-inorganic hybrid materials. Finally, the co-immobilization of the NAD
+
co-factor and of mediators for the elaboration of reagentless devices is presented, based on published and original data. All-in-all, sol-gel approaches appear to be a very promising for development of original electrochemical applications involving dehydrogenases in near future.
Collapse
Affiliation(s)
- Veronika Urbanova
- CNRS and Université de Lorraine, Lab. de Chimie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| | | | - Tobias Klein
- Saarland University, Microbiology, Saarbrücken, Deutschland
| | - Zhijie Wang
- CNRS and Université de Lorraine, Lab. de Chimie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| | - Olcay Mert
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | | | - Kerem Buran
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | - Ayhan S. Demir
- Middle East Technical University, Department of Chemistry, Ankara, Türkei
| | | | - Alain Walcarius
- CNRS and Université de Lorraine, Lab. de Chemie Physique et Microbiologie, Villers-les-Nancy, Frankreich
| |
Collapse
|
20
|
Yamamoto T, Nakata Y, Cao C, Sugiyama Y, Asanuma Y, Kanamaru S, Matsuda T. Acetophenone reductase with extreme stability against a high concentration of organic compounds or an elevated temperature. Appl Microbiol Biotechnol 2013; 97:10413-21. [PMID: 23504059 DOI: 10.1007/s00253-013-4801-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 11/27/2022]
Abstract
The gene encoding acetophenone reductase (APRD), a useful biocatalyst for producing optically pure alcohols, was cloned from the cDNA of Geotrichum candidum NBRC 4597. The gene contained an open reading frame that consisted of 1,029 nucleotides corresponding to 342 amino acid residues. The subunit molecular weight was calculated to be 36.7 kDa. The predicted amino acid sequence did not have significant similarity to those of the acetophenone reductase reported previously. The gene was inserted into the pET-21b(+) expression vector and expressed in Escherichia coli Rosetta™(DE3)pLysS by induction with 1 mM of isopropyl-β-D-thiogalactopyranoside. E. coli cell-free extract gave 21.9 U/mg APRD activity, which was 81 times that of the G. candidum cell-free extract. The enzyme was purified with a HisTrap FF crude column. The enzyme exhibited the highest activity at 60 °C, and optimum reducing and oxidizing activity were observed in a pH range around 7.0-8.0 and 8.5, respectively. The enzyme was most stable at 60 °C and pH 6.5-7.5. The Vmax and the apparent Km value of the reductase were 67.6 μmol/min per milligram of protein and 0.146 mM for acetophenone, respectively. From 4 % (v/v) 4-phenyl-2-butanone, (S)-4-phenyl-2-butanol was obtained with a yield >80 % and an enantiomeric excess >99 % in a 20 h reaction recycling NADH with 15 % (v/v) 2-propanol.
Collapse
Affiliation(s)
- Takuro Yamamoto
- Graduate School of Bioscience and Biotechnology, Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 2268501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013; 113:4611-32. [PMID: 23488968 DOI: 10.1021/cr300361t] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Wee CC, Roslan HA. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu. ISRN MOLECULAR BIOLOGY 2012; 2012:839427. [PMID: 27335670 PMCID: PMC4890887 DOI: 10.5402/2012/839427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 11/09/2022]
Abstract
Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group.
Collapse
Affiliation(s)
- Ching Ching Wee
- Genetic Engineering Laboratory, Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300 Sarawak, Malaysia
| | - Hairul Azman Roslan
- Genetic Engineering Laboratory, Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300 Sarawak, Malaysia
| |
Collapse
|
23
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 517] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Rambhatla P, Kumar S, Floyd JT, Varela MF. Molecular cloning and characterization of mannitol-1-phosphate dehydrogenase from Vibrio cholerae. J Microbiol Biotechnol 2011; 21:914-20. [PMID: 21952367 PMCID: PMC3215508 DOI: 10.4014/jmb.1104.04020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Vibrio cholerae utilizes mannitol through an operon of the phosphoenolpyruvate-dependent phosphotransferase (PTS) type. A gene, mtlD, encoding mannitol-1-phosphate dehydrogenase was identified within the 3.9 kb mannitol operon of V. cholerae. The mtlD gene was cloned from V. cholerae O395, and the recombinant enzyme was functionally expressed in E. coli as a 6×His-tagged protein and purified to homogeneity. The recombinant protein is a monomer with a molecular mass of 42.35 kDa. The purified recombinant MtlD reduced fructose 6-phosphate (F6P) using NADH as a cofactor with a K(m) of 1.54 +/- 0.1 mM and V(max) of 320.8 +/- 7.81 micronmol/min/mg protein. The pH and temperature optima for F6P reduction were determined to be 7.5 and 37°C, respectively. Using quantitative real-time PCR analysis, mtlD was found to be constitutively expressed in V. cholerae, but the expression was up-regulated when grown in the presence of mannitol. The MtlD expression levels were not significantly different between V. cholerae O1 and non-O1 strains.
Collapse
Affiliation(s)
| | - Sanath Kumar
- Eastern New Mexico University, Department of Biology, Portales, NM 88130, USA
| | - Jared T. Floyd
- Eastern New Mexico University, Department of Biology, Portales, NM 88130, USA
| | - Manuel F. Varela
- Eastern New Mexico University, Department of Biology, Portales, NM 88130, USA
| |
Collapse
|
25
|
Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011; 13:345-52. [PMID: 21515217 DOI: 10.1016/j.ymben.2011.02.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 11/19/2022]
Abstract
2-methylpropan-1-ol (isobutanol) is a leading candidate biofuel for the replacement or supplementation of current fossil fuels. Recent work has demonstrated glucose to isobutanol conversion through a modified amino acid pathway in a recombinant organism. Although anaerobic conditions are required for an economically competitive process, only aerobic isobutanol production has been feasible due to an imbalance in cofactor utilization. Two of the pathway enzymes, ketol-acid reductoisomerase and alcohol dehydrogenase, require nicotinamide dinucleotide phosphate (NADPH); glycolysis, however, produces only nicotinamide dinucleotide (NADH). Here, we compare two solutions to this imbalance problem: (1) over-expression of pyridine nucleotide transhydrogenase PntAB and (2) construction of an NADH-dependent pathway, using engineered enzymes. We demonstrate that an NADH-dependent pathway enables anaerobic isobutanol production at 100% theoretical yield and at higher titer and productivity than both the NADPH-dependent pathway and transhydrogenase over-expressing strain. Our results show how engineering cofactor dependence can overcome a critical obstacle to next-generation biofuel commercialization.
Collapse
Affiliation(s)
- Sabine Bastian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
26
|
Corrales Escobosa AR, Rangel Porras RA, Meza Carmen V, Gonzalez Hernandez GA, Torres Guzman JC, Wrobel K, Wrobel K, Roncero MIG, Gutierrez Corona JF. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genet Biol 2011; 48:886-95. [PMID: 21704720 DOI: 10.1016/j.fgb.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
Abstract
An alcohol dehydrogenase gene, adh1, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that adh1 is highly expressed in mycelia grown in potato dextrose liquid medium (PDB) under hypoxic conditions, as compared to mycelia grown under aerobic conditions. One spontaneous allyl alcohol-resistant (Ally(R)) mutant exhibited insertion of an incomplete F.oxysporum transposable element, while another mutant contained a short (13 nucleotide) deletion, in both cases interrupting the coding region of the adh1 gene. These mutations caused deficiency in Adh activity due to loss of the main constitutive isoform of Adh1, as well as alteration of different physiological parameters related to carbon and energy metabolism, including the ability to use ethanol as a carbon source under aerobic conditions; impaired growth under hypoxic conditions with glucose as the carbon source; and diminished production of ethanol in glucose-containing medium. Interestingly, the adh1 mutations resulted in a significant delay in fungal disease development in tomato plants. Complementation with the wild-type adh1 allele repaired all defects caused by mutation, indicating that the product of the adh1 gene has dual enzymatic functions (fermentative and oxidative), depending on culture conditions, and is also required for full fungal virulence.
Collapse
Affiliation(s)
- Alma Rosa Corrales Escobosa
- Departamento de Biología y, DCNyE, Universidad de Guanajuato. Noria Alta s/n, Guanajuato, México 36000, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nair S, Kukreja N, Singh BP, Arora N. Identification of B cell epitopes of alcohol dehydrogenase allergen of Curvularia lunata. PLoS One 2011; 6:e20020. [PMID: 21647452 PMCID: PMC3102081 DOI: 10.1371/journal.pone.0020020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Background/Objective Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. Method B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. Result The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1–P6) and four T cell (P7–P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)2GGP(X)3KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. Conclusion Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases.
Collapse
Affiliation(s)
- Smitha Nair
- Allergy and Immunology Laboratory, Institute of Genomics and Integrative Biology (CSIR), Delhi, India
| | - Neetu Kukreja
- Department of Zoology, Hindu College, Delhi University, Delhi, India
| | - Bhanu Pratap Singh
- Allergy and Immunology Laboratory, Institute of Genomics and Integrative Biology (CSIR), Delhi, India
| | - Naveen Arora
- Allergy and Immunology Laboratory, Institute of Genomics and Integrative Biology (CSIR), Delhi, India
- * E-mail:
| |
Collapse
|
28
|
Fernandes S, Tuohy MG, Murray PG. Cloning, Heterologous Expression, and Characterization of the Xylitol and l-Arabitol Dehydrogenase Genes, Texdh and Telad, from the Thermophilic Fungus Talaromyces emersonii. Biochem Genet 2010; 48:480-95. [DOI: 10.1007/s10528-010-9332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/07/2009] [Indexed: 11/30/2022]
|
29
|
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2009; 85:651-7. [PMID: 19609521 PMCID: PMC2802489 DOI: 10.1007/s00253-009-2085-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 06/02/2009] [Accepted: 06/06/2009] [Indexed: 11/29/2022]
Abstract
Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we have compared the effect of various alcohol dehydrogenases (ADH) for the last step of the isobutanol production. E. coli has the yqhD gene which encodes a broad-range ADH. Isobutanol production significantly decreased with the deletion of yqhD, suggesting that the yqhD gene on the genome contributed to isobutanol production. The adh genes of two bacteria and one yeast were also compared in E. coli harboring the isobutanol synthesis pathway. Overexpression of yqhD or adhA in E. coli showed better production than ADH2, a result confirmed by activity measurements with isobutyraldehyde.
Collapse
Affiliation(s)
- Shota Atsumi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
30
|
Raia CA, D'auria S, Rossi M. Nad+Dependent Alcohol Dehydrogenase fromSulfolobus Solfataricus: Structural and Functional Features. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Carlo A. Raia
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Sabato D'auria
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - MosÉ Rossi
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Napoli, Italy
| |
Collapse
|
31
|
[Molecular cloning and expression of alcohol dehydrogenase gene of Phanerochaete chrysosporium]. YI CHUAN = HEREDITAS 2009; 31:546-51. [PMID: 19586851 DOI: 10.3724/sp.j.1005.2009.00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When Phanerochaete chrysosporium is grown under oxygen-limited condition, ethanol is one of the important metabolites. In order to understand the metabolic mechanism of P. chrysosporium grown under oxygen-limited condition, a cDNA sequence (1 071 bp) designated "PCAdh1" encoding an alcohol dehydrogenase (ADH) was cloned from the filamentous white-rot fungus P. chrysosporium. PCAdh1 gene encodes a protein of 356 amino acid residues. Although the catalytic domain and coenzyme-binding domain were highly conserved, the protein sequence of PCAdh1 showed a low level of similarity to other known ADH. The recombinant PCAdh1 protein was expressed in Escherichia coli and its enzyme activity was detected. The protein was purified and used to prepare antibody. Semi-quantitative RT-PCR and Western blot demonstrated that the expression level of PCAdh1 in P. chrysosporium remained stable despite the lowered oxygen content, indicating that the gene expression is constitutive. But with the reduction of oxygen content, the overall activity of ADH from the crude mycelia proteins was increased during the growing periods, implying that the expression of other Adh genes in P. chrysosporium is inductive.
Collapse
|
32
|
New Model for Polymerization of Oligomeric Alcohol Dehydrogenases into Nanoaggregates. Appl Biochem Biotechnol 2009; 160:1188-205. [DOI: 10.1007/s12010-009-8646-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/12/2009] [Indexed: 10/20/2022]
|
33
|
Characterization of an alcohol dehydrogenase from the Cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. J Bacteriol 2009; 191:4383-91. [PMID: 19411329 DOI: 10.1128/jb.00183-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The slr1192 (adhA) gene from Synechocystis sp. strain PCC 6803 encodes a member of the medium-chain alcohol dehydrogenase/reductase family. The gene product AdhA exhibits NADP-dependent alcohol dehydrogenase activity, acting on a broad variety of aromatic and aliphatic primary alcohols and aldehydes but not on secondary alcohols or ketones. It exhibits superior catalytic efficiency for aldehyde reduction compared to that for alcohol oxidation. The enzyme is a cytosolic protein present in photoautotrophically grown Synechocystis cells. The expression of AdhA is enhanced upon the exposure of cells to different environmental stresses, although it is not essential for survival even under such stress conditions. The induction of the expression of the adhA gene is dependent on the Hik34-Rre1 two-component system, as it is severely impaired in mutant strains lacking either the histidine kinase Hik34 or the response regulator Rre1. In vitro DNA-protein interaction analysis reveals that the response regulator Rre1 binds specifically to the promoter region of the adhA gene.
Collapse
|
34
|
Harbitz I, Kristensen T, Kran S, Davies W. Isolation and sequencing of porcine lipoprotein lipase cDNA and its use in multiallelic restriction fragment length polymorphism detection. Anim Genet 2009; 23:517-22. [PMID: 1362860 DOI: 10.1111/j.1365-2052.1992.tb00170.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porcine lipoprotein lipase (LPL) cDNA has been cloned and sequenced. The deduced amino acid sequence shows a high degree of identity to LPL from other species, and contains the Ser/His/Asp triade characteristic of serine proteases and esterases. A repetitive element is present in the 3'-untranslated region of the cDNA. A partial cDNA covering the coding region of LPL detects three restriction fragment length polymorphisms with HindIII. This represents the first marker assigned to porcine chromosome 14.
Collapse
Affiliation(s)
- I Harbitz
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo
| | | | | | | |
Collapse
|
35
|
Sadik NAH. Effects of diallyl sulfide and zinc on testicular steroidogenesis in cadmium-treated male rats. J Biochem Mol Toxicol 2009; 22:345-53. [PMID: 18972399 DOI: 10.1002/jbt.20247] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is one of the environmental pollutants that affect various tissues and organs including testis. Harmful effect of cadmium on testis is known to be germ cell degeneration and impairment of testicular steroidogenesis. In the present study, the effect of diallyl sulfide (DAS), a sulfur-containing volatile compound present in garlic, and zinc (Zn) was investigated on cadmium-induced testicular toxicity in rats. Male adult Wistar rats treated with cadmium (2.5 mg/kg body wt, five times a week for 4 weeks) showed decreased body weight, paired testicular weight, relative testicular weight, serum testosterone, luteinizing hormone, follicle-stimulating hormone, and testicular total antioxidant capacity (TAC) and protein levels. Testicular steroidogenic enzymes, such as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and marker enzymes, such as sorbitol dehydrogenase (SDH), lactate dehydrogenase (LDH), acid phosphatase (ACP), alkaline phosphatase (ALP), and glucose-6-phosphate dehydrogenase (G6PD), showed a significant decrease in activities whereas that of gamma-glutamyl transferase was significantly increased after cadmium exposure. The results have revealed that concurrent treatment with DAS or zinc restored key steroidogenic enzymes, SDH, LDH, and G6PD and increased testicular weight significantly. DAS restored the TAC level and increased testosterone level and relative testicular weight significantly. Zinc restored testicular protein level and body weight. It can be concluded that cadmium causes testicular toxicity and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins and that concurrent administration of DAS or zinc provides protection against cadmium-induced testicular toxicity.
Collapse
Affiliation(s)
- Nermin A H Sadik
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
36
|
Nishioka T, Yasutake Y, Nishiya Y, Tamura N, Tamura T. C-terminal tail derived from the neighboring subunit is critical for the activity ofThermoplasma acidophilumD-aldohexose dehydrogenase. Proteins 2009; 74:801-7. [DOI: 10.1002/prot.22300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Wu YH, Ko TP, Guo RT, Hu SM, Chuang LM, Wang AHJ. Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. Structure 2009; 16:1714-23. [PMID: 19000823 DOI: 10.1016/j.str.2008.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 09/05/2008] [Accepted: 09/14/2008] [Indexed: 11/18/2022]
Abstract
PTGR2 catalyzes an NADPH-dependent reduction of the conjugated alpha,beta-unsaturated double bond of 15-keto-PGE(2), a key step in terminal inactivation of prostaglandins and suppression of PPARgamma-mediated adipocyte differentiation. Selective inhibition of PTGR2 may contribute to the improvement of insulin sensitivity with fewer side effects. PTGR2 belongs to the medium-chain dehydrogenase/reductase superfamily. The crystal structures reported here reveal features of the NADPH binding-induced conformational change in a LID motif and a polyproline type II helix which are critical for the reaction. Mutation of Tyr64 and Tyr259 significantly reduces the rate of catalysis but increases the affinity to substrate, confirming the structural observations. Besides targeting cyclooxygenase, indomethacin also inhibits PTGR2 with a binding mode similar to that of 15-keto-PGE(2). The LID motif becomes highly disordered upon the binding of indomethacin, indicating plasticity of the active site. This study has implications for the rational design of inhibitors of PTGR2.
Collapse
Affiliation(s)
- Yu-Hauh Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Sulfolobus tokodaii ST0053 produces a novel thermostable, NAD-dependent medium-chain alcohol dehydrogenase. Appl Environ Microbiol 2009; 75:1758-63. [PMID: 19139244 DOI: 10.1128/aem.01392-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An alcohol dehydrogenase (ADH) gene, ST0053, from Sulfolobus tokodaii was expressed in Escherichia coli. The purified recombinant enzyme was an NAD-dependent medium-chain ADH with high thermostability and tolerance of a wide range of pHs. This is the first step in creating an experimental functionality library of 10 genes annotated as ADHs in the S. tokodaii genome.
Collapse
|
39
|
Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase. Appl Microbiol Biotechnol 2008; 81:485-95. [PMID: 18719905 DOI: 10.1007/s00253-008-1633-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/21/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Thermotoga maritima TM0298 is annotated as an alcohol dehydrogenase, yet it shows high identity and similarity to mesophilic mannitol dehydrogenases. To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was most active on fructose and mannitol, making it the first known hyperthermophilic mannitol dehydrogenase. T. maritima mannitol dehydrogenase (TmMtDH) is optimally active between 90 and 100 degrees C and retains 63% of its activity at 120 degrees C but shows no detectable activity at room temperature. Its kinetic inactivation follows a first-order mechanism, with half-lives of 57 min at 80 degrees C and 6 min at 95 degrees C. Although TmMtDH has a higher V (max) with NADPH than with NADH, its catalytic efficiency is 2.2 times higher with NADH than with NADPH and 33 times higher with NAD(+) than with NADP(+). This cofactor specificity can be explained by the high density of negatively charged residues (Glu193, Asp195, and Glu196) downstream of the NAD(P) interaction site, the glycine motif. We demonstrate that TmMtDH contains a single catalytic zinc per subunit. Finally, we provide the first proof of concept that mannitol can be produced directly from glucose in a two-step enzymatic process, using a Thermotoga neapolitana xylose isomerase mutant and TmMtDH at 60 degrees C.
Collapse
|
40
|
Persson B, Zigler JS, Jörnvall H. A Super-Family of Medium-Chain Dehydrogenases/Reductases (MDR). ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1994.00t15.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Thorn A, Egerer-Sieber C, Jäger CM, Herl V, Müller-Uri F, Kreis W, Muller YA. The Crystal Structure of Progesterone 5β-Reductase from Digitalis lanata Defines a Novel Class of Short Chain Dehydrogenases/Reductases. J Biol Chem 2008; 283:17260-9. [DOI: 10.1074/jbc.m706185200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Noge K, Kato M, Mori N, Kataoka M, Tanaka C, Yamasue Y, Nishida R, Kuwahara Y. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae). FEBS J 2008; 275:2807-17. [DOI: 10.1111/j.1742-4658.2008.06421.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Cao Y, Liao L, Xu XW, Oren A, Wang C, Zhu XF, Wu M. Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles 2008; 12:471-6. [PMID: 18189118 DOI: 10.1007/s00792-007-0133-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 12/02/2007] [Indexed: 11/28/2022]
Abstract
Alcohol dehydrogenase (ADH; EC: 1.1.1.1) is a key enzyme in production and utilization of ethanol. In this study, the gene encoding for ADH of the haloalkaliphilic archaeon Natronomonas pharaonis (NpADH), which has a 1,068-bp open reading frame that encodes a protein of 355 amino acids, was cloned into the pET28b vector and was expressed in Escherichia coli. Then, NpADH was purified by Ni-NTA affinity chromatography. The recombinant enzyme showed a molecular mass of 41.3 kDa by SDS-PAGE. The enzyme was haloalkaliphilic and thermophilic, being most active at 5 M NaCl or 4 M KCl and 70 degrees C, respectively. The optimal pH was 9.0. Zn2+ significantly inhibited activity. The Km value for acetaldehyde was higher than that for ethanol. It was concluded that the physiological role of this enzyme is likely the catalysis of the oxidation of ethanol to acetaldehyde.
Collapse
Affiliation(s)
- Yi Cao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Janecki DJ, Bemis KG, Tegeler TJ, Sanghani PC, Zhai L, Hurley TD, Bosron WF, Wang M. A multiple reaction monitoring method for absolute quantification of the human liver alcohol dehydrogenase ADH1C1 isoenzyme. Anal Biochem 2007; 369:18-26. [PMID: 17692277 DOI: 10.1016/j.ab.2007.06.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/14/2007] [Accepted: 06/29/2007] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in protein quantification using mass spectrometry during recent years, absolute protein quantification in complex biological systems remains a challenging task in proteomics. The use of stable isotope-labeled standard peptide is the most commonly used strategy for absolute quantification, but it might not be suitable in all instances. Here we report an alternative strategy that employs a stable isotope-labeled intact protein as an internal standard to absolutely quantify the alcohol dehydrogenase (ADH) expression level in a human liver sample. In combination with a new targeted proteomics approach employing the method of multiple reaction monitoring (MRM), we precisely and quantitatively measured the absolute protein expression level of an ADH isoenzyme, ADH1C1, in human liver. Isotope-labeled protein standards are predicted to be particularly useful for measurement of highly homologous isoenzymes such as ADHs where multiple signature peptides can be examined by MRM in a single experiment.
Collapse
|
45
|
Arndt A, Eikmanns BJ. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 2007; 189:7408-16. [PMID: 17693518 PMCID: PMC2168461 DOI: 10.1128/jb.00791-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/04/2007] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum has recently been shown to grow on ethanol as a carbon and energy source and to possess high alcohol dehydrogenase (ADH) activity when growing on this substrate and low ADH activity when growing on ethanol plus glucose or glucose alone. Here we identify the C. glutamicum ADH gene (adhA), analyze its transcriptional organization, and investigate the relevance of the transcriptional regulators of acetate metabolism RamA and RamB for adhA expression. Sequence analysis of adhA predicts a polypeptide of 345 amino acids showing up to 57% identity with zinc-dependent ADH enzymes of group I. Inactivation of the chromosomal adhA gene led to the inability to grow on ethanol and to the absence of ADH activity, indicating that only a single ethanol-oxidizing ADH enzyme is present in C. glutamicum. Transcriptional analysis revealed that the C. glutamicum adhA gene is monocistronic and that its expression is repressed in the presence of glucose and of acetate in the growth medium, i.e., that adhA expression is subject to catabolite repression. Further analyses revealed that RamA and RamB directly bind to the adhA promoter region, that RamA is essential for the expression of adhA, and that RamB exerts a negative control on adhA expression in the presence of glucose or acetate in the growth medium. However, since the glucose- and acetate-dependent down-regulation of adhA expression was only partially released in a RamB-deficient mutant, there might be an additional regulator involved in the catabolite repression of adhA.
Collapse
Affiliation(s)
- Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
46
|
Peretz M, Bogin O, Tel-Or S, Cohen A, Li G, Chen JS, Burstein Y. Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenases from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 2007; 3:259-70. [PMID: 16887600 DOI: 10.1006/anae.1997.0083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1996] [Accepted: 03/27/1997] [Indexed: 11/22/2022]
Abstract
Proteins play a pivotal role in thermophily. Comparing the molecular properties of homologous proteins from thermophilic and mesophilic bacteria is important for understanding the mechanisms of microbial adaptation to extreme environments. The thermophile Thermoanaerobacter (Thermoanaerobium) brockii and the mesophile Clostridium beijerinckii contain an NADP(H)-linked, zinc-containing secondary alcohol dehydrogenase (TBADH and CBADH) showing a similarly broad substrate range. The structural genes encoding the TBADH and the CBADH were cloned, sequenced, and highly expressed in Escherichia coli. The coding sequences of the TB adh and the CB adh genes are, respectively, 1056 and 1053 nucleotides long. The TB adh gene encoded an amino acid sequence identical to that of the purified TBADH. Alignment of the deduced amino acid sequences of the TB and CB adh genes showed a 76% identity and a 86% similarity, and the two genes had a similar preference for codons with A or T in the third position. Multiple sequence alignment of ADHs from different sources revealed that two (Cys-46 and His-67) of the three ligands for the catalytic Zn atom of the horse-liver ADH are preserved in TBADH and CBADH. Both the TBADH and CBADH were homotetramers. The substrate specificities and thermostabilities of the TBADH and CBADH expressed inE. coli were identical to those of the enzymes isolated from T. brockii and C. beijerinckii, respectively. A comparison of the amino acid composition of the two ADHs suggests that the presence of eight additional proline residues in TBADH than in CBADH and the exchange of hydrophilic and large hydrophobic residues in CBADH for the small hydrophobic amino acids Pro, Ala, and Val in TBADH might contribute to the higher thermostability of the T. brockii enzyme.
Collapse
Affiliation(s)
- M Peretz
- Department of Organic Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barrière Y. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. PLANTA 2007; 226:235-50. [PMID: 17226026 DOI: 10.1007/s00425-006-0468-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 12/15/2006] [Indexed: 05/13/2023]
Abstract
The expression of phenylpropanoid and related genes was investigated in bm1, bm2, bm3, and bm4 near-isogenic maize plants at the 4-5 leaf stage using a gene-specific cell wall macro-array. The bm3 mutant, which is mutated in the caffeic acid O-methyltransferase (COMT) gene, exhibited the lowest number of differentially expressed genes. Although no other phenylpropanoid gene had an altered expression, two distinct OMT and two cytochrome P450 genes were overexpressed suggesting the activation of alternative hydroxylation/methylation pathways. The bm1 mutant had the highest number of differentially expressed genes, all of which were under-expressed. Bm1 mutant plants were affected not only in cinnamyl alcohol dehydrogenase (bm1 related CAD) gene expression as expected, but also in the expression of other CAD/SAD gene family members and several regulatory genes including MYB, ARGONAUTE and HDZip. As originally believed, the bm1 mutation could be localized at the CAD locus, but more probably in a gene that regulates the expression of the CAD gene family. The profile of under-expressed genes in the bm2 mutant is nearly similar to that of bm1. These genes fell under several functional categories including phenylpropanoid metabolism, transport and trafficking, transcription factors and regulatory genes. As the bm2 mutant exhibited a lower guaiacyl (G) unit lignin content, the bm2 mutation could affect a regulatory gene involved, perhaps indirectly, in the regulation, conjugation or transport of coniferaldehyde, or the establishment of G-rich maize tissues. The pattern of gene expression in bm4 plants, characterized by the over-expression of phenylpropanoid and methylation genes, suggests that the bm4 mutation likely also affects a gene involved in the regulation of lignification.
Collapse
Affiliation(s)
- Sabine Guillaumie
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, 86600, Lusignan, France
| | | | | | | | | | | |
Collapse
|
48
|
Kim JY, Tillison KS, Zhou S, Lee JH, Smas CM. Differentiation-dependent expression of Adhfe1 in adipogenesis. Arch Biochem Biophys 2007; 464:100-11. [PMID: 17559793 PMCID: PMC2426734 DOI: 10.1016/j.abb.2007.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
We have determined that adipocytes are a major site of expression of the transcript for the novel alcohol dehydrogenase (ADH), Adhfe1. Adhfe1 is unique in that the sequence of its encoded protein places it among the iron-activated ADHs. Western blot analysis reveals Adhfe1 encodes a 50 kDa protein and immunocytochemical staining indicates mitochondrial localization. Adhfe1 transcript exhibits differentiation-dependent expression during in vitro brown and white adipogenesis. Unlike many adipocyte-enriched genes, however, Adhfe1 transcript expression in adipocytes is refractory to TNFalpha-mediated downregulation. However, use of pharmacological inhibitors reveals PI 3-kinase-mediated signals maintain the basal level of Adhfe1 transcript in 3T3-L1 adipocytes. Tissue profiling studies show Adhfe1 transcript is restricted to white and brown adipose tissues, liver, and kidney. In comparison to C57BL/6 mice, Adhfe1 transcript is downregulated 40% in white adipose tissue of ob/ob obese mice. Further characterization of Adhfe1 should yield new insights into adipocyte function and energy metabolism.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
49
|
Yasutake Y, Nishiya Y, Tamura N, Tamura T. Structural Insights into Unique Substrate Selectivity of Thermoplasma acidophilum d-Aldohexose Dehydrogenase. J Mol Biol 2007; 367:1034-46. [PMID: 17300803 DOI: 10.1016/j.jmb.2007.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/28/2022]
Abstract
The D-aldohexose dehydrogenase from the thermoacidophilic archaea Thermoplasma acidophilum (AldT) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and catalyzes the oxidation of several monosaccharides with a preference for NAD(+) rather than NADP(+) as a cofactor. It has been found that AldT is a unique enzyme that exhibits the highest dehydrogenase activity against D-mannose. Here, we describe the crystal structures of AldT in ligand-free form, in complex with NADH, and in complex with the substrate D-mannose, at 2.1 A, 1.65 A, and 1.6 A resolution, respectively. The AldT subunit forms a typical SDR fold with an unexpectedly long C-terminal tail and assembles into an intertwined tetramer. The D-mannose complex structure reveals that Glu84 interacts with the axial C2 hydroxyl group of the bound D-mannose. Structural comparison with Bacillus megaterium glucose dehydrogenase (BmGlcDH) suggests that the conformation of the glutamate side-chain is crucial for discrimination between D-mannose and its C2 epimer D-glucose, and the conformation of the glutamate side-chain depends on the spatial arrangement of nearby hydrophobic residues that do not directly interact with the substrate. Elucidation of the D-mannose recognition mechanism of AldT further provides structural insights into the unique substrate selectivity of AldT. Finally, we show that the extended C-terminal tail completely shuts the substrate-binding pocket of the neighboring subunit both in the presence and absence of substrate. The elaborate inter-subunit interactions between the C-terminal tail and the entrance of the substrate-binding pocket imply that the tail may play a pivotal role in the enzyme activity.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | |
Collapse
|
50
|
|