1
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
2
|
Panwar A, Das P, Tan LP. 3D Hepatic Organoid-Based Advancements in LIVER Tissue Engineering. Bioengineering (Basel) 2021; 8:185. [PMID: 34821751 PMCID: PMC8615121 DOI: 10.3390/bioengineering8110185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Liver-associated diseases and tissue engineering approaches based on in vitro culture of functional Primary human hepatocytes (PHH) had been restricted by the rapid de-differentiation in 2D culture conditions which restricted their usability. It was proven that cells growing in 3D format can better mimic the in vivo microenvironment, and thus help in maintaining metabolic activity, phenotypic properties, and longevity of the in vitro cultures. Again, the culture method and type of cell population are also recognized as important parameters for functional maintenance of primary hepatocytes. Hepatic organoids formed by self-assembly of hepatic cells are microtissues, and were able to show long-term in vitro maintenance of hepato-specific characteristics. Thus, hepatic organoids were recognized as an effective tool for screening potential cures and modeling liver diseases effectively. The current review summarizes the importance of 3D hepatic organoid culture over other conventional 2D and 3D culture models and its applicability in Liver tissue engineering.
Collapse
Affiliation(s)
- Amit Panwar
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Faculty of Biotechnology, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road Barabanki, Uttar Pradesh 225003, India
| | - Prativa Das
- The Henry Samueli School of Engineering, University of California, Irvine, CA 92617, USA;
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for 3D Printing (SC3DP), Singapore 639798, Singapore
| |
Collapse
|
3
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
4
|
Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends Parasitol 2018. [PMID: 29526403 DOI: 10.1016/j.pt.2018.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a common pathology in various liver diseases. Hepatic stellate cells (HSCs) are the main cell type responsible for collagen deposition and fibrosis formation in the liver. Schistosomiasis is characterised by granulomatous fibrosis around parasite eggs trapped within the liver and other host tissues. This response is facilitated by the recruitment of immune cells and the activation of HSCs. The interactions between HSCs and schistosome eggs are complex and diverse, and a better understanding of these interactions could lead to improved resolution of fibrotic liver disease, including that associated with schistosomiasis. Here, we discuss recent advances in HSC biology and the role of HSCs in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, Herston, QLD, 4006, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
6
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Grumet L, Taschler U, Lass A. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores. Nutrients 2016; 9:nu9010013. [PMID: 28035980 PMCID: PMC5295057 DOI: 10.3390/nu9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body’s total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores.
Collapse
Affiliation(s)
- Lukas Grumet
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| |
Collapse
|
8
|
Testerink N, Ajat M, Houweling M, Brouwers JF, Pully VV, van Manen HJ, Otto C, Helms JB, Vaandrager AB. Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS One 2012; 7:e34945. [PMID: 22536341 PMCID: PMC3335019 DOI: 10.1371/journal.pone.0034945] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 01/05/2023] Open
Abstract
Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation.
Collapse
Affiliation(s)
- Nicole Testerink
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mokrish Ajat
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martin Houweling
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos F. Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Vishnu V. Pully
- Medical Cell BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Henk-Jan van Manen
- Medical Cell BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Cees Otto
- Medical Cell BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente, Enschede, The Netherlands
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie B. Vaandrager
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Affiliation(s)
- Theo J C van Berkel
- Division of Biopharmaceutics, LACDR, Leiden University, Gorlaeus Laboratory, P.O. Box 9502, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
10
|
Lee JS, Kim JH. [The role of activated hepatic stellate cells in liver fibrosis, portal hypertension and cancer angiogenesis]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 13:309-19. [PMID: 17898548 DOI: 10.3350/kjhep.2007.13.3.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although hepatic stellate cells, which are liver specific pericytes, have been recognized within the vasculature of the sinusoid for more than one hundred years, the biology and function of these cells is unclear. Recent studies have highlighted the key role of stellate cells in a number of fundamental processes that include wound healing/fibrosis, vasoregulation, and vascular remodeling/angiogenesis. In the liver, these processes are particularly important in the development of cirrhosis, portal hypertension and cancer. This article highlights the recent advances in our understanding of the biology of hepatic stellate cells and discusses some of the recently-ascribed functions that are relevant to liver fibrosis, portal hypertension and cancer angiogenesis.
Collapse
Affiliation(s)
- June Sung Lee
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea.
| | | |
Collapse
|
11
|
Meissburger B, Wolfrum C. The role of retinoids and their receptors in metabolic disorders. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
13
|
Sun Y, Fan J, Shen H, Li P, Cattini P, Gong Y. Cloning and promoter activity of rat Smad1 5'-flanking region in rat hepatic stellate cells. Mol Cell Biochem 2007; 304:227-34. [PMID: 17530186 DOI: 10.1007/s11010-007-9504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Smad1 is an important signaling molecule for members of transforming growth factor-beta (TGF-beta) superfamily. Increased expression of Smad1 in activated hepatic stellate cells (HSCs) indicates a role of Smad1 in liver fibrosis. Therefore, understanding of Smad1 gene expression could be important to control the activation of HSCs. Current study reports the cloning and characterizing rat Smad1 5'-flanking region in liver cells. Rat Smad1 5'-flanking region was cloned by PCR method. Promoter deletional analysis and electrophoretic mobility shift assay (EMSA) were examined in hepatocyte and HSCs cell line (CFSC-8B cells), respectively. Results indicated that rat Smad1 used GC-box as its promoter and there was a transcriptional regulatory element located at the region of -163 to -56bp. EMSA demonstrated two bands on Smad1 promoter region. Smad1 promoter activity was higher in CFSC-8B cells cultured on uncoated plastic dish than that of CFSC-8B cells cultured on Matrigel-coated plastic dish. In conclusion, rat Smad1 promoter was cloned and characterized in hepatocyte and HSC cell line (CFSC-8B cells) at different culture conditions.
Collapse
Affiliation(s)
- Yu Sun
- Faculty of Pharmacy, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada, R3T 2N2
| | | | | | | | | | | |
Collapse
|
14
|
Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 2007; 45:817-25. [PMID: 17326208 DOI: 10.1002/hep.21564] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- June Sung Lee
- Department of Internal Medicine, Inje University Ilsanpaik Hospital, Gyeonggi-do, South Korea
| | | | | | | |
Collapse
|
15
|
McClintick JN, Crabb DW, Tian H, Pinaire J, Smith JR, Jerome RE, Edenberg HJ. Global effects of vitamin A deficiency on gene expression in rat liver: evidence for hypoandrogenism. J Nutr Biochem 2006; 17:345-55. [PMID: 16214324 DOI: 10.1016/j.jnutbio.2005.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/29/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Vitamin A (retinol) metabolites are ligands for transcription factors that regulate many genes. The liver is the main storage depot for retinol and plays a role in vitamin A homeostasis. To better understand the effects of vitamin A deficiency on liver gene expression, we produced retinol deficiency in male rats by feeding a diet low in retinol for 53 days after weaning and examined the effects on gene expression in liver using Affymetrix oligonucleotide microarrays. We detected expression of 41% of the 8799 probe sets represented on the RGU-34A GeneChips. Vitamin A deficiency resulted in major changes in liver gene expression: 805 genes (22% of all genes detected) differed at P<or=.05 (false discovery rate <0.143). Genes involved in fatty acid metabolism, peroxisomal function, glycolysis, glutamate metabolism and the urea cycle were altered. The expression of many sexually dimorphic genes was altered toward a feminized or senescent pattern of gene expression in the liver. Retinol deficiency also produces a shift toward increased protein and fat catabolism and decreased fatty acid synthesis.
Collapse
Affiliation(s)
- Jeanette N McClintick
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-5251, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
There has been great progress made in our understanding of the cellular mechanisms of hepatic fibrosis. The recognition that the hepatic stellate cell, (formerly know as lipocyte, Ito, or fat-storing cell), played a central role in the fibrotic response was key to our understanding. Stellate cells undergo a process known as activation, in response to any insult. Activation is a broad phenotypic response, characterized by distinct functional changes in proliferation, fibrogenesis, contractility, cytokine secretion, and matrix degradation. Insights gained into the molecular regulations of stellate cell activation may lead to new antifibrotic therapies, which may reduce morbidity and mortality in patients with chronic liver injury.
Collapse
Affiliation(s)
- E Albanis
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
17
|
Zhai Y, Sperkova Z, Napoli JL. Cellular expression of retinal dehydrogenase types 1 and 2: effects of vitamin A status on testis mRNA. J Cell Physiol 2001; 186:220-32. [PMID: 11169459 DOI: 10.1002/1097-4652(200102)186:2<220::aid-jcp1018>3.0.co;2-n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.
Collapse
Affiliation(s)
- Y Zhai
- Department of Nutritional Sciences, University of California, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
18
|
Lecithin:retinol acyltransferase from mouse and rat liver: cDNA cloning and liver-specific regulation by dietary vitamin A and retinoic acid. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32364-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Napoli JL. Retinoic acid: its biosynthesis and metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:139-88. [PMID: 10506831 DOI: 10.1016/s0079-6603(08)60722-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis.
Collapse
Affiliation(s)
- J L Napoli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| |
Collapse
|
20
|
Pallet V, Azaïs-Braesco V, Enderlin V, Grolier P, Noël-Suberville C, Garcin H, Higueret P. Aging decreases retinoic acid and triiodothyronine nuclear expression in rat liver: exogenous retinol and retinoic acid differentially modulate this decreased expression. Mech Ageing Dev 1997; 99:123-36. [PMID: 9483487 DOI: 10.1016/s0047-6374(97)00098-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expression of nuclear receptors of retinoic acid (RAR) and triiodothyronine (TR) was analyzed in the liver of rats aged 2.5 (young), 6 (adult) and 24 (aged) months. In aged rats, decreased binding properties, binding capacity (Cmax) and affinity (Ka), of nuclear receptors were observed. This resulted, at least in part, from decreased transcription of receptor genes in that the amount of their mRNA also decreased. Moreover, the activity of malic enzyme (ME) and tissue transglutaminase (tTG), whose genes are TR and RAR responsive, respectively, was reduced in aged rats. These results are in agreement with the decreased binding capacity of these receptors. An inducer-related increase of RAR and TR expression was observed 24 h after a single dose of retinoic acid administration (5 mg/kg), while retinol administration (retinyl palmitate, 13 mg/kg) was without incidence on nuclear receptor expression in aged rats.
Collapse
Affiliation(s)
- V Pallet
- Laboratoire de Nutrition, ISTAB, Université de Bordeaux I, Talence, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhai Y, Higgins D, Napoli JL. Coexpression of the mRNAs encoding retinol dehydrogenase isozymes and cellular retinol-binding protein. J Cell Physiol 1997; 173:36-43. [PMID: 9326447 DOI: 10.1002/(sici)1097-4652(199710)173:1<36::aid-jcp5>3.0.co;2-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We used in situ hybridization of adult rat tissue to show that mRNAs encoding cellular retinol-binding protein (CRBP) and retinol dehydrogenase (RoDH) isozymes I/III and II were expressed in hepatocytes uniformly throughout the liver lobule, but were absent from Kupffer cells and endothelial cells of blood vessels and bile ducts. In kidney, CRBP, RoDH(I), and RoDH(II) were found in the proximal tubules of the cortex. Distal tubules, Henle's loops, collecting ducts, and glomeruli showed little, if any, expression. In testis, CRBP, RoDH(I), and RoDH(II) were found in Sertoli cells. Expression, albeit weaker, also occurred in spermatogonia and primary spermatocytes. Peritubular cells and other germ cells had even weaker expression. Only CRBP and RoDH(II) mRNA were detected in interstitial cells. In lung CRBP, RoDH(I) and RoDH(II) were expressed most intensely in the epithelium of the bronchi and bronchioli, but also occurred in the simple columnar epithelial cells of the alveolar duct and in alveolar type II cells. These data are consistent with the hypothesis that holo-CRBP serves as substrate for retinoic acid biosynthesis because they show that the substrate and the enzyme occur in the same cellular loci in vivo. These data also indicate that multiple cellular sites of retinoic acid biosynthesis occur throughout tissues. Also, the general concordance between mRNA localization and CRBP expression patterns, revealed by previous immunocytochemistry studies, supports and extends the conclusion that CRBP mRNA expression correlates with CRBP expression, based earlier on comparing RNA assays with radioimmunoassays.
Collapse
Affiliation(s)
- Y Zhai
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | | | |
Collapse
|
22
|
Abstract
Tremendous insights into the understanding of hepatic fibrosis have taken place over the past ten years. Foremost among these is the recognition that hepatic stellate cells (formerly known as lipocytes, Ito cells, or fat-storing cells) play a central role based on their ability to undergo activation following liver injury of any cause. Stellate cell activation is a broad phenotypic response, characterized by distinct functional changes in proliferation, contractility, fibrogenesis, cytokine secretion, and matrix degradation. Insights gained into the molecular regulation of hepatic stellate cell activation will lead to new, targeted approaches to hepatic fibrosis in the future, and could lead to reduced morbidity and mortality in patients with chronic liver injury.
Collapse
|
23
|
Abstract
The pathogenesis of liver fibrosis in genetic haemochromatosis and other iron overload states remains enigmatic. Recent advances in the cellular and molecular pathogenesis of liver fibrosis have determined a central role for hepatic stellate cells. These become activated to a myofibroblastic phenotype following most forms of liver injury and are the major cellular source of collagens and other matrix proteins laid down in fibrotic liver. Similar changes have now been reported in the liver in genetic haemochromatosis, with activation of stellate cells becoming more prominent with increasing hepatic iron concentration. In contrast to other liver diseases, this apparently occurs in the absence of significant necroinflammatory change. Unravelling the mechanism of liver fibrogenesis in iron overload states may, therefore, provide important general insights into the pathogenesis of liver fibrosis. The present article reviews current knowledge of this field with emphasis on the role of lipid peroxidation, sideronecrosis of hepatocytes and spillover of iron to Kupffer cells. An attempt is made to draw these observations together with previous studies of the mechanisms of stellate cell activation in other models and diseases. A unifying hypothesis emerges that helps to define some of the next research questions in the pathogenic mechanisms of liver fibrosis in iron overload.
Collapse
Affiliation(s)
- M J Arthur
- University Medicine, University of Southampton, United Kingdom
| |
Collapse
|
24
|
Hanberg A, Kling L, Håkansson H. Effect of 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD) on the hepatic stellate cell population in the rat. CHEMOSPHERE 1996; 32:1225-1233. [PMID: 8920595 DOI: 10.1016/0045-6535(95)00365-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
TCDD inhibits the normal accumulation of vitamin A in the hepatic stellate cells, which constitute the main storage site for vitamin A. In this study we investigated if the reduced capacity of stellate cells to store vitamin A could be due to cell transformation or cytotoxicity. Livers from rats exposed to TCDD were immunohistochemically stained for markers of normal and transformed stellate cells. The results show that the TCDD-induced inhibition of hepatic vitamin A accumulation is neither due to a reduction in the number of stellate cells nor to transformation of the cells.
Collapse
Affiliation(s)
- A Hanberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Abstract
Ito cells, perisinusoidal mesenchymal elements with possible pericytic functions within the liver, recently have been shown to play multiple physiological and pathophysiological roles. In particular, several in vivo and in vitro studies have clearly indicated that Ito cells play a relevant role in the progression of liver fibrogenesis. More recently, attention has been focussed on the mechanisms leading to Ito cell activation, proliferation and synthesis of extracellular matrix components. Among other soluble factors potentially involved in these processes, transforming growth factor-beta 1 and platelet-derived growth factor have been shown to act in a paracrine, and possibly autocrine, fashion on Ito cells, thus perpetuating their activated state. Finally, other studies have shown that Ito cells could play an active role in chronic liver tissue inflammation by promoting chemotaxis of infiltrating inflammatory cells.
Collapse
Affiliation(s)
- M Pinzani
- Istituto di Medicina Interna-Centro Interuniversitario di Fisiopatologia Epatica, Università di Firenze, Firenze, Italy
| |
Collapse
|
26
|
Bosma A, Seifert WF, van Thiel-de Ruiter GC, van Leeuwen RE, Blauw B, Roholl P, Knook DL, Brouwer A. Alcohol in combination with malnutrition causes increased liver fibrosis in rats. J Hepatol 1994; 21:394-402. [PMID: 7836710 DOI: 10.1016/s0168-8278(05)80319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rats were malnourished for 12 months with a highly inadequate fat-rich, calorie-sufficient but otherwise poly-deficient liquid diet composed of mashed potatoes with mayonnaise, comparable with the nutritional intake of many chronic alcoholics. When alcohol was incorporated into this diet, administered as whisky in drinking water available ad libitum, the livers of all eight rats showed increased fibrosis and cirrhosis as compared to the livers of the eight non-alcohol-treated, isocalorically fed, paired control rats. Alcohol-treated rats developed fibrosis and cirrhosis on a dietary fat content of 38% of total caloric intake and low blood alcohol levels, ranging from 50 to 126 mg/dl, due to gradual intake over the day and to low absolute intake (mean 11.9 +/- 0.6 g/kg per day). None of the rats died spontaneously. Malnutrition is likely to be an important factor in the development of the fibrosis of alcoholic liver disease, and this rat model may be used to study aspects of the pathogenesis.
Collapse
Affiliation(s)
- A Bosma
- TNO Institute of Ageing and Vascular Research (IVVO-TNO), Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gad MZ. The distribution of non-specific carboxylesterases and glutathione S-transferases in different rat liver cells. Effects of vitamin A deficiency. Biochem Pharmacol 1994; 48:139-44. [PMID: 8043015 DOI: 10.1016/0006-2952(94)90233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Non-specific carboxylesterases (carboxylesterases) and glutathione S-transferases (GSTs) are two groups of drug metabolizing enzymes responsible for hydrolysis and glutathione conjugation of xenobiotics. This study was conducted to determine the following: (1) the distribution of carboxylesterase and GST activities in different rat liver cells, (2) the effects of vitamin A deficiency (A-) on the absolute activities and on the distribution of carboxylesterases and GSTs in rat liver. Rat livers were fractionated into parenchymal and non-parenchymal cells by means of collagenase perfusion and differential centrifugation. Non-parenchymal cells were further fractionated by means of Percoll density gradient centrifugation into a layer of Kupffer cells and another layer containing stellate and endothelial cells. Carboxylesterase and GST activities were determined in these fractions. show that: (1) both carboxylesterases and GSTs were mainly localized in the parenchymal fraction, (2) there was no significant difference between male and female rats with regard total activity or distribution of carboxylesterases and GSTs in rat liver cells, (3) A- caused a highly significant reduction in carboxylesterase and GST activities in total liver homogenates and parenchymal cells. This reduction was not ameliorated by administration of retinoic acid 18 hr before sacrifice of animals. These results open up a new era of investigations about the potential role of vitamin A in the regulation of detoxification enzymes.
Collapse
Affiliation(s)
- M Z Gad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
28
|
Seifert WF, Bosma A, Brouwer A, Hendriks HF, Roholl PJ, van Leeuwen RE, van Thiel-de Ruiter GC, Seifert-Bock I, Knook DL. Vitamin A deficiency potentiates carbon tetrachloride-induced liver fibrosis in rats. Hepatology 1994. [PMID: 8276355 DOI: 10.1002/hep.1840190129] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Earlier studies have shown that retinoid administration suppresses the generation of hepatic fibrosis and stimulates its regression in normal (i.e., vitamin A-sufficient) carbon tetrachloride-treated rats. This study focuses on the possible role of a marginal or deficient vitamin A status on carbon tetrachloride-induced fibrosis. This experimental study in rats shows that vitamin A status, reflected by hepatic retinoid content (retinol and retinyl esters), modulates the development of hepatic fibrosis induced by carbon tetrachloride. In rats with low hepatic retinoid levels (12 +/- 0.9 micrograms/gm liver), carbon tetrachloride-induced liver fibrosis was more pronounced than in rats with sufficient hepatic retinoid levels (1,065 +/- 327 micrograms/gm liver). Enhanced liver fibrogenesis was confirmed both morphologically and by a higher hydroxyproline content of the liver. It was associated with a reduced liver weight and the development of parenchymal regeneration nodules. Furthermore, carbon tetrachloride treatment itself reduced the hepatic retinoid content in rats independently of the liver vitamin A status before treatment and increased serum retinol levels in vitamin A-sufficient rats. The results show that the vitamin A status of the liver plays an important role in hepatic fibrogenesis. Low hepatic vitamin A levels, which can be the result not only of low dietary intake but also of interference with vitamin A metabolism by agents such as ethanol and carbon tetrachloride, may be a risk factor for the development of liver fibrosis. We suggest that retinoids modulate collagen synthesis and deposition irrespective of the degree of hepatocellular necrosis induced by carbon tetrachloride.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W F Seifert
- TNO Institute of Ageing and Vascular Research, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lei K, Hendriks H, Brouwer A, Bock I, van Thiel-de-Ruiter G, van den Berg G, Knook D. Copper deficiency increases hepatic parenchymal cell's maximal binding capacity and impairs Kupffer cell's internalization of apolipoprotein E-free high density lipoprotein in rats. J Nutr Biochem 1993. [DOI: 10.1016/0955-2863(93)90101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Seifert WF, Bosma A, Hendriks HF, Blaner WS, van Leeuwen RE, van Thiel-de Ruiter GC, Wilson JH, Knook DL, Brouwer A. Chronic administration of ethanol with high vitamin A supplementation in a liquid diet to rats does not cause liver fibrosis. 2. Biochemical observations. J Hepatol 1991; 13:249-55. [PMID: 1744428 DOI: 10.1016/0168-8278(91)90821-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The inability of the 'ethanol/high vitamin A Lieber-DeCarli diet' to induce liver fibrosis in two different rat strains was further evaluated by determining changes in parameters of liver cell damage and of retinoid and lipid metabolism. In the ethanol/vitamin A-treated group, slight but constant hepatic cell damage, as indicated by elevated alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities in blood, was already observed at 6 months and maintained until the time of death at 16 months. Serum gamma-glutamyl transaminase activities were not raised. Moderate parenchymal liver cell damage was not accompanied by fibrosis. Hypertriglyceridemia or hypercholesterolemia were observed at 6-16 months of chronic alcohol administration. This response was strain dependent. In ethanol-treated rats of both strains, total liver retinoids and serum retinol concentrations were not altered. Therefore, the hypothesis that interaction between alcohol and retinoids is a major factor in the pathogenesis of alcoholic liver disease, needs to be reconsidered.
Collapse
Affiliation(s)
- W F Seifert
- TNO Institute for Experimental Gerontology, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Physiologic concentrations of retinol (1 X 10(-6) M) caused capillary and aortic endothelial cells (EC) to undergo a morphologic change, characterized by a rounder cell body, increased refractility at cell edges, and longer cytoplasmic processes distributed in a bipolar fashion. Computer image analysis of retinoid-treated EC revealed that both retinoic acid and retinol affected cellular area. Twenty-four hours following retinoic acid treatment, EC occupied a greater area than control (P less than 0.03) or retinol-treated EC (P less than 0.02). By Day 7, however, retinoic acid-treated EC occupied equivalent cellular areas as compared to control cells (P = 0.8). In contrast, by Day 7, retinol-treated EC occupied a smaller cellular area than control (P less than 0.002) or retinoic acid-treated EC (P less than 0.001). Proliferation studies revealed that within the first 72 hr of retinol treatment, basal EC growth was inhibited by 33% and the cells exhibited a lowered responsiveness to basic fibroblast growth factor (bFGF). In contrast, EC treated with retinoic acid and pericytes treated with each of the retinoids were not inhibited. The inhibitory effect of the 72 hr retinol treatment was reversible. Following 3 days exposure to retinol, EC given fresh media without retinoid underwent a population doubling in a subsequent 3-day period. However, in the continued presence of retinol, EC were 100% growth-inhibited. After a 3-day pretreatment with retinol, with or without continued retinol treatment, EC were refractile to the mitogenic action of bFGF in a subsequent 3-day period. These results demonstrate that retinol inhibits the basal and growth factor-stimulated growth of EC and causes a significant shape alteration of EC, supporting our hypothesis that vitamin A may be one of the signals that modify the growth and phenotype of EC.
Collapse
Affiliation(s)
- S J Braunhut
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
32
|
Davis BH, Kramer RT, Davidson NO. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production. J Clin Invest 1990; 86:2062-70. [PMID: 2254460 PMCID: PMC329845 DOI: 10.1172/jci114943] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- B H Davis
- Department of Medicine, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
33
|
Mercier M, Pascal G, Azais-Braesco V. Retinyl ester hydrolase and vitamin A status in rats treated with 3,3',4, 4'-tetrachlorobiphenyl. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1047:70-6. [PMID: 2123403 DOI: 10.1016/0005-2760(90)90262-v] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that rats exposed to 3,3',4,4'-tetrachlorobiphenyl (TCB) exhibit decreased liver vitamin A stores. The activity of retinyl ester hydrolase (REH), the enzyme responsible for the hydrolysis of the storage form of vitamin A (retinyl esters) into free retinol, may therefore be altered by TCB. This study was carried out to investigate the effect of TCB on vitamin A distribution and on REH activity in the rat. REH activity was measured in liver homogenates and microsomes (650 micrograms protein), in Tris-maleate buffer 0.1 M at pH 7.2 in the presence of 150 mM CHAPS and 1.5 mM retinyl palmitate dispersed in Triton X-100 0.2%. Using these conditions, the kinetic parameters of the enzyme were determined and the inter-animal variation coefficient (10%) allowed statistical comparisons between experimental groups. Male Wistar rats of sufficient or deficient vitamin A status were treated IP with 340 mumol of TCB/kg. Vitamin A levels were significantly depressed in liver. REH activity was decreased about 20%, and serum retinol was decreased about 50%, independent of the initial vitamin A status of the animals. Vitamin A levels in lungs and testes were also decreased, suggesting that TCB could interfere with vitamin A delivery to target organs. The negative effect of TCB on REH activity in vivo was also observed when TCB was added in vitro to the incubation medium at concentrations near to those expected after in vivo treatment. TCB is a non-competitive inhibitor of retinyl palmitate hydrolase.
Collapse
Affiliation(s)
- M Mercier
- Laboratoire de Nutrition et Sécurité Alimentaire, INRA-CRJ, Jouy-en-Josas, France
| | | | | |
Collapse
|
34
|
Krasinski SD, Cohn JS, Schaefer EJ, Russell RM. Postprandial plasma retinyl ester response is greater in older subjects compared with younger subjects. Evidence for delayed plasma clearance of intestinal lipoproteins. J Clin Invest 1990; 85:883-92. [PMID: 2312731 PMCID: PMC296506 DOI: 10.1172/jci114515] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Postprandial vitamin A and intestinal lipoprotein metabolism was studied in 86 healthy men and women, aged 19-76 yr. Three independent experiments were carried out. In the first experiment, a supplement dose of vitamin A (3,000 retinol equivalents [RE]) was given without a meal to 59 subjects, aged 22-76 yr. In the second experiment, 20 RE/kg body wt was given with a fat-rich meal (1 g fat/kg body wt) to seven younger subjects (aged less than 50 yr) and seven older subjects (aged greater than or equal to 50 yr). In both experiments, postprandial plasma retinyl ester response increased significantly with advancing age (P less than 0.05). In the third experiment, retinyl ester-rich plasma was infused intravenously into nine young adult subjects (aged 18-30 yr) and nine elderly subjects (aged greater than or equal to 60 yr), and the rate of retinyl ester disappearance from plasma during the subsequent 3 h was determined. Mean (+/- SE) plasma retinyl ester residence time was 31 +/- 4 min in the young adult subjects vs. 57 +/- 8 min in the elderly subjects (P less than 0.05). These data are consistent with the concept that increased postprandial plasma retinyl ester concentrations in older subjects are due to delayed plasma clearance of retinyl esters in triglyceride-rich lipoproteins of intestinal origin.
Collapse
Affiliation(s)
- S D Krasinski
- U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachuetts 02111
| | | | | | | |
Collapse
|
35
|
Hendriks HF, Brouwer A, Knook DL. Isolation, purification, and characterization of liver cell types. Methods Enzymol 1990; 190:49-58. [PMID: 1965003 DOI: 10.1016/0076-6879(90)90008-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|