1
|
Abstract
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Collapse
|
2
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
3
|
Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R, Doctor RB, Fitz JG. Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 2008; 47:698-705. [PMID: 18027885 DOI: 10.1002/hep.22035] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Ionotrophic purinergic (P2X) receptors function as receptor-gated cation channels, where agonist binding leads to opening of a nonselective cation pore permeable to both Na(+) and Ca(2+). Based on evidence that extracellular adenosine 5'-triphosphate (ATP) stimulates glucose release from liver, these studies evaluate whether P2X receptors are expressed by hepatocytes and contribute to ATP-dependent calcium signaling and glucose release. Studies were performed in isolated hepatocytes from rats and mice and hepatoma cells from humans and rats. Transcripts and protein for both P2X4 and P2X7 were detectable, and immunohistochemistry of intact liver revealed P2X4 in the basolateral and canalicular domains. In whole cell patch clamp studies, exposure to the P2X4/P2X7 receptor agonist 2'3'-O-(4-benzoyl-benzoyl)-adenosine 5'-triphosphate (BzATP; 10 microM) caused a rapid increase in membrane Na(+) conductance. Similarly, with Fluo-3 fluorescence, BzATP induced an increase in intracellular [Ca(2+)]. P2X4 receptors are likely involved because the calcium response to BzATP was inhibited by Cu(2+), and the P2X4 modulators Zn(2+) and ivermectin (0.3-3 microM) each increased intracellular [Ca(2+)]. Exposure to BzATP decreased cellular glycogen content; and P2X4 receptor messenger RNA increased in glycogen-rich liver samples. CONCLUSION These studies provide evidence that P2X4 receptors are functionally important in hepatocyte Na(+) and Ca(2+) transport, are regulated by extracellular ATP and divalent cation concentrations, and may constitute a mechanism for autocrine regulation of hepatic glycogen metabolism.
Collapse
Affiliation(s)
- Daniel S Emmett
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fernandes TRL, Suzuki-Kemmelmeier F, Bracht A. The hemodynamic effects of ATP in retrograde perfusion of the bivascularly perfused rat liver. Liver Int 2003; 23:371-8. [PMID: 14708899 DOI: 10.1034/j.1478-3231.2003.00859.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AIMS/BACKGROUND In the sinusoidal bed the distribution of water is flow-limited, but it becomes partly barrier-limited when adenosine triphosphate (ATP) is introduced. This effect could be exerted either directly by ATP or by substances released from presinusoidal regions. Furthermore, portally infused ATP seems to be able to diffuse in the direction of the arterial bed. It is not known if this diffusion route is specific. Answers to these questions can be obtained from indicator-dilution experiments in retrograde perfusion. METHODS Indicator-dilution experiments, using [14C]sucrose and [3H]water, were conducted. Rat livers were perfused in the retrograde mode (hepatic vein+hepatic artery --> portal vein). RESULTS When ATP was infused into the hepatic vein, the distribution of [3H]water remained essentially flow-limited. The infusion of ATP into the hepatic artery increased the sucrose and extra-sucrose spaces of the arterial bed, but infusion into the hepatic vein was without effect. CONCLUSIONS The results indicate that the induction of barrier-limited distribution of [3H]water is not a direct effect of ATP. Furthermore, if the transhepatic diffusion of ATP can occur from presinusoidal regions to the arterial bed, as shown by previous work, a similar diffusion does not occur from postsinusoidal regions.
Collapse
|
5
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
6
|
Fernandes TRL, Suzuki-Kemmelmeier F, de Oliveira DS, Bracht A. Changes in distribution spaces and cell permeability caused by ATP in the rat liver. LIVER 2002; 22:35-42. [PMID: 11906617 DOI: 10.1046/j.0106-9543.2001.01542.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS/BACKGROUND Cellular and extracellular volume changes caused by ATP were investigated in the liver as well as the possible formation of diffusion barriers, which could be responsible for some of its metabolic effects. METHODS The experimental system was the bivascularly perfused rat liver. [(14)C]Sucrose and [(3)H]water were simultaneously injected into either the portal vein or the hepatic artery. Mean transit times, distribution spaces, variances and linear superimpositions were calculated. RESULTS In the portal system, ATP reduced the transit time in the great vessels, had little or no effect on sinusoidal and cellular spaces, but impaired the flow-limited distribution of both [(14)C]sucrose and [(3)H]water. In the arterial bed ATP infused into either the portal vein or the hepatic artery produced vasodilation and increased the aqueous extra-sucrose space. These effects were inhibited by Nomega-nitro-L-arginine methyl ester infused into the hepatic artery. CONCLUSIONS Sucrose and extra-sucrose space changes caused in the arterial bed by portally infused ATP are most probably analogous to the transhepatic vasodilation effect already described for the rabbit liver. Impairment of flow-limited distribution of tracers in the sinusoidal bed indicates that ATP induces the formation of permeability barriers, which could be responsible for some of its metabolic effects.
Collapse
Affiliation(s)
- T R L Fernandes
- Laboratory of Liver Metabolism, University of Maringá, 87020900 Maringá, Brazil
| | | | | | | |
Collapse
|
7
|
Lacza Z, Káldi K, Kövecs K, Görlach C, Nagy Z, Sándor P, Benyó Z, Wahl M. Involvement of prostanoid release in the mediation of UTP-induced cerebrovascular contraction in the rat. Brain Res 2001; 896:169-74. [PMID: 11277988 DOI: 10.1016/s0006-8993(01)02083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between uridine-5'-triphosphate (UTP) and prostanoids was studied in isolated rat middle cerebral arteries (MCAs). The strong contractions in MCA segments induced by UTP were weakened significantly by indomethacin and more markedly by the thromboxane receptor antagonist ICI 192605. Thromboxane A(2) (TXA(2)) release by MCAs was below the detection limit of the chemiluminescence enzyme immunoassay, but increased TXA(2) formation was detected in basilar arteries in the presence of UTP. Prostacyclin (PGI(2)) formation by MCAs also increased in the presence of UTP. These results suggest that UTP stimulates the release of both TXA(2) and PGI(2) from the rat MCA but the vascular effect of TXA(2) is dominant.
Collapse
Affiliation(s)
- Z Lacza
- Department of Physiology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cui TX, Iwai M, Hamai M, Minokoshi Y, Shimazu T, Horiuchi M. Aggravation of chemically-induced injury in perfused rat liver by extracellular ATP. Life Sci 2000; 66:2593-601. [PMID: 10883737 DOI: 10.1016/s0024-3205(00)00593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of purinergic receptor agonists on acute liver damage and hemodynamics were studied using chemically-induced liver injury. Rat livers were perfused in situ 24 h after treatment with D-galactosamine (800 mg/kg, i.p.). In these livers, infusion of ATP (50 microM) into the portal vein caused a rapid increase in the leakage of LDH and AST from perfused liver in a dose dependent manner, accompanied with flow reduction. The similar but less effective responses were also observed by the infusion of ADP. Infusion of adenosine, a P1-receptor agonist, induced only minimal changes of liver damage and flow rate. The ATP-induced changes were almost completely suppressed by P2-receptor antagonist, suramin, but not affected by P1-receptor antagonist, 8-phenyltheophylline. Pretreatment of rats with gadolinium chloride, which depletes Kupffer cells, did not inhibit the potentiation of liver damage caused by ATP, whereas hemodynamic effects of ATP were significantly attenuated by gadolinium. These results indicate that extracellular ATP aggravates acute liver injury mediated by P2-type purinergic receptors.
Collapse
Affiliation(s)
- T X Cui
- Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms.
Collapse
Affiliation(s)
- M Bollen
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
10
|
Minguetti-Câmara VC, Constantin J, Suzuki-Kemmelmeier F, Ishii-Iwamoto EL, Bracht A. Hepatic heterogeneity in the response to ATP studied in the bivascularly perfused rat liver. Mol Cell Biochem 1998; 179:35-48. [PMID: 9543347 DOI: 10.1023/a:1006811720933] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The zonation of the purinergic action of ATP in the hepatic parenchyma was investigated in the bivascularly perfused rat liver by means of anterograde and retrograde perfusion. Livers from fed rats were used, and ATP was infused according to four different experimental protocols: (A) anterograde perfusion and ATP infusion via the portal vein; (B) anterograde perfusion and ATP via the hepatic artery; (C) retrograde perfusion and ATP via the hepatic vein; (D) retrograde perfusion and ATP via the hepatic artery. The following metabolic parameters were measured: glucose release, lactate production and oxygen consumption. The hemodynamic effects were evaluated by measuring the sinusoidal mean transit times by means of the indicator-dilution technique. ATP was infused during 20 min at four different rates (between 0.06-0.77 micromol min[-1] g liver[-1]; 20-200 microM) in each of the four experimental protocols. The results that were obtained allow several conclusions with respect to the localization of the effects of ATP along the hepatic acini: (1) In retrograde perfusion the sinusoidal mean transit times were approximately twice those observed in anterograde perfusion. ATP increased the sinusoidal mean transit times only in retrograde perfusion (protocols C and D). The effect was more pronounced with protocol D. These results allow the conclusion that the responsive vasoconstrictive elements are localized in a pre-sinusoidal region; (2) All hepatic cells, periportal as well as perivenous, were able to metabolize ATP, so that concentration gradients were generated with all experimental protocols. Extraction of ATP was more pronounced in retrograde perfusion, an observation that can be attributed, partly at least, to the longer sinusoidal transit times. In anterograde perfusion, the extraction of ATP was time-dependent, a phenomenon that cannot be satisfactorily explained with the available data; (3) ATP produced a transient initial inhibition of oxygen uptake when protocols A and B were employed. These protocols are the only ones in which the cells situated shortly after the intrasinusoidal confluence of the portal vein and the hepatic artery were effectively supplied with ATP. The decrease in oxygen consumption was more pronounced at low ATP infusions when protocol B was employed. These observations allow the conclusion that the former phenomenon is localized mainly in cells situated shortly after the intrasinusoidal confluence of the portal vein and hepatic artery. Oxygen consumption in all other cells, especially the proximal periportal ones, is increased by ATP; (4) In agreement with previous data found in the literature, glycogenolysis stimulation by ATP was more pronounced in the periportal region. The cells that respond more intensively are not the proximal periportal ones, but those situated in the region of the intrasinusoidal confluence of the portal vein and the hepatic artery.
Collapse
|
11
|
Schlenker T, Romac JM, Sharara AI, Roman RM, Kim SJ, LaRusso N, Liddle RA, Fitz JG. Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1108-17. [PMID: 9374709 DOI: 10.1152/ajpgi.1997.273.5.g1108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To evaluate whether ATP in bile serves as a signaling factor regulating ductular secretion, voltage-clamp studies were performed using a novel normal rat cholangiocyte (NRC) model. In the presence of amiloride (100 microM) to block Na+ channels, exposure of the apical membrane to ATP significantly increased the short-circuit current (Isc) from 18.2 +/- 5.9 to 52.8 +/- 12.7 microA (n = 18). The response to ATP is mediated by basolateral-to-apical Cl- transport because it is inhibited by 1) the Cl- channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (1 mM), diphenylanthranilic acid (1.5 mM), or 5-nitro-2-(3-phenylpropylamino)benzoic acid (50 or 100 microM) in the apical chamber, 2) the K+ channel blocker Ba2+ (5 mM), or 3) the Na(+)-K(+)-2Cl- cotransport inhibitor bumetanide (200 microM) in the basolateral chamber. Other nucleotides stimulated an increase in Isc with a rank order potency of UTP = ATP = adenosine 5'-O-(3)-thiotriphosphate, consistent with P2u purinergic receptors. ADP, AMP, 2-methylthioadenosine 5'-triphosphate, and adenosine had no effect. A cDNA encoding a rat P2u receptor (rP2uR) was isolated from a liver cDNA library, and functional expression of the corresponding mRNA in Xenopus laevis oocytes resulted in the appearance of ATP-stimulated currents with a similar pharmacological profile. Northern analysis identified hybridizing mRNA transcripts in NRC as well as other cell types in rat liver. These findings indicate that exposure of polarized cholangiocytes to ATP results in luminal Cl- secretion through activation of P2u receptors in the apical membrane. Release of ATP into bile may serve as an autocrine or paracrine signal regulating cholangiocyte secretory function.
Collapse
Affiliation(s)
- T Schlenker
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Malcolm KC, Trammell SE, Exton JH. Purinergic agonist and G protein stimulation of phospholipase D in rat liver plasma membranes. Independence from phospholipase C activation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:152-8. [PMID: 7662702 DOI: 10.1016/0167-4889(95)00073-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hormonal regulation of phospholipase D (PLD) was studied in isolated rat liver plasma membranes. Purinergic agents and a submaximal concentration of guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S), a non-hydrolyzable analog of GTP, synergistically stimulate phosphatidylethanol formation, a measure of PLD activity. The rank order of efficacy for stimulation of PLD activity in the presence of 0.2 microM GTP gamma S was beta, gamma-methylene-ATP > adenosine 5'-0-(3-thiotriphosphate) = ATP = ADP = 2-methylthio-ATP > alpha, beta-methylene-ATP = UTP. This pattern of activation does not conform to the series at known P2 receptors. GTP gamma S stimulated PLD activity in a dose-dependent manner, and the GTP gamma S dose-response curve for phosphatidylethanol formation was shifted to the left by an analog of ATP. Activation of PLD by purinergic agents in the presence of GTP gamma S supports the involvement of a purinergic receptor of the P2 class and a GTP-binding protein. Purinergic agents competitively inhibited [35S]adenosine 5'-0-(3-thiotriphosphate) binding to plasma membranes in the rank order adenosine 5'-0'(3-thiotriphosphate) > ATP > alpha,beta-methylene-ATP = UTP >> beta, gamma-methylene-ATP = ADP. Stimulation of phosphoinositide phospholipase C (PI-PLC) by purinergic agents, as measured by release of radioactivity from endogenously myo[3H]inositol-labeled plasma membranes, occurred in the order alpha, beta-methylene-ATP >> 2-methylthio-ATP. Beta, gamma-methylene-ATP had little effect on PI-PLC activity. Different dose-response relationships for agonist-stimulation of PI-PLC and PLD indicate that activation of PI-PLC is not involved in stimulation of PLD in rat liver plasma membranes, and suggest that purinergic activation of PLD occurs via a pathway involving a G protein and a heretofore uncharacterized P2 receptor.
Collapse
Affiliation(s)
- K C Malcolm
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA
| | | | | |
Collapse
|
13
|
Post S, Goerig M, Menger MD. Eicosanoids and hepatic preservation for organ transplantation. Prostaglandins Leukot Essent Fatty Acids 1994; 51:299-309. [PMID: 7846100 DOI: 10.1016/0952-3278(94)90001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S Post
- Department of Surgery, University of Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Takemura S, Kawada N, Hirohashi K, Kinoshita H, Inoue M. Nucleotide receptors in hepatic stellate cells of the rat. FEBS Lett 1994; 354:53-6. [PMID: 7957901 DOI: 10.1016/0014-5793(94)01090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
When hepatic stellate cells were stimulated by UTP, ATP, or ADP, cellular levels of inositol phosphates significantly increased (UTP > ATP > ADP > 5'-O-(3-thiotriphosphate). Thirty min after incubation with 100 microM of UTP, ATP, or ADP, levels of inositol monophosphate increased to 1318 +/- 116, 616 +/- 87 and 591 +/- 234% of control levels, respectively, with concomitant increase in the production of inositol trisphosphate and bisphosphate. These nucleotides transiently increased the [Ca2+]i of fura-2-loaded stellate cells. Moreover, UTP, ATP, ADP and adenosine 5'-O-(3-thiotriphosphate) were able to induce contraction of stellate cells as detected using the silicone-rubber membrane method. These results suggested that hepatic stellate cells have nucleotide receptors which react predominantly with extracellular UTP and ATP and trigger the receptor-mediated contraction of the cells.
Collapse
Affiliation(s)
- S Takemura
- Department of Surgery, Osaka City University Medical School, Japan
| | | | | | | | | |
Collapse
|
15
|
Abstract
1. The effects of the pyrimidines, uridine 5'-triphosphate (UTP), thymidine 5'-triphosphate (TTP) and cytidine 5'-triphosphate (CTP), were examined in the guinea-pig coronary bed, by use of a Langendorff technique. Comparisons were made with the actions of the purines adenosine 5'-triphosphate (ATP), inosine 5'-triphosphate (ITP) and guanosine 5'-triphosphate (GTP). The effect of, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME) and, the prostaglandin synthesis inhibitor, indomethacin on the vasodilator response to these purines and pyrimidines was examined. The effects of these inhibitors were assessed on their ability to inhibit both the amplitude and the area of the vasodilator response. 2. The relative order of potency of the purines and pyrimidines studied was ATP > UTP > ITP >> GTP, TTP, CTP. 3. The maximum amplitude and area of the vasodilator response to the pyrimidines, UTP (5 x 10(-10)-5 x 10(-7) mol), TTP (5 x 10(-8)-5 x 10(-7) mol) and CTP (5 x 10(-7) mol), and purines, ITP (5 x 10(-9)-5 x 10(-7) mol) and GTP (5 x 10(-8)-5 x 10(-7) mol), were significantly reduced by L-NAME (3 x 10(-5) and 10(-4) M). 4. The inhibition of the response to ATP (5 x 10-8 mol), UTP (5 x 10-8 mol), ITP (5 x 10-8 mol), TTP(5 x 10-7 mol), CTP (5 x 10- mol) and GTP (5 x 10- mol) by L-NAME (3 x 10-5 M) was significantly reversed by L-arginine (1.5 x 10-3 M).5. L-NAME (3 x 10-5 and 10-4 M) only inhibited the amplitude of the vasodilator response to a low dose of ATP (5 x 10-mol), although the area of vasodilator response to ATP(5 x 10-11-5 x 10-7 mol) was significantly reduced by L-NAME (3 x 10-5 and 10-4 M).6. The maximum amplitude of the vasodilator response to ATP (5 x 10-10-5 x 10-7 mol) was significantly reduced by indomethacin (10-6 M), although the area of the vasodilator response to ATP was only significantly reduced at one intermediate dose (5 x 10-9 mol). Indomethacin (10-6 M) did not affect the maximum amplitude or area of the vasodilator responses to UTP (5 x 10-11-5 x 10-7 mol),ITP (5 x 10-10-5 x 10-7 mol), CTP (5 x 10-7 mol), TTP (5 x 10-8-5 x 10-7 mol) and GTP(5 x 10-8-5 x 10-7 mol).7. It is concluded that in the guinea-pig coronary vasculature, the vasodilatation evoked by the pyrimidines, UTP, TTP and CTP, was mediated in large part via nitric oxide, as were the vasodilatations evoked by the purines ITP and GTP. The vasodilatations evoked by ATP, however, appear to involve prostanoids in addition to the release of nitric oxide.
Collapse
Affiliation(s)
- A J Vials
- Department of Anatomy and Developmental Biology, University College London
| | | |
Collapse
|
16
|
Morimoto Y, Wettstein M, Häussinger D. Hepatocyte heterogeneity in response to extracellular adenosine. Biochem J 1993; 293 ( Pt 2):573-81. [PMID: 8393665 PMCID: PMC1134400 DOI: 10.1042/bj2930573] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metabolic and haemodynamic effects of adenosine were studied in antegrade and retrograde rat liver perfusions with influent nucleoside concentrations either below (i.e. 20 microM) or exceeding (i.e. 200-300 microM) the single-pass clearance capacity of the liver. Adenosine (20 microM) increased in antegrade perfusions the perfusion pressure and markedly stimulated prostaglandin D2, thromboxane B2 and glucose output, whereas in retrograde perfusions no pressure and eicosanoid response occurred and glucose output was stimulated only slightly. The perfusion-direction-dependent differences in the glucose and pressure response to adenosine (20 microM) were fully abolished in presence of ibuprofen (50 microM). When the adenosine concentration in influent was raised to 200-300 microM, i.e. to a concentration exceeding single-pass clearance of the nucleoside, the adenosine-induced prostaglandin D2 release was about 10-fold higher in retrograde perfusions than in antegrade perfusions. On the other hand, both adenosine (20-300 microM)-induced cyclic AMP (cAMP) and K+ release from the liver were not affected by the direction of perfusion, and maximal effects on cAMP release were observed at influent adenosine concentrations of 100 microM. The basal rate (adenosine absent) of prostaglandin D2 and thromboxane B2 release was about 10-fold higher in retrograde than in antegrade perfusion experiments, whereas the basal cAMP release from the liver was not affected by the direction of perfusion. Maximal adenosine-stimulated glucose output was significantly higher in antegrade than in retrograde perfusions at all adenosine concentrations tested (range 10-300 microM). Ibuprofen abolished this difference, indicating that eicosanoids liberated under the influence of adenosine contribute to the glycogenolytic response in antegrade, but not in retrograde, perfusion. Desensitization occurred following repetitive adenosine infusion; this was more pronounced for adenosine-induced prostaglandin release than for cAMP or K+ efflux. The data suggest the following. (i) Both cAMP and eicosanoids are involved in the stimulation of glycogenolysis by adenosine. (ii) Eicosanoids are probably liberated under the influence of extracellular adenosine from a portal pre-sinusoidal compartment and accordingly stimulate glycogenolysis only in antegrade perfusions. Thus signals derived from portal vein structures can modulate hepatocellular function. (iii) Contractile elements are probably located also inside the liver acinus. (iv) Eicosanoids released into the hepatic vein reflect less than 10% of hepatic eicosanoid formation, because of marked clearance by perivenous hepatocytes.
Collapse
Affiliation(s)
- Y Morimoto
- Medizinische Universitätsklinik, Freiburg, Germany
| | | | | |
Collapse
|
17
|
Campbell C, Spray D, Wolkoff A. Extracellular ATP4- modulates organic anion transport by rat hepatocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82271-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
|
19
|
el-Moatassim C, Dornand J, Mani JC. Extracellular ATP and cell signalling. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1134:31-45. [PMID: 1311958 DOI: 10.1016/0167-4889(92)90025-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Keppens S, Vandekerckhove A, De Wulf H. Extracellular ATP and UTP exert similar effects on rat isolated hepatocytes. Br J Pharmacol 1992; 105:475-9. [PMID: 1559136 PMCID: PMC1908662 DOI: 10.1111/j.1476-5381.1992.tb14278.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Extracellular UTP and ATP show obvious similarities in their control of several metabolic functions of rat isolated hepatocytes. 2. They have a similar time-course and concentration-dependency for the activation of glycogen phosphorylase, the generation of inositol trisphosphate (IP3), the inhibition of glycogen synthase and the lowering of adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. 3. There is a similar synergism of the nucleotides with glucagon in activating phosphorylase. 4. They undergo a similar inhibition by phorbol myristic acid of their glycogenolytic effect. 5. The ATP and UTP effect on IP3 levels are not additive. 6. It is tentatively concluded that UTP and ATP use a common receptor.
Collapse
Affiliation(s)
- S Keppens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
21
|
vom Dahl S, Hallbrucker C, Lang F, Häussinger D. Regulation of cell volume in the perfused rat liver by hormones. Biochem J 1991; 280 ( Pt 1):105-9. [PMID: 1660261 PMCID: PMC1130606 DOI: 10.1042/bj2800105] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of hormones on cell volume was studied in isolated perfused rat liver by assessing the intracellular water space as the difference between a [3H]inulin- and a [14C]urea-accessible space. The intracellular water space (control value 559 +/- 7 microliters/g of liver; n = 88) increased on addition of insulin (35 nM) or phenylephrine (5 microM) by 12 or 8% respectively, whereas it decreased with cyclic AMP (cAMP; 50 microM), glucagon (100 nM) or adenosine (50 microM) by 9, 13 or 6% respectively. Both insulin and glucagon exerted half-maximal effects on cell volume and cellular K+ balance at hormone concentrations found physiologically in the portal vein. Adenosine-induced cell shrinkage was explained by a net K+ release from the liver. Phenylephrine (5 microM) led to cell swelling by about 8%, which was additive to insulin-induced swelling. Extracellular ATP (20 microM) induced cell shrinkage by about 6%; this was additive to adenosine-induced shrinkage. Vasopressin (15 nM) did not appreciably change cell volume, but induced marked cell shrinkage when glucagon or cAMP was present. Insulin- and phenylephrine-induced cell swelling was counteracted by cAMP. Hormone-induced changes of intracellular water space could sufficiently explain accompanying liver mass changes induced by glucagon, cAMP, adenosine or vasopressin, but not those by phenylephrine and extracellular ATP. The data show that liver cell volume is subject to hormonal regulation, in part owing to modification of cellular K+ balance. Glucagon- and insulin-induced cell volume changes occur already in the presence of physiological hormone concentrations. The effects of Ca2(+)-mobilizing hormones on cell volume are not uniform. In view of the recently established role of cell volume changes in modulating liver cell function, the present findings open a new perspective on the mechanisms of hormone action in liver, underlining our previous hypothesis that cell volume changes may represent a 'second messenger' of hormone action.
Collapse
Affiliation(s)
- S vom Dahl
- Medizinische Universitätsklinik, Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
22
|
Vanstapel F, Waebens M, Van Hecke P, Decanniere C, Stalmans W. Modulation of maximal glycogenolysis in perfused rat liver by adenosine and ATP. Biochem J 1991; 277 ( Pt 3):597-602. [PMID: 1872795 PMCID: PMC1151282 DOI: 10.1042/bj2770597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat livers perfused at constant flow via the portal vein with dibutyryl cyclic AMP produced glucose equivalents at a steady maximal rate (6 mumol/min per g of liver). Addition of adenosine (150 microM) caused a biphasic effect. (i) First, the glycogenolytic rate rose transiently, to a mean peak of 150% of control levels after 2 min. This glycogenolytic burst was reproduced by two P1-receptor agonists, but not by ATP, and was blocked by a P1-antagonist (8-phenyltheophylline), as well as by inhibitors of eicosanoid synthesis (indomethacin, ibuprofen or aspirin). It did not occur in phosphorylase-kinase-deficient livers. The adenosine-induced glycogenolytic burst coincided with moderate and transient changes in portal pressure (+6 cmH2O) and O2 consumption (-20%), but it could not be explained by an increase in cytosolic Pi, since the n.m.r. signal fell precipitously. (ii) Subsequently, the rate of glycogenolysis decreased to one-third of the preadenosine value, in spite of persistent maximal activation of phosphorylase. The decrease could be linked to the decline in cytosolic Pi: both changes were prevented by the adenosine kinase inhibitor 5-iodotubercidin, whereas they were not affected by ibuprofen or 8-phenyltheophylline, and were not reproduced by non-metabolized adenosine analogues. In comparison with adenosine, ATP caused a slower decrease of Pi and of glycogenolysis. The fate of the cytosolic Pi was unclear, especially with administered ATP, which did not increase the n.m.r.-detectable intracellular ATP.
Collapse
Affiliation(s)
- F Vanstapel
- Biomedische NMR Eenheid, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
23
|
Mason SJ, Paradiso AM, Boucher RC. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 1991; 103:1649-56. [PMID: 1718521 PMCID: PMC1907816 DOI: 10.1111/j.1476-5381.1991.tb09842.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium.
Collapse
Affiliation(s)
- S J Mason
- Department of Medicine, University of North Carolina Chapel Hill 27599
| | | | | |
Collapse
|
24
|
vom Dahl S, Hallbrucker C, Lang F, Häussinger D. Role of eicosanoids, inositol phosphates and extracellular Ca2+ in cell-volume regulation of rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:73-83. [PMID: 2040292 DOI: 10.1111/j.1432-1033.1991.tb15988.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. In isolated perfused rat liver, the time-course of volume-regulatory K+ efflux following exposure to hypoosmolar perfusate resembled the leukotriene-C4-induced K+ efflux in normotonic perfusion. Omission of Ca2+ from the perfusion fluid had no effect on volume-regulatory K+ efflux, but abolished completely the leukotriene-C4-induced K+ efflux. 2. Volume-regulatory K+ fluxes following hypoosmolar exposure (225 mOsmol l-1) and subsequent reexposure to normotonic media (305 mOsmol l-1) were not significantly affected by the cyclooxygenase inhibitors indomethacin (5 mumol l-1) or ibuprofen (50 mumol l-1), the leukotriene D4/C4-receptor antagonist 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]etha none (YL 171883, 50 microM), the lipoxygenase inhibitor nordihydroguaiaretic acid (20 microM), the phospholipase-A2 inhibitor bromophenacyl bromide (50 microM) or the thromboxane-receptor antagonist 4-[2-(benzenesulfonamido)ethyl]-phenoxyacetic acid (BM 13.177, 20 microM). Also the effects of hypoosmotic cell swelling on lactate, pyruvate and glucose balance across the liver remained largely unaffected in presence of these inhibitors. Neither exposure of perfused rat liver to hypoosmolar (225 mOsmol l-1) nor to hyperosmolar (385 mOsmol l-1) perfusion media affected hepatic prostaglandin-D2 release. 3. When livers were 3H-labeled in vivo by an intraperitoneal injection of myo-[2-3H]inositol about 16 h prior to the perfusion experiment, cell swelling due to lowering the perfusate osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1 led to about a threefold stimulation of [3H]inositol release. The maximum of hypotonicity-induced [3H]inositol release preceded maximal volume-regulatory K+ efflux by about 30 s, but came after the maximum of water shift into the cells. Hypotonicity-induced [3H]inositol release was largely prevented in presence of Li+ (10 mM), but simultaneously inositol monophosphate accumulated inside the liver within 10 min and a small, but significant increase of inositol trisphosphate 1 min after onset of hypoosmolar exposure was detectable. No stimulation of [3H]inositol release was observed during cell shrinkage by switching the perfusate osmolarity from 225 mOsmol l-1 to 305 mOsmol l-1 or from 305 mOsmol l-1 to 385 mOsmol l-1. No stimulation of [3H]inositol release was observed upon swelling of preshrunken livers by lowering the osmolarity from 385 mOsmol l-1 to 305 mOsmol l-1, although the volume-regulatory K+ efflux under these conditions was almost identical to that observed after lowering the osmolarity from 305 mOsmol l-1 to 225 mOsmol l-1. 4.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S vom Dahl
- Medizinische Universitätsklinik Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
25
|
Muschol W, Püschel GP, Hülsmann M, Jungermann K. Eicosanoid-mediated increase in glucose and lactate output as well as decrease and redistribution of flow by complement-activated rat serum in perfused rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:525-30. [PMID: 2007411 DOI: 10.1111/j.1432-1033.1991.tb15845.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat serum, in which the complement system had been activated by incubation with zymosan, increased the glucose and lactate output, and reduced and redistributed the flow in isolated perfused rat liver clearly more than the control serum. Heat inactivation of the rat serum prior to zymosan incubation abolished this difference. Metabolic and hemodynamic alterations caused by the activated serum were dose dependent. They were almost completely inhibited by the cyclooxygenase inhibitor indomethacin and by the thromboxane antagonist 4-[2-(4-chlorobenzesulfonamide)-ethyl]-benzene-acetic acid (BM 13505), but clearly less efficiently by the 5'-lipoxygenase inhibitor nordihydroguaiaretic acid and the leukotriene antagonist N-(3-[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-propoxy]-4-chlorine-6-meth yl- phenyl)-1H-tetrazole-5-carboxamide sodium salt (CGP 35949 B). Control serum and to a much larger extent complement-activated serum, caused an overflow of thromboxane B2 and prostaglandin F2 alpha into the hepatic vein. It is concluded that the activated complement system of rat serum can influence liver metabolism and hemodynamics via release from nonparenchymal liver cells of thromboxane and prostaglandins, the latter of which can in turn act on the parenchymal cells.
Collapse
Affiliation(s)
- W Muschol
- Institut für Biochemie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
26
|
Stimulation of release of prostaglandin D2 and thromboxane B2 from perfused rat liver by extracellular adenosine. Biochem J 1990; 270:39-44. [PMID: 2396991 PMCID: PMC1131674 DOI: 10.1042/bj2700039] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In isolated perfused rat liver, adenosine infusion (50 microM) led to increases in glucose output and portal pressure and a net K+ release of 3.7 +/- 0.21 mumol/g, which was followed by an equivalent net K+ uptake after cessation of the nucleoside infusion. These effects were accompanied by a transient stimulation of hepatic prostaglandin D2 and thromboxane B2 release. The Ca2+ release observed upon adenosine infusion (50 microM) was 23.5 +/- 5.2 nmol/g, i.e. 10-20% of the Ca2+ release observed with extracellular ATP (50 microM). Indomethacin (10 microM) prevented the adenosine-induced stimulation of glucose output and the increase in portal pressure by 79 and 63% respectively, and completely abolished the stimulation of prostaglandin D2 release. The thromboxane A2 receptor antagonist BM 13.177 (20 microM), the phospholipase A2 inhibitor 4-bromophenacyl bromide (20 microM) and the cyclo-oxygenase inhibitor ibuprofen (50 microM) also decreased the glycogenolytic and vasoconstrictive responses of the perfused rat liver upon adenosine infusion by 50-80%. When the indomethacin inhibition of adenosine-induced prostaglandin D2 release was titrated, a close correlation between prostaglandin D2 release and the metabolic and vascular responses to adenosine was observed. These findings suggest an important role for eicosanoids in mediating the nucleoside responses in the perfused rat liver. Since eicosanoids are known to be formed by non-parenchymal cells in rat liver [Decker (1985) Semin. Liver Dis. 5, 175-190], the present study gives further evidence for an important role of eicosanoids as signal molecules between the different liver cell populations.
Collapse
|
27
|
Stutchfield J, Cockcroft S. Undifferentiated HL60 cells respond to extracellular ATP and UTP by stimulating phospholipase C activation and exocytosis. FEBS Lett 1990; 262:256-8. [PMID: 2335206 DOI: 10.1016/0014-5793(90)80204-v] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recently characterised the presence of a Ca2(+)-mobilising receptor for ATP which stimulates exocytosis in differentiated HL60 cells. Here we demonstrate that the undifferentiated HL60 cells also respond to extracellular ATP by stimulating an increase in inositol phosphates and exocytosis. Of the nucleotides (ATP, UTP, ITP, ATP gamma S, AppNHp, XTP, CTP, GTP, 8-Br-ATP and GTP gamma S) that were active in stimulating inositol phosphate formation, only UTP, ATP, ITP, ATP gamma S and AppNHp were active in stimulating secretion. On differentiation, the extent of secretion due to the purinergic agonists ATP, ITP, ATP gamma S and AppNHp remained unchanged whilst secretion due to UTP, a pyrimidine, was substantially increased. These results indicate that the effect of ATP and UTP may be mediated via separate purinergic and pyrimidinergic receptors, respectively.
Collapse
Affiliation(s)
- J Stutchfield
- Department of Physiology, University College London, UK
| | | |
Collapse
|
28
|
Abstract
In recent years, knowledge of the physiology and pharmacology of hepatic circulation has grown rapidly. Liver microcirculation has a unique design that allows very efficient exchange processes between plasma and liver cells, even when severe constraints are imposed upon the system, i.e. in stressful situations. Furthermore, it has been recognized recently that sinusoids and their associated cells can no longer be considered only as passive structures ensuring the dispersion of molecules in the liver, but represent a very sophisticated network that protects and regulates parenchymal cells through a variety of mediators. Finally, vascular abnormalities are a prominent feature of a number of liver pathological processes, including cirrhosis and liver cell necrosis whether induced by alcohol, ischemia, endotoxins, virus or chemicals. Although it is not clear whether vascular lesions can be the primary events that lead to hepatocyte injury, the main interest of these findings is that liver microcirculation could represent a potential target for drug action in these conditions.
Collapse
Affiliation(s)
- F Ballet
- INSERM U. 181, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
29
|
Pfeilschifter J, Thüring B, Festa F. Extracellular ATP stimulates poly(inositol phospholipid) hydrolysis and eicosanoid synthesis in mouse peritoneal macrophages in culture. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:509-13. [PMID: 2514092 DOI: 10.1111/j.1432-1033.1989.tb15236.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.
Collapse
|
30
|
Jungermann K. [Regulation of liver functions by autonomic hepatic nerves]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1989; 76:547-59. [PMID: 2695845 DOI: 10.1007/bf00462861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The liver is the glucose reservoir of the organism and moreover an important blood reservoir, which takes up or releases glucose and blood depending on demand. Activation of the sympathetic nerves increases glucose release, shifts lactate uptake to output and reduces a.o. oxygen uptake. Moreover, it elicits a reduction of blood flow, and, by closing of sinusoids, an intrahepatic redistribution as well as a mobilization of blood. Activation of parasympathetic nerves enhances glucose utilization and causes a re-opening of closed sinusoids. The actions of sympathetic nerves can be modulated by hormones. Extracellular calcium as well as the mediators noradrenaline and probably also prostaglandins are involved in the signal chain. Intracellularly the signal chain is propagated by an increase of cytosolic calcium.
Collapse
Affiliation(s)
- K Jungermann
- Institut für Biochemie, Fachbereich Medizin der Universität, Göttingen
| |
Collapse
|
31
|
Athari A, Jungermann K. Direct activation by prostaglandin F2 alpha but not thromboxane A2 of glycogenolysis via an increase in inositol 1,4,5-trisphosphate in rat hepatocytes. Biochem Biophys Res Commun 1989; 163:1235-42. [PMID: 2551282 DOI: 10.1016/0006-291x(89)91110-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rat liver prostaglandin F2 alpha (PGF2 alpha) and thromboxane A2 (TXA2), released from non-parenchymal cells, have been implicated as mediators of the enhancement of glucose and lactate output from parenchymal cells caused by sympathetic nerve stimulation [Iwai, M. et al. (1988) Eur. J. Biochem. 175, 45-50]. In isolated rat hepatocytes PGF2 alpha, of which 75% were degraded within 10 min, but not the TXA2 analogue U46619 increased inositol 1,4,5-trisphosphate (IP3), glycogen phosphorylase a activity and glucose output like noradrenaline and vasopressin; cyclic AMP remained unaltered. The maximal increase in IP3 was reached within 20 s and in phosphorylase activity as well as glucose release within 1 min. The results indicate that only PGF2 alpha but not TXA2 can play a role as a direct mediator of the sympathetic metabolic nerve actions in rat liver and that hepatocytes contain also stimulatory prostaglandin receptors linked to phospholipase C in addition to the inhibitory receptors linked to adenylate cyclase known thus far.
Collapse
|
32
|
Wettstein M, Gerok W, Häussinger D. Metabolism of cysteinyl leukotrienes in non-recirculating rat liver perfusion. Hepatocyte heterogeneity in uptake and biliary excretion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:115-24. [PMID: 2565811 DOI: 10.1111/j.1432-1033.1989.tb14701.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Wettstein
- Medizinische Universitätsklinik Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Häussinger D. Regulation of hepatic metabolism by extracellular nucleotides and eicosanoids. The role of cell heterogeneity. J Hepatol 1989; 8:259-66. [PMID: 2654286 DOI: 10.1016/0168-8278(89)90017-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Busshardt E, Gerok W, Häussinger D. Regulation of hepatic parenchymal and non-parenchymal cell function by the diadenine nucleotides Ap3A and Ap4A. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1010:151-9. [PMID: 2563228 DOI: 10.1016/0167-4889(89)90155-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.
Collapse
Affiliation(s)
- E Busshardt
- Medizinische Universitätsklinik, Freiburg, F.R.G
| | | | | |
Collapse
|