1
|
Yamaguchi H, Takahashi K, Tatsumi M, Tagami U, Mizukoshi T, Miyano H, Sugiki M. Development of a novel single-chain l-glutamate oxidase from Streptomyces sp. X-119-6 by inserting flexible linkers. Enzyme Microb Technol 2023; 170:110287. [PMID: 37487431 DOI: 10.1016/j.enzmictec.2023.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
L-glutamate oxidase (LGOX, EC: 1.4.3.11) is an oxidoreductase that catalyzes L-glutamate deamination. LGOX from Streptomyces sp. X-119-6 is used widely for L-glutamate quantification in research and industrial applications. This enzyme encoded as a single precursor chain that undergoes post-translational cleavage to four fragments by an endogenous protease to become highly active. Efficient preparation of active LGOX by heterologous expression without proteolysis process should be indispensable for wide application of this enzyme. Thus, developing an LGOX that requires no protease treatment should expand the potential applications of recombinant LGOX. In this report, we succeeded in obtaining an active single-chain LGOX by connecting the four fragments of the mature form with insertion of flexible linkers. The most active single-chain mutant showed the similar activity to that of the mature form from Streptomyces sp. X-119-6. The structure of this mutant was determined at 2.9 Å resolution by X-ray crystallography. It was revealed that this single-stranded mutant had the similar conformation to that of mature form. This single-chain LGOX can be produced efficiently and should expand LGOX applications.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Moemi Tatsumi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Uno Tagami
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Toshimi Mizukoshi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Hiroshi Miyano
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Masayuki Sugiki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| |
Collapse
|
2
|
Costa MN, Silva RN. Cytotoxic activity of l-lysine alpha-oxidase against leukemia cells. Semin Cancer Biol 2022; 86:590-599. [PMID: 34606983 DOI: 10.1016/j.semcancer.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/27/2023]
Abstract
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Collapse
Affiliation(s)
- Mariana N Costa
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
3
|
Application of l-glutamate oxidase from Streptomyces sp. X119-6 with catalase (KatE) to whole-cell systems for glutaric acid production in Escherichia coli. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Brito LF, Irla M, Nærdal I, Le SB, Delépine B, Heux S, Brautaset T. Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Bacillus methanolicus. Front Bioeng Biotechnol 2021; 9:686319. [PMID: 34262896 PMCID: PMC8274714 DOI: 10.3389/fbioe.2021.686319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
The use of methanol as carbon source for biotechnological processes has recently attracted great interest due to its relatively low price, high abundance, high purity, and the fact that it is a non-food raw material. In this study, methanol-based production of 5-aminovalerate (5AVA) was established using recombinant Bacillus methanolicus strains. 5AVA is a building block of polyamides and a candidate to become the C5 platform chemical for the production of, among others, δ-valerolactam, 5-hydroxy-valerate, glutarate, and 1,5-pentanediol. In this study, we test five different 5AVA biosynthesis pathways, whereof two directly convert L-lysine to 5AVA and three use cadaverine as an intermediate. The conversion of L-lysine to 5AVA employs lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA), encoded by the well-known Pseudomonas putida cluster davBA, among others, or lysine α-oxidase (RaiP) in the presence of hydrogen peroxide. Cadaverine is converted either to γ-glutamine-cadaverine by glutamine synthetase (SpuI) or to 5-aminopentanal through activity of putrescine oxidase (Puo) or putrescine transaminase (PatA). Our efforts resulted in proof-of-concept 5AVA production from methanol at 50°C, enabled by two pathways out of the five tested with the highest titer of 0.02 g l-1. To our knowledge, this is the first report of 5AVA production from methanol in methylotrophic bacteria, and the recombinant strains and knowledge generated should represent a valuable basis for further improved 5AVA production from methanol.
Collapse
Affiliation(s)
- Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingemar Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Baudoin Delépine
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Stéphanie Heux
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Trisrivirat D, Lawan N, Chenprakhon P, Matsui D, Asano Y, Chaiyen P. Mechanistic insights into the dual activities of the single active site of l-lysine oxidase/monooxygenase from Pseudomonas sp. AIU 813. J Biol Chem 2020; 295:11246-11261. [PMID: 32527725 DOI: 10.1074/jbc.ra120.014055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
l-Lysine oxidase/monooxygenase (l-LOX/MOG) from Pseudomonas sp. AIU 813 catalyzes the mixed bioconversion of l-amino acids, particularly l-lysine, yielding an amide and carbon dioxide by an oxidative decarboxylation (i.e. apparent monooxygenation), as well as oxidative deamination (hydrolysis of oxidized product), resulting in α-keto acid, hydrogen peroxide (H2O2), and ammonia. Here, using high-resolution MS and monitoring transient reaction kinetics with stopped-flow spectrophotometry, we identified the products from the reactions of l-lysine and l-ornithine, indicating that besides decarboxylating imino acids (i.e. 5-aminopentanamide from l-lysine), l-LOX/MOG also decarboxylates keto acids (5-aminopentanoic acid from l-lysine and 4-aminobutanoic acid from l-ornithine). The reaction of reduced enzyme and oxygen generated an imino acid and H2O2, with no detectable C4a-hydroperoxyflavin. Single-turnover reactions in which l-LOX/MOG was first reduced by l-lysine to form imino acid before mixing with various compounds revealed that under anaerobic conditions, only hydrolysis products are present. Similar results were obtained upon H2O2 addition after enzyme denaturation. H2O2 addition to active l-LOX/MOG resulted in formation of more 5-aminopentanoic acid, but not 5-aminopentamide, suggesting that H2O2 generated from l-LOX/MOG in situ can result in decarboxylation of the imino acid, yielding an amide product, and extra H2O2 resulted in decarboxylation only of keto acids. Molecular dynamics simulations and detection of charge transfer species suggested that interactions between the substrate and its binding site on l-LOX/MOG are important for imino acid decarboxylation. Structural analysis indicated that the flavoenzyme oxidases catalyzing decarboxylation of an imino acid all share a common plug loop configuration that may facilitate this decarboxylation.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand
| | - Daisuke Matsui
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan.,Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand .,School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
6
|
Zhang X, Xu N, Li J, Ma Z, Wei L, Liu Q, Liu J. Engineering of L-glutamate oxidase as the whole-cell biocatalyst for the improvement of α-ketoglutarate production. Enzyme Microb Technol 2020; 136:109530. [PMID: 32331723 DOI: 10.1016/j.enzmictec.2020.109530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
L-glutamate oxidase (LGOX) catalyzes the oxidative deamination of l-glutamate to α-ketoglutarate (α-KG) with the formation of ammonia and hydrogen peroxide. Consequently, identifying a novel LGOX with high enzymatic activity is a prime target for industrial biotechnology. In this study, error-prone PCR mutagenesis of Streptomyces mobaraensis LGOX followed by high-throughput screening was performed to yield four single point mutants with improved enzymatic activity, termed F94L, S280T, I282M and H533R. Moreover, site-saturation mutagenesis at these four residues was employed, yielding two additionally improved mutants, termed I282L and H533L. Subsequently, we employed combinatorial mutagenesis of two, three and four point mutants, and the best mutant S280TH533L showed 90 % higher enzymatic activity than the wild-type control. The data also showed that the presence of these point mutations greatly enhanced enzymatic activity, but did not alter its optimum temperature and pH. Furthermore, the S280TH533L mutant had the maximal velocity (Vmax) of 231.3 μmol/mg/min and the Michaelis-Menten constant (KM) of 2.7 mM, which were the highest Vmax and lowest KM values of LGOX reported so far. Finally, we developed a whole-cell biocatalyst for α-KG production by co-expression of both S280TH533L mutant and KatE catalase. Randomized ribosome binding site (RBS) sequences were introduced to generate vectors with varying expression levels of S280TH533L and KatE, and two optimized co-expression strains were obtained after screening. The α-KG production reached a maximum titer of 181.9 g/L after 12 h conversation using the optimized whole-cell biocatalyst, with a molar conversion rate of substrate higher than 86.3 % in the absence of exogenous catalase, while the molar conversion rate of substrate using the wild-type biocatalyst was less than 30 %. Taken together, these data suggest that the engineering of LGOX has great potentials to enhance the industrial production of α-KG.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Jialong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Zhenping Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| |
Collapse
|
7
|
Af Bjerkén S, Stenmark Persson R, Barkander A, Karalija N, Pelegrina-Hidalgo N, Gerhardt GA, Virel A, Strömberg I. Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance. Neurochem Int 2019; 131:104551. [PMID: 31542295 DOI: 10.1016/j.neuint.2019.104551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Sara Af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
| | - Rasmus Stenmark Persson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anna Barkander
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | | | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Center for Microelectrode Technology, Lexington, KY, USA
| | - Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Ghazaei C. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence. Open Vet J 2018; 8:13-24. [PMID: 29445617 PMCID: PMC5806663 DOI: 10.4314/ovj.v8i1.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
9
|
Washio T, Oikawa T. Thermostable and highly specific L-aspartate oxidase from Thermococcus litoralis DSM 5473: cloning, overexpression, and enzymological properties. Extremophiles 2017; 22:59-71. [PMID: 29143132 DOI: 10.1007/s00792-017-0977-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022]
Abstract
We successfully expressed the L-aspartate oxidase homolog gene (accession no: OCC_06611) of Thermococcus litoralis DSM 5473 in the soluble fraction of Escherichia coli BL21 (DE3) using a pET21b vector with 6X His tag at its C-terminus. The gene product (Tl-LASPO) showed L-aspartate oxidase activity in the presence of FAD in vitro, and this report is the first that details an L-aspartate oxidase derived from a Thermococcus species. The homologs of Tl-LASPO existed mainly in archaea, especially in the genus of Thermococcus, Pyrococcus, Sulfolobus, and Halobacteria. The quaternary structure of Tl-LASPO was homotrimeric with a subunit molecular mass of 52 kDa. The enzyme activity of Tl-LASPO increased with temperature up to 70 °C. Tl-LASPO was active from pH 6.0 to 9.0, and its highest activity was at pH 8.0. Tl-LASPO was stable at 80 °C for 1 h. The highest k cat/K m value was observed in assays at 70 °C. Tl-LASPO was highly specific for L-aspartic acid. Tl-LASPO utilized fumaric acid, 2,6-dichlorophenolindophenol, and ferricyanide in addition to FAD as a cofactor under anaerobic conditions. The absorption spectrum of holo-Tl-LASPO exhibited maxima at 380 and 450 nm. The FAD dissociation constant, K d, of the FAD-Tl-LASPO complex was determined to be 5.9 × 10-9 M.
Collapse
Affiliation(s)
- Tsubasa Washio
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | - Tadao Oikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan. .,Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
10
|
Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. ISME JOURNAL 2016; 11:315-326. [PMID: 27898052 PMCID: PMC5270568 DOI: 10.1038/ismej.2016.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 06/29/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022]
Abstract
Terrestrial systems support a variety of free-living soil diazotrophs, which can fix nitrogen (N) outside of plant associations. However, owing to the metabolic costs associated with N fixation, free-living soil diazotrophs likely rely on soil N to satisfy the majority of cellular N demand and only fix atmospheric N under certain conditions. Culture-based studies and genomic data show that many free-living soil diazotrophs can access high-molecular weight organic soil N by releasing N-acquiring enzymes such as proteases and chitinases into the extracellular environment. Here, we formally propose a N acquisition strategy used by free-living diazotrophs that accounts for high-molecular weight N acquisition through exoenzyme release by these organisms. We call this the ‘LAH N-acquisition strategy' for the preferred order of N pools used once inorganic soil N is limiting: (1) low-molecular weight organic N, (2) atmospheric N and (3) high-molecular weight organic N. In this framework, free-living diazotrophs primarily use biological N fixation (BNF) as a short-term N acquisition strategy to offset the cellular N lost in exoenzyme excretion as low-molecular weight N becomes limiting. By accounting for exoenzyme release by free-living diazotrophs within a cost–benefit framework, investigation of the LAH N acquisition strategy will contribute to a process-level understanding of BNF in soil environments.
Collapse
|
11
|
Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties. SENSORS 2016; 16:222. [PMID: 26861342 PMCID: PMC4801598 DOI: 10.3390/s16020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.
Collapse
|
12
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
13
|
Evans E, Gabriel EFM, Benavidez TE, Tomazelli Coltro WK, Garcia CD. Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 2014; 139:5560-7. [PMID: 25204446 PMCID: PMC4180781 DOI: 10.1039/c4an01147c] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This paper describes a silica nanoparticle-modified microfluidic paper-based analytical device (μPAD) with improved color intensity and uniformity for three different enzymatic reactions with clinical relevance (lactate, glucose, and glutamate). The μPADs were produced on a Whatman grade 1 filter paper and using a CO2 laser engraver. Silica nanoparticles modified with 3-aminopropyltriethoxysilane were then added to the paper devices to facilitate the adsorption of selected enzymes and prevent the washing away effect that creates color gradients in the colorimetric measurements. According to the results herein described, the addition of silica nanoparticles yielded significant improvements in color intensity and uniformity. The resulting μPADs allowed for the detection of the three analytes in clinically relevant concentration ranges with limits of detection (LODs) of 0.63 mM, 0.50 mM, and 0.25 mM for lactate, glucose, and glutamate, respectively. An example of an analytical application has been demonstrated for the semi-quantitative detection of all three analytes in artificial urine. The results demonstrate the potential of silica nanoparticles to avoid the washing away effect and improve the color uniformity and intensity in colorimetric bioassays performed on μPADs.
Collapse
Affiliation(s)
- Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | | | | | |
Collapse
|
14
|
Advances in Detection Methods of l-Amino Acid Oxidase Activity. Appl Biochem Biotechnol 2014; 174:13-27. [DOI: 10.1007/s12010-014-1005-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
15
|
Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. J Biotechnol 2014; 179:56-62. [DOI: 10.1016/j.jbiotec.2014.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 11/17/2022]
|
16
|
Characterization of a novel l-amino acid oxidase with protein oxidizing activity from Penicillium steckii AIU 027. J Biosci Bioeng 2014; 117:690-5. [DOI: 10.1016/j.jbiosc.2013.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 11/17/2022]
|
17
|
Pollegioni L, Motta P, Molla G. L-amino acid oxidase as biocatalyst: a dream too far? Appl Microbiol Biotechnol 2014; 97:9323-41. [PMID: 24077723 DOI: 10.1007/s00253-013-5230-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022]
Abstract
L-amino acid oxidase (LAAO) is a flavoenzyme containing non-covalently bound flavin adenine dinucleotide, which catalyzes the stereospecific oxidative deamination of l-amino acids to α-keto acids and also produces ammonia and hydrogen peroxide via an imino acid intermediate. LAAOs purified from snake venoms are the best-studied members of this family of enzymes, although a number of LAAOs from bacterial and fungal sources have been also reported. From a biochemical point of view, LAAOs from different sources are distinguished by molecular mass, substrate specificity, post-translational modifications and regulation. In analogy to the well-known biotechnological applications of d-amino acid oxidase, important results are expected from the availability of suitable LAAOs; however, these expectations have not been fulfilled yet because none of the "true" LAAOs has successfully been expressed as a recombinant protein in prokaryotic hosts, such as Escherichia coli. In enzyme biotechnology, recombinant production of a protein is mandatory both for the production of large amounts of the catalyst and to improve its biochemical properties by protein engineering. As an alternative, flavoenzymes active on specific l-amino acids have been identified, e.g., l-aspartate oxidase, l-lysine oxidase, l-phenylalanine oxidase, etc. According to presently available information, amino acid oxidases with "narrow" or "strict" substrate specificity represent as good candidates to obtain an enzyme more suitable for biotechnological applications by enlarging their substrate specificity by means of protein engineering.
Collapse
|
18
|
El-Sayed AS, Shindia AA, Zaher YA. Purification and characterization of L-amino acid oxidase from the solid-state grown cultures of Aspergillus oryzae ASH. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261713060143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 2013; 98:1507-15. [PMID: 24352734 DOI: 10.1007/s00253-013-5444-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
L-Amino acid oxidases (LAAOs), which catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids and ammonia, are flavin adenine dinucleotide-containing homodimeric proteins. L-Amino acid oxidases are widely distributed in diverse organisms and have a range of properties. Because expressing LAAOs as recombinant proteins in heterologous hosts is difficult, their biotechnological applications have not been thoroughly advanced. LAAOs are thought to contribute to amino acid catabolism, enhance iron acquisition, display antimicrobial activity, and catalyze keto acid production, among other roles. Here, we review the types, properties, structures, biological functions, heterologous expression, and applications of LAAOs obtained from microbial sources. We expect this review to increase interest in LAAO studies.
Collapse
|
20
|
Isobe K, Sasaki T, Aigami Y, Yamada M, Kishino S, Ogawa J. Characterization of a new enzyme oxidizing ω-amino group of aminocarboxyric acid, aminoalcohols and amines from Phialemonium sp. AIU 274. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Arinbasarova AY, Makrushin KV, Medentsev AG, Lukasheva EV, Berezov TT. Production of extracellular H2O2 and L-lysine-α-oxidase during bulk growth of the fungus Trichoderma cf. aureoviride Rifai VKM F-4268D under salt stress. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712050025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Arinbasarova AY, Ashin VV, Makrushin KV, Medentsev AG, Lukasheva EV, Berezov TT. Isolation and properties of L-lysine-α-oxidase from the fungus Trichoderma cf. aureoviride RIFAI VKM F-4268D. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712050037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Isobe K, Sugawara A, Domon H, Fukuta Y, Asano Y. Purification and characterization of an L-amino acid oxidase from Pseudomonas sp. AIU 813. J Biosci Bioeng 2012; 114:257-61. [PMID: 22704811 DOI: 10.1016/j.jbiosc.2012.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/28/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
An L-amino acid oxidase was found from a newly isolated strain, Pseudomonas sp. AIU 813. This enzyme was remarkably induced by incubation with L-lysine as a nitrogen source, and efficiently purified using an affinity chromatography with L-lysine as ligand. The enzyme oxidized L-lysine, L-ornithine and L-arginine, but not other L-amino acids and d-amino acids. The oxidase activity for L-lysine was detected in a wide pH range, and its optimal was pH 7.0. In contrast, the oxidase activity for L-ornithine and L-arginine was not shown in acidic region from pH 6.5, and optimal pH for both substrates was 9.0. The enzyme was a flavoprotein and composed of two identical subunits with molecular mass of 54.5 kDa. The N-terminal amino acid sequence was similar to that of putative flavin-containing amine oxidase and putative tryptophan 2-monooxygenase, but not to that of L-amino acid oxidases.
Collapse
Affiliation(s)
- Kimiyasu Isobe
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
| | | | | | | | | |
Collapse
|
24
|
Yu Z, Qiao H. Advances in non-snake venom L-amino acid oxidase. Appl Biochem Biotechnol 2012; 167:1-13. [PMID: 22367642 DOI: 10.1007/s12010-012-9611-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/10/2012] [Indexed: 11/28/2022]
Abstract
L-amino acid oxidase is widely found in diverse organisms and has different properties. It is thought to contribute to antimicrobial activity, amino acid catabolism, and so forth. The purpose of this communication is to summarize the advances in non-snake venom L-amino acid oxidase, including its enzymatic and structural properties, gene cloning and expression, and biological function. In addition, the mechanism of its biological function as well as its application is also discussed.
Collapse
Affiliation(s)
- Zhiliang Yu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China.
| | | |
Collapse
|
25
|
Utsumi T, Arima J, Sakaguchi C, Tamura T, Sasaki C, Kusakabe H, Sugio S, Inagaki K. Arg305 of Streptomyces l-glutamate oxidase plays a crucial role for substrate recognition. Biochem Biophys Res Commun 2012; 417:951-5. [DOI: 10.1016/j.bbrc.2011.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
|
26
|
Lukasheva E, Efremova A, Treshalina E, Arinbasarova A, Medentzev A, Berezov T. L-amino acid oxidases: properties and molecular mechanisms of action. ACTA ACUST UNITED AC 2012; 58:372-84. [DOI: 10.18097/pbmc20125804372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During previous decade L-amino acid oxidases (LAAO) attracted the steady interest of researchers due to their poly functional effects on different biological systems. The review summarizes information concerning the sources, structure, phisico-chemical and catalytical properties of LAAO which exhibit antibacterial, antifungal, antiprotozoal, antiviral effects as well as the ambiguous action on platelet aggregation. Special attention is devoted to the elucidation of molecular mechanisms of LAAO action. It is proposed that the unique properties of LAAO are based on their catalytic reaction, which causes the decrease of L-amino acid levels, including the essential amino acids and formation of hydrogen peroxide. The action of liberated H2O2 on cells involves the synthesis of oxygen reactive species and the development of necrotic and apoptotic pathways of cell death. The presence of carbohydrate moieties in LAAO molecules promotes their attachment to cell's surface and creation of high H2O2 local concentrations. The wide range of LAAO biological effects is undoubtedly connected with their important functional roles in the organism. In particular, it was shown that in the mice brain the LAAO-catalyzed reaction is the single pathway of L-lysine degradation, while in the mice milk LAAO carry out the antibacterial effect and in human leucocytes LAAO take part in fulfilling their defending role. Protector action may be also attributed to the oxidases from the other numerous sources: microscopic fungi, snake venoms and sea inhabitants.
Collapse
Affiliation(s)
- E.V. Lukasheva
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - A.A. Efremova
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - E.M. Treshalina
- N. N. Blokhin Cancer Research Center,Russian Academy of Medical Sciences
| | - A.Ju. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - A.G. Medentzev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - T.T. Berezov
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| |
Collapse
|
27
|
Lukasheva EV, Efremova AA, Treshalina EM, Arinbasarova AY, Medentzev AG, Berezov TT. L-Amino acid oxidases: Properties and molecular mechanisms of action. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s199075081104007x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Nuutinen JT, Marttinen E, Soliymani R, Hildén K, Timonen S. L-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. MICROBIOLOGY-SGM 2011; 158:272-283. [PMID: 21998160 DOI: 10.1099/mic.0.054486-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Catabolism of amino acids is a central process in cellular nitrogen turnover, but only a few of the mechanisms involved have been described from basidiomycete fungi. This study identified one such mechanism, the l-amino acid oxidase (Lao1) enzyme of Hebeloma cylindrosporum, by 2D gel separation and MS. We determined genomic DNA sequences of lao1 and part of its upstream gene, a putative pyruvate decarboxylase (pdc2), and cloned the cDNA of lao1. The two genes were also identified and annotated from the genome of Laccaria bicolor. The lao1 and pdc2 gene structures were conserved between the two fungi. The intergenic region of L. bicolor possessed putative duplications not detected in H. cylindrosporum. Lao1 sequences possessed dinucleotide-binding motifs typical for flavoproteins. Lao1 was less than 23 % identical to Lao sequences described previously. Recombinant Lao1 of H. cylindrosporum was expressed in Escherichia coli, purified and refolded with SDS to gain catalytic activity. The enzyme possessed broad substrate specificity: 37 l-amino acids or derivatives served as effective substrates. The highest activities were recorded with l-glutamate, but positively charged and aromatic amino acids were also accepted. Michaelis constants for six amino acids varied from 0.5 to 6.7 mM. We have thus characterized a novel type of Lao-enzyme and its gene from the basidiomycete fungus H. cylindrosporum.
Collapse
Affiliation(s)
- Jaro T Nuutinen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| | - Eeva Marttinen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| | - Rabah Soliymani
- Institute of Biomedicine, Department of Anatomy, Protein Chemistry Unit, Biomedicum-Helsinki, PO Box 63, FI-00014 University of Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland
| | - Sari Timonen
- Department of Food and Environmental Sciences, PO Box 56, FI-00014 University of Helsinki, Finland.,Department of Agricultural Sciences, PO Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
29
|
Ida K, Suguro M, Suzuki H. High resolution X-ray crystal structures of l-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501. Structures of the enzyme-ligand complex and catalytic mechanism. ACTA ACUST UNITED AC 2011; 150:659-69. [DOI: 10.1093/jb/mvr103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
30
|
Singh S, Gogoi BK, Bezbaruah RL. Optimization of medium and cultivation conditions for L-amino acid oxidase production by Aspergillus fumigatus. Can J Microbiol 2010; 55:1096-102. [PMID: 19898552 DOI: 10.1139/w09-068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A fungal strain was selected from the microbial repository of the North-East Institute of Science and Technology, Jorhat, India, which could produce a high yield of L-amino acid oxidase. 18SrRNA, ITS1, 5.8SrRNA ITS2, and partial 28 S rRNA sequencing and phenotypic characteristics indicate that it belong to the species Aspergillus fumigatus (designated as P13). Maximum production of enzyme (59.55 x 10-3 U/mg dry cell mass) was obtained in a medium containing 10 g/L glucose, 4 g/L yeast extract, and 4 g/L ammonium sulfate, with 20 mmol/L of L-threonine as the inducer. The optimum temperature for enzyme production was 30 degrees C at pH 7.0, with a shaking speed of 200 r/min. At 96 h, the enzyme activity was maximum. The A. fumigatus P13 L-amino acid oxidase accepts a broad substrate range, and the maximum enzyme activity (20.41 x 10-3 U/mg dry cell mass) was obtained with 50 mmol/L of L-tyrosine. In the literature, no reports have been found regarding the production of L-amino acid oxidase by A. fumigatus. The enzyme showed enantiomerically pure amino acid formation, which has tremendous demand in industrial applications.
Collapse
Affiliation(s)
- Susmita Singh
- North-East Institute of Science and Technology, Council of Scientific and Industrial Research, Jorhat, Assam, India.
| | | | | |
Collapse
|
31
|
Chen WM, Lin CY, Sheu SY. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity. Enzyme Microb Technol 2010; 46:487-93. [PMID: 25919624 DOI: 10.1016/j.enzmictec.2010.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/08/2010] [Accepted: 01/25/2010] [Indexed: 11/27/2022]
Abstract
A greenish yellow pigmented bacterial strain, designated GR5, was recently isolated from a freshwater culture pond for a soft-shell turtle. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain GR5 belongs to the genus Rheinheimera and its only closest neighbor is the type strain of Rheinheimera texasensis (98.2%). Based on the antibiogram assay, strain GR5 possesses a broad spectrum of antimicrobial activity including Gram-positive and Gram-negative bacteria, yeast, algae, and strain GR5 itself. Strain GR5 can synthesize a macromolecule with antimicrobial activity due to the generation of hydrogen peroxide and this antimicrobial effect can be inhibited by catalase. This antimicrobial activity is active only in complex culture media or chemically defined culture media containing l-lysine. This antimicrobial macromolecule in strain GR5 is shown to be a monomeric protein with a molecular mass of 71kDa and isoelectric point of approximately 3.68. Liquid chromatography-tandem mass spectrometry analyses reveal close similarity of a 19-amino acid fragment derived from this protein to the antibacterial protein, AlpP from the marine bacterium Pseudoalteromonas tunicata D2, and to the antibacterial protein, marinocine, from the marine bacterium Marinomonas mediterranea. This study explores the nature of antimicrobial macromolecule such as l-lysine oxidase. This is the first report on a freshwater bacterium producing antimicrobial activity by generating hydrogen peroxide through its enzymatic activity of l-lysine oxidase.
Collapse
Affiliation(s)
- Wen Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu, Kaohsiung City 811, Taiwan
| | - Chang Yi Lin
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu, Kaohsiung City 811, Taiwan
| | - Shih Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd., Nan-Tzu, Kaohsiung City 811, Taiwan.
| |
Collapse
|
32
|
Müller HG. Biocatalytic Hydroxylations Catalyzed by Cytochromes P-450—Problems and Prospects. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429008998183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- H.-G. Müller
- Central Institute of Molecular Biology, Academy of Sciences of the GDR, DDR-1115, Berlin-Buch, GDR
| |
Collapse
|
33
|
Findrik Z, Vasić-Rački Ð, Primožič M, Habulin M, Knez Ž. Enzymatic activity ofL-amino acid oxidase from snake venomCrotalus adamanteusin supercritical CO2. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500285694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Arima J, Sasaki C, Sakaguchi C, Mizuno H, Tamura T, Kashima A, Kusakabe H, Sugio S, Inagaki K. Structural characterization of L-glutamate oxidase from Streptomyces sp. X-119-6. FEBS J 2009; 276:3894-903. [PMID: 19531050 DOI: 10.1111/j.1742-4658.2009.07103.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-Glutamate oxidase (LGOX) from Streptomyces sp. X-119-6, which catalyzes the oxidative deamination of L-glutamate, has attracted increasing attention as a component of amperometric L-glutamate sensors used in the food industry and clinical biochemistry. The precursor of LGOX, which has a homodimeric structure, is less active than the mature enzyme with an alpha(2)beta(2)V(2) structure; enzymatic proteolysis of the precursor forms the stable mature enzyme. We solved the crystal structure of mature LGOX using molecular replacement with a structurally homologous model of L-amino acid oxidase (LAAO) from snake venom: LGOX has a deeply buried active site and two entrances from the surface of the protein into the active site. Comparison of the LGOX structure with that of LAAO revealed that LGOX has three regions that are absent from the LAAO structure, one of which is involved in the formation of the entrance. Furthermore, the arrangement of the residues composing the active site differs between LGOX and LAAO, and the active site of LGOX is narrower than that of LAAO. Results of the comparative analyses described herein raise the possibility that such a unique structure of LGOX is associated with its substrate specificity.
Collapse
Affiliation(s)
- Jiro Arima
- Department of Biofunctional Chemistry, Graduate School of Natural Science and Technology, Okayama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Microsensors for in vivo Measurement of Glutamate in Brain Tissue. SENSORS 2008; 8:6860-6884. [PMID: 27873904 PMCID: PMC3787420 DOI: 10.3390/s8116860] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/24/2008] [Accepted: 11/03/2008] [Indexed: 12/31/2022]
Abstract
Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo performance are summarized here for those sensors that have successfully detected brain glutamate in vivo. In brief, first generation sensors have a simpler structure and are faster in glutamate detection. They also show a better sensitivity to glutamate during calibration in vitro. For second generation sensors, besides their less precise detection, their fabrication is difficult to reproduce, even with a semi-automatic dip-coater. Both generations of sensors can detect glutamate levels in vivo, but the reported basal levels are different. In general, second generation sensors detect higher basal levels of glutamate compared with the results obtained from first generation sensors. However, whether the detected glutamate is indeed from synaptic sources is an issue that needs further attention.
Collapse
|
36
|
Findrik Z, Vasić-Rački Đ. Mathematical modelling of amino acid resolution catalyzed by l-amino acid oxidases from Crotalus adamanteus and Crotalus atrox. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Isobe K, Nagasawa S. Characterization of Nα-benzyloxycarbonyl-l-lysine oxidizing enzyme from Rhodococcus sp. AIU Z-35-1. J Biosci Bioeng 2007; 104:218-23. [DOI: 10.1263/jbb.104.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 06/23/2007] [Indexed: 11/17/2022]
|
38
|
Faust A, Niefind K, Hummel W, Schomburg D. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol 2006; 367:234-48. [PMID: 17234209 DOI: 10.1016/j.jmb.2006.11.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 11/13/2006] [Accepted: 11/22/2006] [Indexed: 11/23/2022]
Abstract
l-Amino acid oxidase from Rhodococcus opacus (roLAAO) is classified as a member of the GR(2)-family of flavin-dependent oxidoreductases according to a highly conserved sequence motif for the cofactor binding. The monomer of the homodimeric enzyme consists of three well-defined domains: the FAD-binding domain corresponding to a general topology throughout the whole GR(2)-family; a substrate-binding domain with almost the same topology as the snake venom LAAO and a helical domain exclusively responsible for the unusual dimerisation mode of the enzyme and not found in other members of the family so far. We describe here high-resolution structures of the binary complex of protein and cofactor as well as the ternary complexes of protein, cofactor and ligands. This structures in addition to the structural knowledge of snake venom LAAO and DAAO from yeast and pig kidney permit more insight into different steps in the reaction mechanism of this class of enzymes. There is strong evidence for hydride transfer as the mechanism of dehydrogenation. This mechanism appears to be uncommon in a sense that the chemical transformation can proceed efficiently without the involvement of amino acid functional groups. Most groups present at the active site are involved in substrate recognition, binding and fixation, i.e. they direct the trajectory of the interacting orbitals. In this mode of catalysis orbital steering/interactions are the predominant factors for the chemical step(s). A mirror-symmetrical relationship between the two substrate-binding sites of d and l-amino acid oxidases is observed which facilitates enantiomeric selectivity while preserving a common arrangement of the residues in the active site. These results are of general relevance for the mechanism of flavoproteins and lead to the proposal of a common dehydrogenation step in the mechanism for l and d-amino acid oxidases.
Collapse
Affiliation(s)
- Annette Faust
- Universität zu Köln, Institut für Biochemie, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
39
|
Hale PD, Lee HS, Okamoto Y, Skotheim TA. Glutamate Biosensors Based on Electrical Communication Between L-Glutamate Oxidase and a Flexible Redox Polymer. ANAL LETT 2006. [DOI: 10.1080/00032719108052911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
|
41
|
Faust A, Geueke B, Niefind K, Hummel W, Schomburg D. Crystallization and preliminary X-ray analysis of a bacterial L-amino-acid oxidase from Rhodococcus opacus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:279-81. [PMID: 16511322 PMCID: PMC2197183 DOI: 10.1107/s1744309106005689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/15/2006] [Indexed: 11/10/2022]
Abstract
L-Amino-acid oxidases (EC 1.4.3.2) catalyse the stereospecific oxidative deamination of an L-amino-acid substrate to an alpha-keto acid with the production of ammonia and hydrogen peroxide. In this study, the crystallization and preliminary X-ray analysis of a bacterial L-amino-acid oxidase from Rhodococcus opacus (RoLAAO) is described. RoLAAO is a dimeric protein consisting of two identical subunits of 489 amino acids with a calculated molecular weight of 54.2 kDa and a non-covalently bound FAD molecule. RoLAAO was crystallized by the vapour-diffusion method in two different space groups: P2(1)2(1)2(1) (unit-cell parameters a = 65.7, b = 109.7, c = 134.4 A) and C222(1) (unit-cell parameters a = 68.3, b = 88.4, c = 186.6 A). Both crystal forms diffracted X-rays to a resolution of at least 1.6 A.
Collapse
Affiliation(s)
- Annette Faust
- Institute of Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| | - Birgit Geueke
- Swiss Federal Institute of Environmental Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Karsten Niefind
- Institute of Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
| | - Werner Hummel
- Institute of Molecular Enzyme Technology, Heinrich-Heine University of Duesseldorf at Research Centre Juelich, 52426 Juelich, Germany
| | - Dietmar Schomburg
- Institute of Biochemistry, University of Cologne, Zuelpicher Strasse 47, 50674 Cologne, Germany
- Correspondence e-mail:
| |
Collapse
|
42
|
Modelling of l-DOPA enzymatic oxidation catalyzed by l-amino acid oxidases from Crotalus adamanteus and Rhodococcus opacus. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2005.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Katsos NE, Labrou NE, Clonis YD. Interaction of l-glutamate oxidase with triazine dyes: selection of ligands for affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:277-85. [PMID: 15203041 DOI: 10.1016/j.jchromb.2004.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/24/2004] [Accepted: 04/21/2004] [Indexed: 11/24/2022]
Abstract
Glutamate oxidase (GOX, EC 1.4.3.11) from Streptomyces catalyses the oxidation of L-glutamate to alpha-ketoglutarate. Its kinetic constants for L-glutamate were measured equal to 2 mM for Km and 85.8 s(-1) for kcat. BLAST search and amino acid sequence alignments revealed low homology to other L-amino acid oxidases (18-38%). Threading methodology, homology modeling and CASTp analysis resulted in certain conclusions concerning the structure of catalytic alpha-subunit and led to the prediction of a binding pocket that provides favorable conditions of accommodating negatively charged aromatic ligands, such as sulphonated triazine dyes. Eleven commercial textile dyes and four biomimetic dyes or minodyes, bearing a ketocarboxylated-structure as their terminal biomimetic moiety, immobilized on cross-linked agarose gel. The resulted mini-library of affinity adsorbents was screened for binding and eluting L-glutamate oxidase activity. All but Cibacron Blue 3GA (CB3GA) affinity adsorbents were able to bind GOX at pH 5.6. One immobilized minodye-ligand, bearing as its terminal biomimetic moiety p-aminobenzyloxanylic acid (BM1), displayed the higher affinity for GOX. Kinetic inhibition studies showed that BM1 inhibits GOX in a non-competitive manner with a Ki of 10.5 microM, indicating that the dye-enzyme interaction does not involve the substrate-binding site. Adsorption equilibrium data, obtained from a batch system with BM1 adsorbent, corresponded well to the Freundlich isotherm with a rate constant k of 2.7 mg(1/2)ml(1/2)/g and Freundlich isotherm exponent n of 1. The interaction of GOX with the BM1 adsorbent was further studied with regards to adsorption and elution conditions. The results obtained were exploited in the development of a facile purification protocol for GOX, which led to 335-fold purification in a single step with high enzyme recovery (95%). The present purification procedure is the most efficient reported so far for L-glutamate oxidase.
Collapse
Affiliation(s)
- N E Katsos
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | | | | |
Collapse
|
44
|
Geueke B, Hummel W. A new bacterial l-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00072-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Chen CY, Wu WT, Huang CJ, Lin MH, Chang CK, Huang HJ, Liao JM, Chen LY, Liu YT. A common precursor for the three subunits ofL-glutamate oxidase encoded bygoxgene fromStreptomyces platensisNTU3304. Can J Microbiol 2001. [DOI: 10.1139/w01-003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A segment of DNA containing the L-glutamate oxidase (gox) gene from Streptomyces platensis NTU3304 was cloned. The entire nucleotide sequence of the protein-coding portion consisting of 2130 bp (710 codons, including AUG and UGA) of the cloned DNA fragment was determined. The gox gene contained only one open reading frame (ORF) which coded for a 78-kDa polypeptide, the precursor of active extracellular Gox. Mature Gox is composed of three subunits, designated as α, β, and γ, with molecular masses of 39, 19, and 16 kDa, respectively. Analyses of the N-terminal amino acid sequences of the subunits revealed that the order of subunits in the precursor polypeptide encoded by the ORF, from N-terminus to C-terminus, is αγβ. The presence of the flavin adenine dinucleotide (FAD)-binding motif place Gox as a member of the flavoenzyme family. Furthermore, a negative effect of glucose on the biosynthesis of Gox was observed when it was used as carbon source.Key words: L-glutamate oxidase, gox gene, signal peptide, DNA sequence, flavoenzyme, pIJ702 vector.
Collapse
|
46
|
Patel RN, Banerjee A, Nanduri VB, Goldberg SL, Johnston RM, Hanson RL, McNamee CG, Brzozowski DB, Tully TP, Ko RY, LaPorte TL, Cazzulino DL, Swaminathan S, Chen C, Parker LW, Venit JJ. Biocatalytic preparation of a chiral synthon for a vasopeptidase inhibitor: enzymatic conversion of N(2)-. Enzyme Microb Technol 2000; 27:376-389. [PMID: 10938417 DOI: 10.1016/s0141-0229(00)00233-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
[4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine epsilon-aminotransferase. This enzyme catalyzed the oxidation of the epsilon-amino group of lysine in the dipeptide dimer N(2)-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required alpha-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to alpha-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine epsilon-amino transferase and glutamate oxidase, respectively. L-lysine epsilon-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine epsilon-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine epsilon-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine epsilon-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65-70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine epsilon-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine epsilon-aminotransferase. N-alpha-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine epsilon-aminotransferase.
Collapse
Affiliation(s)
- RN Patel
- Department of Microbial Technology and Process Development, Process Research & Development, Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 191, 08903, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. Anal Chem 2000; 72:1720-3. [PMID: 10763276 DOI: 10.1021/ac990801o] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specially deposited Prussian Blue denoted as "artificial peroxidase" was used as a transducer for hydrogen peroxide. The electrocatalyst was stable, highly active, and selective to hydrogen peroxide reduction in the presence of oxygen, which allowed sensing of H2O2 around 0.0 V (Ag/AgCl). Glutamate oxidase was immobilized on the surface of the Prussian Blue-modified electrode in a Nafion layer using a nonaqueous enzymology approach. The calibration range for glutamate in flow injection system was 1 x 10(-7)-1 x 10(-4) M. The lowest concentration of glutamate detected (1 x 10(-7) M) and the highest sensitivity in the linear range of 0.21 A M-1 cm-2 were achieved. The influence of reductants was practically avoided using the low potential of an indicator electrode (0.0 V Ag/AgCl). The attractive performance characteristics of the glutamate biosensor illustrate the advantages of Prussian Blue-based "artificial peroxidase" as transducer for hydrogen peroxide detection.
Collapse
Affiliation(s)
- A A Karyakin
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
48
|
Streptomyces sp. Z-11-6, a novel producer of extracellular L-glutamate oxidase. Microbiology (Reading) 2000. [DOI: 10.1007/bf02757249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
49
|
Sukhacheva MV, Netrusov AI. Extracellular L-glutamate oxidase ofStreptomyces sp. Z-11-6: Obtainment and properties. Microbiology (Reading) 2000. [DOI: 10.1007/bf02757250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Production ofL-glutamate oxidase andin situ monitoring of oxygen uptake in solid state fermentation ofstreptomyces sp. Nl. Appl Biochem Biotechnol 1997. [DOI: 10.1007/bf02788000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|