1
|
Puzakova LV, Puzakov MV. Structure and Evolution of the AqE Gene in Insects. Mol Biol 2023. [DOI: 10.1134/s0026893323010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Shimizu T, Nakamura A. A functionally uncharacterized type-2 malate/l-lactate dehydrogenase family protein from Thermus thermophilus HB8 catalyzes stereospecific reduction of 2-keto-3-deoxy-d-gluconate. Extremophiles 2022; 26:37. [DOI: 10.1007/s00792-022-01282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
|
3
|
Puzakova LV, Puzakov MV. Tissue Specificity of the AqE Gene Activity in the Yellow Croaker Larimichthys crocea. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Puzakova LV, Puzakov MV, Gostyukhina OL. Newly Discovered AqE Gene is Highly Conserved in Non-tetrapod Vertebrates. J Mol Evol 2021; 89:214-224. [PMID: 33604781 DOI: 10.1007/s00239-021-09997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Studying the diversity of energy production pathways is important for understanding the evolutionary relationships between metabolic pathways and their biochemical precursors. The lactate/malate dehydrogenase (LDH/MDH) superfamily has been a model system for structural and functional evolution for a long time. Recently, the type-2 family of LDH/MDH (or LDH2/MDH2 oxidoreductase) has been identified. The LDH2/MDH2 oxidoreductase family is now known to have functionally more diverse enzymes than the LDH/MDH superfamily. In channel catfish, the gene encoding the LDH2/MDH2 oxidoreductase has been found (and was provisionally termed AqE). Homologs of this enzyme are predominantly present in organisms living in an aquatic environment. In this work, we studied the AqE gene distribution among non-tetrapod vertebrates. It was found that the AqE gene is present in the genomes of bony and cartilaginous fish and in the genomes of hagfishes and lampreys. In addition, it has been confirmed that in representatives of Cypriniformes, the AqE gene has been lost. AqE in representatives of Salmoniformes underwent significant deletions, which most likely led to its pseudogenization. In most orders of non-Tetrapoda vertebrates, the AqE gene remains highly conserved, suggesting that the AqE gene in aquatic vertebrates is an essential gene and undergoes rigorous selection. The AqE gene has the highest sequence similarity with the archaeal ComC gene that encodes sulfolactate dehydrogenase (SLDH). Based on the similarity of substrates, the enzyme encoded by the AqE gene is likely involved in the malate-aspartate shuttle mechanism or the biosynthesis of the energy coenzyme M equivalent.
Collapse
Affiliation(s)
- Lyudmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol, 299011, Russia.
| | - Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol, 299011, Russia
| | - Olga L Gostyukhina
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol, 299011, Russia
| |
Collapse
|
5
|
Puzakova LV, Puzakov MV, Soldatov AA. Gene Encoding a Novel Enzyme of LDH2/MDH2 Family is Lost in Plant and Animal Genomes During Transition to Land. J Mol Evol 2019; 87:52-59. [PMID: 30607448 DOI: 10.1007/s00239-018-9884-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
Abstract
L-Lactate/malate dehydrogenases (LDH/MDH) and type 2 L-lactate/malate dehydrogenases (LDH2/MDH2) belong to NADH/NADPH-dependent oxidoreductases (anaerobic dehydrogenases). They form a large protein superfamily with multiple enzyme homologs found in all branches of life: from bacteria and archaea to eukaryotes, and play an essential role in metabolism. Here, we describe the gene encoding a new enzyme of LDH2/MDH2 oxidoreductase family. This gene is found in genomes of all studied groups/classes of bacteria and fungi. In the plant kingdom, this gene was observed only in algae, but not in bryophyta or spermatophyta. This gene is present in all taxonomic groups of animal kingdom beginning with protozoa, but is lost in lungfishes and other, higher taxa of vertebrates (amphibians, reptiles, avians and mammals). Since the gene encoding the new enzyme is found only in taxa associated with the aquatic environment, we named it AqE (aquatic enzyme). We demonstrated that AqE gene is convergently lost in different independent lineages of animals and plants. Interestingly, the loss of the gene is consistently associated with transition from aquatic to terrestrial life forms, which suggests that this enzyme is essential in aquatic environment, but redundant or even detrimental in terrestrial organisms.
Collapse
Affiliation(s)
- L V Puzakova
- The A.O. Kovalevsky Institute of Marine Biology Research of RAS, Nakhimov av., 2, Sevastopol, Russia, 299011
| | - M V Puzakov
- The A.O. Kovalevsky Institute of Marine Biology Research of RAS, Nakhimov av., 2, Sevastopol, Russia, 299011.
| | - A A Soldatov
- The A.O. Kovalevsky Institute of Marine Biology Research of RAS, Nakhimov av., 2, Sevastopol, Russia, 299011
| |
Collapse
|
6
|
Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z, Szilágyi Á, Rákhely G, Horváth J, Kovács KL. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing. Front Microbiol 2018; 9:2285. [PMID: 30319585 PMCID: PMC6165872 DOI: 10.3389/fmicb.2018.02285] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - József Horváth
- Faculty of Agriculture, University of Szeged, Hódmezövásárhely, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Takeya M, Ito S, Sukigara H, Osanai T. Purification and Characterisation of Malate Dehydrogenase From Synechocystis sp. PCC 6803: Biochemical Barrier of the Oxidative Tricarboxylic Acid Cycle. FRONTIERS IN PLANT SCIENCE 2018; 9:947. [PMID: 30057585 PMCID: PMC6053527 DOI: 10.3389/fpls.2018.00947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria possess an atypical tricarboxylic acid (TCA) cycle with various bypasses. Previous studies have suggested that a cyclic flow through the TCA cycle is not essential for cyanobacteria under normal growth conditions. The cyanobacterial TCA cycle is, thus, different from that in other bacteria, and the biochemical properties of enzymes in this TCA cycle are less understood. In this study, we reveal the biochemical characteristics of malate dehydrogenase (MDH) from Synechocystis sp. PCC 6803 MDH (SyMDH). The optimal temperature of SyMDH activity was 45-50°C and SyMDH was more thermostable than MDHs from other mesophilic microorganisms. The optimal pH of SyMDH varied with the direction of the reaction: pH 8.0 for the oxidative reaction and pH 6.5 for the reductive reaction. The reductive reaction catalysed by SyMDH was activated by magnesium ions and fumarate, indicating that SyMDH is regulated by a positive feedback mechanism. The Km-value of SyMDH for malate was approximately 210-fold higher than that for oxaloacetate and the Km-value for NAD+ was approximately 19-fold higher than that for NADH. The catalytic efficiency of SyMDH for the reductive reaction, deduced from kcat-values, was also higher than that for the oxidative reaction. These results indicate that SyMDH is more efficient in the reductive reaction in the TCA cycle, and it plays key roles in determining the direction of the TCA cycle in this cyanobacterium.
Collapse
|
8
|
Expression, Purification, and Characterization of ( R)-Sulfolactate Dehydrogenase (ComC) from the Rumen Methanogen Methanobrevibacter millerae SM9. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:5793620. [PMID: 29234237 PMCID: PMC5695019 DOI: 10.1155/2017/5793620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/19/2017] [Indexed: 12/03/2022]
Abstract
(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent KM for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the Vmax was 93.9 μmol min−1 mg−1 and kcat was 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.
Collapse
|
9
|
Hensel R, Fabry S, Biro J, Bogedain C, Jakob I, Siebers B. Glyceraldehyde-3-Phosphate Dehydrogenases from Archaea: Objects for Studying Protein Thermoadaptation. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Reinhard Hensel
- FB 9 Mikrobiologie, Universität GHS Essen, Universitätsstr 5, D-45117 Essen
| | - Stefan Fabry
- Lehrstuhl für Genetik, der Universität Regensburg, D-8400, Regensburg
| | - Jutta Biro
- Max-Planck-Institut fur Biochemie, Am Klopferspitz, D-82152, Martinsried
| | - Christoph Bogedain
- Max-Planck-Institut fur Biochemie, Am Klopferspitz, D-82152, Martinsried
| | - Irmgard Jakob
- Max-Planck-Institut fur Biochemie, Am Klopferspitz, D-82152, Martinsried
| | - Bettina Siebers
- FB 9 Mikrobiologie, Universität GHS Essen, Universitätsstr 5, D-45117 Essen
| |
Collapse
|
10
|
Yennaco LJ, Hu Y, Holden JF. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. Extremophiles 2007; 11:741-6. [PMID: 17487443 DOI: 10.1007/s00792-007-0081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/28/2007] [Indexed: 11/25/2022]
Abstract
Native and recombinant malate dehydrogenase (MDH) was characterized from the hyperthermophilic, facultatively autotrophic archaeon Pyrobaculum islandicum. The enzyme is a homotetramer with a subunit mass of 33 kDa. The activity kinetics of the native and recombinant proteins are the same. The apparent K ( m ) values of the recombinant protein for oxaloacetate (OAA) and NADH (at 80 degrees C and pH 8.0) were 15 and 86 microM, respectively, with specific activity as high as 470 U mg(-1). Activity decreased more than 90% when NADPH was used. The catalytic efficiency of OAA reduction by P. islandicum MDH using NADH was significantly higher than that reported for any other archaeal MDH. Unlike other archaeal MDHs, specific activity of the P. islandicum MDH back-reaction also decreased more than 90% when malate and NAD(+) were used as substrates and was not detected with NADP(+). A phylogenetic tree of 31 archaeal MDHs shows that they fall into 5 distinct groups separated largely along taxonomic lines suggesting minimal lateral mdh transfer between Archaea.
Collapse
Affiliation(s)
- Lynda J Yennaco
- Department of Microbiology, University of Massachusetts, N203 Morrill Science Center IV North, Amherst, MA 01003, USA
| | | | | |
Collapse
|
11
|
Eprintsev AT, Falaleeva MI, Klimova MA, Parfenova NV. Isolation and properties of malate dehydrogenase from Meso-and thermophilic bacteria. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806030033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Eprintsev AT, Falaleeva MI, Parfyonova NV. Malate dehydrogenase from the thermophilic bacterium Vulcanithermus medioatlanticus. BIOCHEMISTRY (MOSCOW) 2006; 70:1027-30. [PMID: 16266275 DOI: 10.1007/s10541-005-0220-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thermostable dimeric malate dehydrogenase (MDH) was isolated from the microorganism of hydrothermal vents Vulcanithermus medioatlanticus. The enzyme was electrophoretically homogeneous and possessed the specific activity of 6.9 U/mg. The large molecular weight of the subunits (55 kD) is likely to provide the rigidity of the enzyme structure (the activation energy of the enzymatic reaction is 32.6 kJ/mol). The thermophilic MDH differs little from the mesophilic enzyme in terms of kinetic and regulatory characteristics.
Collapse
Affiliation(s)
- A T Eprintsev
- Voronezh State University, Voronezh, 394006, Russia.
| | | | | |
Collapse
|
13
|
Muramatsu H, Mihara H, Goto M, Miyahara I, Hirotsu K, Kurihara T, Esaki N. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J Biosci Bioeng 2005; 99:541-7. [PMID: 16233829 DOI: 10.1263/jbb.99.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
A new family of NAD(P)H-dependent oxidoreductases is now recognized as a protein family distinct from conventional Rossmann-fold proteins. Numerous putative proteins belonging to the family have been annotated as malate dehydrogenase (MDH) or lactate dehydrogenase (LDH) according to the previous classification as type-2 malate/L-lactate dehydrogenases. However, recent biochemical and genetic studies have revealed that the protein family consists of a wide variety of enzymes with unique catalytic activities other than MDH or LDH activity. Based on their sequence homologies and plausible functions, the family proteins can be grouped into eight clades. This classification would be useful for reliable functional annotation of the new family of NAD(P)H-dependent oxidoreductases.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
15
|
Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K. Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. J Biol Chem 2005; 280:40875-84. [PMID: 16192274 DOI: 10.1074/jbc.m507399200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.55-, 1.8-, and 1.7-A resolutions, respectively. The enzyme exists as a dimer, and the subunit consists of three domains; domain I, domain II (NADPH binding domain), and domain III. The core of the NADPH binding domain consists of a seven-stranded predominantly antiparallel beta-sheet fold (which we named SESAS) that is characteristic of the new oxidoreductase family. The enzyme preference for NADPH over NADH is explained by the cofactor binding site architecture. A comparison of the overall structures revealed that the mobile domains I and III change their conformations to produce the catalytic form. This conformational change plays important roles in substrate recognition and the catalytic process. The active site structure of the catalytic form made it possible to identify the catalytic Asp:Ser:His triad and investigate the catalytic mechanism from a stereochemical point of view.
Collapse
Affiliation(s)
- Masaru Goto
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng N, Xu J, Wu Z, Chen J, Hu X, Song L, Yang G, Ji C, Chen S, Gu S, Ying K, Yu X. Clonorchis sinensis: molecular cloning and functional expression of novel cytosolic malate dehydrogenase. Exp Parasitol 2005; 109:220-7. [PMID: 15755419 DOI: 10.1016/j.exppara.2004.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Revised: 12/14/2004] [Accepted: 12/15/2004] [Indexed: 11/28/2022]
Abstract
The NAD-dependent cytosolic malate dehydrogenase (cMDH, EC 1.1.1.37) plays a pivotal role in the malate-aspartate shuttle pathway that operates in a metabolic coordination between cytosol and mitochondria, and thus is crucial for the survival and pathogenicity of the parasite. In the high throughput sequencing of the cDNA library constructed from the adult stage of Clonorchis sinensis, a cDNA clone containing 1152bp insert was identified to encode a putative peptide of 329 amino acids possessing more than 50% amino acid sequence identities with the cMDHs from other organisms such as fish, plant, and mammal. But low sequence similarities have been found between this cMDH and mitochondrial malate dehydrogenase as well as glyoxysomal malate dehydrogenase from other organisms. Northern blot analysis showed the size of the C. sinensis cMDH mRNA was 1.2 kb. The cMDH was expressed in Escherichia coli M15 as a His-tag fusion protein and purified by BD TALON metal affinity column. The recombinant cMDH showed high MDH activity of 241 U mg(-1), without lactate dehydrogenase and NADP(H) selectivity. It provides a model for the structure, function analysis, and drug screening on cMDH.
Collapse
Affiliation(s)
- Nancai Zheng
- Department of Parasitology, Preclinical School of Sun Yat-sen University, Guangzhou 510089, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N. N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily. FEBS J 2005; 272:1117-23. [PMID: 15720386 DOI: 10.1111/j.1742-4658.2004.04541.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We found N-methyl-L-amino acid dehydrogenase activity in various bacterial strains, such as Pseudomonas putida and Bacillus alvei, and cloned the gene from P. putida ATCC12633 into Escherichia coli. The enzyme purified to homogeneity from recombinant E. coli catalyzed the NADPH-dependent formation of N-alkyl-L-amino acids from the corresponding alpha-oxo acids (e.g. pyruvate, phenylpyruvate, and hydroxypyruvate) and alkylamines (e.g. methylamine, ethylamine, and propylamine). Ammonia was inert as a substrate, and the enzyme was clearly distinct from conventional NAD(P)-dependent amino acid dehydrogenases, such as alanine dehydrogenase (EC 1.4.1.1). NADPH was more than 300 times more efficient than NADH as a hydrogen donor in the enzymatic reductive amination. Primary structure analysis revealed that the enzyme belongs to a new NAD(P)-dependent oxidoreductase superfamily, the members of which show no sequence homology to conventional NAD(P)-dependent amino acid dehydrogenases and opine dehydrogenases.
Collapse
Affiliation(s)
- Hisaaki Mihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J Biol Chem 2004; 280:5329-35. [PMID: 15561717 DOI: 10.1074/jbc.m411918200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon source. The dpkA gene was cloned and overexpressed in Escherichia coli, and the gene product was characterized. The enzyme showed neither malate dehydrogenase nor lactate dehydrogenase activity but catalyzed the NADPH-dependent reduction of such cyclic imines as Delta(1)-piperideine-2-carboxylate and Delta(1)-pyrroline-2-carboxylate to form L-pipecolate and L-proline, respectively. NADH also served as a hydrogen donor for both substrates, although the reaction rates were less than 1% of those with NADPH. The reverse reactions were also catalyzed by the enzyme but at much lower rates. Thus, the enzyme has dual metabolic functions, and we named the enzyme Delta(1)-piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase, the first member of a novel subclass in a large family of NAD(P)-dependent oxidoreductases.
Collapse
Affiliation(s)
- Hisashi Muramatsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Irimia A, Madern D, Zaccaï G, Vellieux FMD. Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J 2004; 23:1234-44. [PMID: 15014443 PMCID: PMC381418 DOI: 10.1038/sj.emboj.7600147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 02/06/2004] [Indexed: 11/09/2022] Open
Abstract
The crystal structure of the sulfolactate dehydrogenase from the hyperthermophilic and methanogenic archaeon Methanocaldococcus jannaschii was solved at 2.5 A resolution (PDB id. 1RFM). The asymmetric unit contains a tetramer of tight dimers. This structure, complexed with NADH, does not contain a cofactor-binding domain with 'Rossmann-fold' topology. Instead, the tertiary and quaternary structures indicate a novel fold. The NADH is bound in an extended conformation in each active site, in a manner that explains the pro-S specificity. Cofactor binding involves residues belonging to both subunits within the tight dimers, which are therefore the smallest enzymatically active units. The protein was found to be a homodimer in solution by size-exclusion chromatography, analytical ultracentrifugation and small-angle neutron scattering. Various compounds were tested as putative substrates. The results indicate the existence of a substrate discrimination mechanism, which involves electrostatic interactions. Based on sequence homology and phylogenetic analyses, several other enzymes were classified as belonging to this novel family of homologous (S)-2-hydroxyacid dehydrogenases.
Collapse
Affiliation(s)
- Adriana Irimia
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J-P Ebel CEA CNRS UJF, Grenoble, France
| | - Dominique Madern
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J-P Ebel CEA CNRS UJF, Grenoble, France
| | - Giuseppe Zaccaï
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J-P Ebel CEA CNRS UJF, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Frédéric MD Vellieux
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J-P Ebel CEA CNRS UJF, Grenoble, France
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J-P Ebel CEA CNRS UJF, UMR-5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France. Tel.: +33 438 789 605; Fax: +33 438 785 494; E-mail:
| |
Collapse
|
20
|
Tabrett CA, Copeland L. Enzymes of malate metabolism in Mesorhizobium ciceri CC 1192. Can J Microbiol 2002; 48:279-84. [PMID: 12030699 DOI: 10.1139/w02-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophoretic studies were performed on enzymes concerned with the oxidation of malate in free-living and bacteroid cells of Mesorhizobium ciceri CC 1192, which forms nitrogen-fixing symbioses with chickpea (Cicer arietinum L.) plants. Two malate dehydrogenases were detected in extracts from both types of cells in native polyacrylamide electrophoresis gels that were stained for enzyme activity. One band of malate dehydrogenase activity was stained only in the presence of NADP+, whereas the other band was revealed with NAD+ but not NADP+. Further evidence for the occurrence of separate NAD- and NADP-dependent malate dehydrogenases was obtained from preliminary enzyme kinetic studies with crude extracts from free-living M. ciceri CC 1192 cells. Activity staining of electrophoretic gels also indicated the presence of two malic enzymes in free-living and bacteroid cells of M. ciceri CC 1192. One malic enzyme was active with both NAD+ and NADP+, whereas the other was specific for NADP+. Possible roles of the multiple forms of malate dehydrogenase and malic enzyme in nitrogen-fixing symbioses are discussed.
Collapse
Affiliation(s)
- Catherine Ann Tabrett
- Department of Agricultural Chemistry and Soil Science, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
21
|
Madern D, Ebel C, Dale HA, Lien T, Steen IH, Birkeland NK, Zaccai G. Differences in the oligomeric states of the LDH-like L-MalDH from the hyperthermophilic archaea Methanococcus jannaschii and Archaeoglobus fulgidus. Biochemistry 2001; 40:10310-6. [PMID: 11513609 DOI: 10.1021/bi010168c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. To gain insight into molecular relationships within this family, we studied two hyperthermophilic (LDH-like) L-MalDH (proteins with LDH-like structure and MalDH enzymatic activity) from the archaea Archaeoglobus fulgidus (Af) and Methanococcus jannaschii (Mj). The structural parameters of these enzymes determined by neutron scattering and analytical centrifugation showed that the Af (LDH-like) L-MalDH is a dimer whereas the Mj (LDH-like) L-MalDH is a tetramer. The effects of high temperature, cofactor binding, and high phosphate concentration were studied. They did not modify the oligomeric state of either enzyme. The enzymatic activity of the dimeric Af (LDH-like) L-MalDH is controlled by a pH-dependent transition at pH 7 without dissociation of the subunits. The data were analyzed in the light of the crystallographic structure of the LDH-like L-MalDH from Haloarcula marismortui. This showed that a specific loop at the dimer-dimer contact regions in these enzymes controls the tetramer formation.
Collapse
Affiliation(s)
- D Madern
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, UMR 5075, CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Graupner M, White RH. The first examples of (S)-2-hydroxyacid dehydrogenases catalyzing the transfer of the pro-4S hydrogen of NADH are found in the archaea. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:169-73. [PMID: 11451450 DOI: 10.1016/s0167-4838(01)00220-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduction of 2-oxoacids to the corresponding (S)-2-hydroxyacids is an important transformation in biochemistry. To date all (S)-2-hydroxyacid dehydrogenases belonging to the L-lactate/L-malate dehydrogenase family have been found to transfer the pro-4R hydrogen of either NADH or NADPH to C-2 of the 2-oxoacid substrates during their reduction. Here, we report that recombinantly generated (S)-2-hydroxyacid dehydrogenases present in the methanoarchaea Methanococcus jannaschii and Methanothermus fervidus use the pro-4S hydrogen of NADH to reduce a series of 2-oxoacids to the corresponding (S)-2-hydroxyacids. This information as well as the low sequence identity between these archaeal enzymes and the L-lactate/L-malate family of enzymes indicate that these enzymes are not evolutionary related and therefore constitute a new class of (S)-2-hydroxyacid dehydrogenases.
Collapse
Affiliation(s)
- M Graupner
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
23
|
Madern D. The putative L-lactate dehydrogenase from Methanococcus jannaschii is an NADPH-dependent L-malate dehydrogenase. Mol Microbiol 2000; 37:1515-20. [PMID: 10998181 DOI: 10.1046/j.1365-2958.2000.02113.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enzyme encoded by Methanococcus jannaschii open reading frame (ORF) 0490 was purified and characterized. It was shown to be an NADPH-dependent [lactate dehydrogenase (LDH)-like] L-malate dehydrogenase (MalDH) and not an L-lactate dehydrogenase, as had been suggested previously on the basis of amino acid sequence similarity. The results show the importance of biochemical data in the assignment of ORF function in genomic sequences and have implications for the phylogenetic distribution of members of the MalDH/LDH enzyme superfamilies within the prokaryotic kingdom.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, CEA-CNRS, Laboratoire de Biophysique Moléculaire, 41 Rue Jules Horowitz, 38027 Grenoble cedex 1, France.
| |
Collapse
|
24
|
Huynen MA, Snel B. Gene and context: integrative approaches to genome analysis. ADVANCES IN PROTEIN CHEMISTRY 2000; 54:345-79. [PMID: 10829232 DOI: 10.1016/s0065-3233(00)54010-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- M A Huynen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
25
|
Graupner M, Xu H, White RH. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol 2000; 182:3688-92. [PMID: 10850983 PMCID: PMC94539 DOI: 10.1128/jb.182.13.3688-3692.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 04/14/2000] [Indexed: 11/20/2022] Open
Abstract
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin.
Collapse
Affiliation(s)
- M Graupner
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
26
|
Thompson JK, Foley S, McConville KJ, Nicholson C, Collins MA, Pridmore RD. Complete sequence of plasmid pLH1 from lactobacillus helveticus ATCC15009: analysis reveals the presence of regions homologous to other native plasmids from the host strain. Plasmid 1999; 42:221-35. [PMID: 10545264 DOI: 10.1006/plas.1999.1428] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete sequence for plasmid pLH1 from Lactobacillus helveticus ATCC15009 has been determined. Analysis of the 19,360-bp primary sequence revealed a putative replication origin and initiation protein, information that could provide the basis for the construction of cloning vectors for L. helveticus. Evidence that pLH1 is theta-replicating could be deduced from the plasmid size, from the homology to the replication protein of the Bacillus natto theta-replicating plasmid pLS32, and from the identification of a putative resolvase gene (orf-195). Although 14 open reading frames capable of encoding polypeptides longer than 100 amino acids were identified, none, on the basis of homology with known sequences, appeared to encode a well-characterized trait relevant to milk fermentation. Plasmid pLH1 revealed regions of identity with the smaller cryptic plasmids (pLH2 and pLH3) from the same strain and with other tracts of DNA, including insertion sequence elements, from a variety of other lactic acid bacteria. The presence of such regions provides a basis for developing an explanation of the phenotypic variability observed in these bacteria. The plasmid also appears to possess a number of genetic elements present in other lactic acid bacterial plasmids, conservation of which would be consistent with an important functional or evolutionary role. It could be argued that the plasmid complement of L. helveticus ATCC15009 consists of parasitic entities concerned only with their own replication and survival.
Collapse
Affiliation(s)
- J K Thompson
- Food Science Division (Food Microbiology Unit), Department of Agriculture for Northern Ireland, Belfast, BT9 5PX, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
27
|
Gaasterland T, Ragan MA. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. MICROBIAL & COMPARATIVE GENOMICS 1999; 3:199-217. [PMID: 10027190 DOI: 10.1089/omi.1.1998.3.199] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have implemented a statistically based approach to comparative genomics that allows us to define and characterize distributional patterns of conceptually translated open reading frames (ORFs) at different confidence levels based on pairwise FASTA matches. In this report, we apply this methodology to nine microbial genomes, focusing particularly on phyletic and functional patterns of ORF distribution within and between the two prokaryotic domains of life, Bacteria and Archaea. We examine patterns of presence and absence of matches, determine the universal ORF set, analyze features of genome specialization between closely related organisms, and present genomic evidence for the monophyly of Archaea. These analyses illustrate how a quantitative approach to comparative genomics can illuminate questions of fundamental biological significance.
Collapse
Affiliation(s)
- T Gaasterland
- Mathematics and Computer Science Division, Argonne National Laboratory, Illinois, USA.
| | | |
Collapse
|
28
|
Abstract
Enzymes synthesized by thermophiles (organisms with optimal growth temperatures > 60 degrees C) and hyperthermophiles (optimal growth temperatures > 80 degrees C) are typically thermostable (resistant to irreversible inactivation at high temperatures) and thermophilic (optimally active at high temperatures, i.e., > 60 degrees C). These enzymes, called thermozymes, share catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, thermozymes usually retain their thermal properties, suggesting that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, and crystal structure comparisons indicate that thermozymes are, indeed, very similar to mesophilic enzymes. No obvious sequence or structural features account for enzyme thermostability and thermophilicity. Thermostability and thermophilicity molecular mechanisms are varied, differing from enzyme to enzyme. Thermostability and thermophilicity are usually caused by the accumulation of numerous subtle sequence differences. This review concentrates on the mechanisms involved in enzyme thermostability and thermophilicity. Their relationships with protein rigidity and flexibility and with protein folding and unfolding are discussed. Intrinsic stabilizing forces (e.g., salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic stabilizing factors are examined. Finally, thermozymes' potential as catalysts for industrial processes and specialty uses are discussed, and lines of development (through new applications, and protein engineering) are also proposed.
Collapse
Affiliation(s)
- C Vieille
- Department of Biochemistry, Michigan State University, East Lansing 48909, USA
| | | | | |
Collapse
|
29
|
Rivolta C, Soldo B, Lazarevic V, Joris B, Mauël C, Karamat D. A 35.7 kb DNA fragment from the Bacillus subtilis chromosome containing a putative 12.3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypothetical catabolite-responsive element. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):877-884. [PMID: 9579062 DOI: 10.1099/00221287-144-4-877] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis strain 168 chromosomal region extending from 109 degrees to 112 degrees has been sequenced. Among the 35 ORFs identified, cotT and rapA were the only genes that had been previously mapped and sequenced. Out of ten ORFs belonging to a single putative transcription unit, seven are probably involved in hexuronate catabolism. Their sequences are homologous to Escherichia coli genes exuT, uidB, uxaA, uxaB, uxaC, uxuA and uxuB, which are all required for the uptake of free D-glucuronate, D-galacturonate and beta-glucuronide, and their transformation into glyceraldehyde 3-phosphate and pyruvate via 2-keto-3-deoxygluconate. The remaining three ORFs encode two dehydrogenases and a transcriptional regulator. The operon is preceded by a putative catabolite-responsive element (CRE), located between a hypothetical promoter and the RBS of the first gene. This element, the longest and the only so far described that is fully symmetrical, consists of a 26 bp palindrome matching the theoretical B. subtilis CRE sequence. The remaining predicted amino acid sequences that share homologies with other proteins comprise: a cytochrome P-450, a glycosyltransferase, an ATP-binding cassette transporter, a protein similar to the formate dehydrogenase alpha-subunit (FdhA), protein similar to NADH dehydrogenases, and three homologues of polypeptides that have undefined functions.
Collapse
Affiliation(s)
- Carlo Rivolta
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, Rue César-Roux 19, CH-1005 Lausanne, Switzerland
| | - Blazenka Soldo
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, Rue César-Roux 19, CH-1005 Lausanne, Switzerland
| | - Vladimir Lazarevic
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, Rue César-Roux 19, CH-1005 Lausanne, Switzerland
| | - Bernard Joris
- Centre d'lngénierie des Protéines, Université de Liêge, Institut de Chimie, B6, Sart Tilman, B-4000 Liêge, Belgium
| | - Catherine Mauël
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, Rue César-Roux 19, CH-1005 Lausanne, Switzerland
| | - Dimitri Karamat
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, Rue César-Roux 19, CH-1005 Lausanne, Switzerland
| |
Collapse
|
30
|
Mikulásová D, Kollárová M, Miginiac-Maslow M, Decottignies P, Jacquot JP, Kutejová E, Mernik N, Egyudová I, Musrati R, Horecká T. Purification and characterization of the malate dehydrogenase from Streptomyces aureofaciens. FEMS Microbiol Lett 1998; 159:299-305. [PMID: 9503625 DOI: 10.1111/j.1574-6968.1998.tb12875.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The malate dehydrogenase (MDH) from Streptomyces aureofaciens was purified to homogeneity and its physical and biochemical properties were studied. Its amino-terminal sequence perfectly matched the amino-terminal sequence of the MDH from Streptomyces atratus whose biochemical characteristics have never been determined. The molecular mass of the native enzyme, estimated by size-exclusion chromatography, was 70 kDa. The protein was a homodimer, with a 38-kDa subunit molecular mass. It showed a strong specificity for NADH and was much more efficient for the reduction of oxaloacetate than for the oxidation of malate, with a pH optimum of 8. Unlike MDHs from other sources, it was not inhibited by excess oxaloacetate. This first complete functional characterization of an MDH from Streptomyces shows that the enzyme is very similar in many respects to other bacterial MDHs with the notable exception of a lack of inhibition by excess substrate.
Collapse
Affiliation(s)
- D Mikulásová
- Department of Biochemistry, Faculty of Sciences, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
32
|
Ocheretina O, Scheibe R. Cloning and sequence analysis of cDNAs encoding plant cytosolic malate dehydrogenase. Gene 1997; 199:145-8. [PMID: 9358050 DOI: 10.1016/s0378-1119(97)00361-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we report the first complete sequence of plant cytosolic malate dehydrogenase (EC 1.1.1.37). The phylogenetic relationships between malate dehydrogenases from different cell compartments are discussed. The constructed phylogenetic tree shows that cytosolic NAD-MDH and chloroplast NADP-MDH have evolved through gene duplication of the pre-existing nuclear gene.
Collapse
Affiliation(s)
- O Ocheretina
- Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | |
Collapse
|
33
|
Cordwell SJ, Basseal DJ, Pollack JD, Humphery-Smith I. Malate/lactate dehydrogenase in mollicutes: evidence for a multienzyme protein. Gene 1997; 195:113-20. [PMID: 9305754 DOI: 10.1016/s0378-1119(97)00063-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The malate (MDH) and lactate (LDH) dehydrogenases belong to the homologous class of 2-ketoacid dehydrogenases. The specificity for their respective substrates depends on residues differing at two or three regions within each molecule. Theoretical peptide-mass fingerprinting and PROSITE analysis of nine MDH and six LDH molecules were used to describe conserved sites related to function. A unique LDH is described which probably also confers MDH activity within the 580 kbp genome of Mycoplasma genitalium (class: Mollicutes). A single hydrophilic arginine residue was found in the active site of the M. genitalium LDH enzyme, differing from an hydrophobic residue normally present in these molecules. The effect of this residue may be to alter active site substrate specificity, allowing the enzyme to perform two closely related tasks. Evidence for a single gene affording dual enzymatic function is discussed in terms of genome size reduction in the simplest of free-living organisms. Since Mollicutes are thought to lack enzymes of the tricarboxylic acid cycle that would otherwise bind and interact with MDH in bacterial species possessing this pathway, active site modification of M. genitalium LDH is the sole requirement for MDH activity of this molecule. The closely related helical Mollicute, Spiroplasma melliferum, was shown to possess two distinct gene products for MDH/LDH activity.
Collapse
Affiliation(s)
- S J Cordwell
- Centre for Proteome Research and Gene-Product Mapping, Australian Technology Park, Eveleigh
| | | | | | | |
Collapse
|
34
|
Welch TJ, Bartlett DH. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:41-6. [PMID: 9003456 DOI: 10.1016/s0167-4781(96)00200-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gene encoding malate dehydrogenase (mdhA) was obtained from the psychrophilic, barophilic, deep-sea isolate Photobacterium species strain SS9. The SS9 mdhA gene directed high levels of malate dehydrogenase (MDH) production in Escherichia coli. A comparison of SS9 MDH to three mesophile MDHs, a MDH sequence obtained from another deep-sea bacterium, and to other psychrophile proteins is presented.
Collapse
Affiliation(s)
- T J Welch
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093-0202, USA
| | | |
Collapse
|
35
|
van Kuijk BL, Stams AJ. Purification and characterization of malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol Lett 1996; 144:141-4. [PMID: 8900056 DOI: 10.1111/j.1574-6968.1996.tb08520.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 degrees C. The Ka for oxaloacetate was 50 microM and for NADH 30 microM. The Km values for L-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 microM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.
Collapse
Affiliation(s)
- B L van Kuijk
- Department of Microbiology, Agricultural University, Wageningen, The Netherlands
| | | |
Collapse
|
36
|
Letner C, Alter G. Molecular dynamics of local protein motions in lactate dehydrogenase. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0166-1280(96)90563-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Tanner JJ, Hecht RM, Krause KL. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution. Biochemistry 1996; 35:2597-609. [PMID: 8611563 DOI: 10.1021/bi951988q] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The crystal structure of holo D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the extreme thermophile Thermus aquaticus has been solved at 2.5 Angstroms resolution. To study the determinants of thermostability, we compare our structure to four other GAPDHs. Salt links, hydrogen bonds, buried surface area, packing density, surface to volume ratio, and stabilization of alpha-helices and beta-turns are analyzed. We find a strong correlation between thermostability and the number of hydrogen bonds between charged side chains and neutral partners. These charged-neutral hydrogen bonds provide electrostatic stabilization without the heavy desolvation penalty of salt links. The stability of thermophilic GAPDHs is also correlated with the number of intrasubunit salt links and total hydrogen bonds. Charged residues, therefore, play a dual role in stabilization by participating not only in salt links but also in hydrogen bonds with a neutral partner. Hydrophobic effects allow for discrimination between thermophiles and psychrophiles, but not within the GAPDH thermophiles. There is, however, an association between thermostability and decreasing enzyme surface to volume ratio. Finally, we describe several interactions present in both our GAPDH and a hyperthermophilic GAPDH that are absent in the less thermostable GAPDHs. These include a four-residue salt link network, a hydrogen bond near the active site, an intersubunit salt link, and several buried Ile residues.
Collapse
Affiliation(s)
- J J Tanner
- Department of Biochemical and Biohysical Sciences, University of Houston, Houston, Texas 77204-5934, USA
| | | | | |
Collapse
|
38
|
Markos A, Morris A, Rozario C, Müller M. Primary structure of a cytosolic malate dehydrogenase of the amitochondriate eukaryote, Trichomonas vaginalis. FEMS Microbiol Lett 1996; 135:259-64. [PMID: 8595866 DOI: 10.1111/j.1574-6968.1996.tb07998.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide sequence of a gene coding for a 37 kDa subunit of a cytosolic malate dehydrogenase of Trichomonas vaginalis was established. The sequence of a gDNA clone and a cDNA clone, which lacked seven amino-terminal codons, were identical, indicating an absence of introns from the gene. Cell fractionation combined with sequencing of peptide fragments of the purified enzyme showed that the gene codes for an expressed cytosolic enzyme. The derived amino acid sequence was closely related to cytosolic malate dehydrogenases from animals and plants and from the eubacteria Thermus aquaticus and Mycobacterium leprae and was more distant from the enzyme of mitochondria and from Escherichia coli and certain other eubacteria. In phylogenetic reconstructions this enzyme shared a most recent common ancestor with other cytosolic enzymes.
Collapse
Affiliation(s)
- A Markos
- Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
39
|
Hess D, Krüger K, Knappik A, Palm P, Hensel R. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:227-37. [PMID: 7588750 DOI: 10.1111/j.1432-1033.1995.227_1.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene coding for the 3-phosphoglycerate kinase (EC 2.7.2.3) of Pyrococcus woesei was cloned and sequenced. The gene sequence comprises 1230 bp coding for a polypeptide with the theoretical M(r) of 46,195. The deduced protein sequence exhibits a high similarity (46.1% and 46.6% identity) to the other known archaeal 3-phosphoglycerate kinases of Methanobacterium bryantii and Methanothermus fervidus [Fabry, S., Heppner, P., Dietmaier, W. & Hensel, R. (1990) Gene 91, 19-25]. By comparing the 3-phosphoglycerate kinase sequences of the mesophilic and the two thermophilic Archaea, trends in thermoadaptation were confirmed that could be deduced from comparisons of glyceraldehyde-3-phosphate dehydrogenase sequences from the same organisms [Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. (1990) J. Bacteriol. 172, 4329-4338]. With increasing temperature the average hydrophobicity and the portion of aromatic residues increases, whereas the chain flexibility as well as the content in chemically labile residues (Asn, Cys) decreases. To study the phenotypic properties of the 3-phosphoglycerate kinases from thermophilic Archaea in more detail, the 3-phosphoglycerate kinase genes from P. woesei and M. fervidus were expressed in Escherichia coli. Comparisons of kinetic and molecular properties of the enzymes from the original organisms and from E. coli indicate that the proteins expressed in the mesophilic host are folded correctly. Besides their higher thermostability according to their origin from hyperthermophilic organisms, both enzymes differ from their bacterial and eucaryotic homologues mainly in two respects. (a) The 3-phosphoglycerate kinases from P. woesei and M. fervidus are homomeric dimers in their native state contrary to all other known 3-phosphoglycerate kinases, which are monomers including the enzyme from the mesophilic Archaeum M. bryantii. (b) Monovalent cations are essential for the activity of both archaeal enzymes with K+ being significantly more efficient than Na+. For the P. woesei enzyme, non-cooperative K+ binding with an apparent Kd (K+) of 88 mM could be determined by kinetic analysis, whereas for the M. fervidus 3-phosphoglycerate kinase the K+ binding is rather complex: from the fitting of the saturation data, non-cooperative binding sites with low selectivity for K+ and Na+ (apparent Kd = 270 mM) and at least three cooperative and highly specific K+ binding sites/subunit are deduced. At the optimum growth temperature of P. woesei (100 degrees C) and M. fervidus (83 degrees C), the 3-phosphoglycerate kinases show half-lives of inactivation of only 28 min and 44 min, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Hess
- FB 9 Mikrobiologie, Universität Essen, Germany
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Recent studies in molecular evolution have generated strong conflicts in opinion as to how world living organisms should be classified. The traditional classification of life into five kingdom has been challenged by the molecular analysis carried out mostly on rRNA sequences, which supported the division of the extant living organisms into three major groups: Archaebacteria, Eubacteria, and Eukaryota. As to the problem of placing the root of the tree of life, the analysis carried out on a few genes has provided discrepant results. In order to measure the genetic distances between species, we have carried out an evolutionary analysis of the glutamine synthetase genes, which previously have been revealed to be good molecular clocks, and of the small and large rRNA genes. All data demonstrate that archaebacteria are more closely related to eubacteria than to eukaryota, thus supporting the classical division of living organisms into two main superkingdoms, Prokaryota and Eukaryota.
Collapse
Affiliation(s)
- C Saccone
- Dipartimento di Biochimica e Biologia Molecolare, Universitá di Bari, Italy
| | | | | | | |
Collapse
|
42
|
|
43
|
Breiter DR, Resnik E, Banaszak LJ. Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli. Protein Sci 1994; 3:2023-32. [PMID: 7703849 PMCID: PMC2142640 DOI: 10.1002/pro.5560031115] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The citric acid cycle enzyme, malate dehydrogenase (MDH), is a dimer of identical subunits. In the crystal structures of 2 prokaryotic and 2 eukaryotic forms, the subunit interface is conformationally homologous. To determine whether or not the quaternary structure of MDH is linked to the catalytic activity, mutant forms of the enzyme from Escherichia coli have been constructed. Utilizing the high-resolution structure of E. coli MDH, the dimer interface was analyzed critically for side chains that were spatially constricted and needed for electrostatic interactions. Two such residues were found, D45 and S226. At their nearest point in the homodimer, they are in different subunits, hydrogen bond across the interface, and do not interact with any catalytic residues. Each residue was mutated to a tyrosine, which should disrupt the interface because of its large size. All mutants were cloned and purified to homogeneity from an mdh- E. coli strain (BHB111). Gel filtration of the mutants show that D45Y and D45Y/S226Y are both monomers, whereas the S226Y mutant remains a dimer. The monomeric D45Y and D45Y/S226Y mutants have 14,000- and 17,500-fold less specific activity, respectively, than the native enzyme. The dimeric S226Y has only 1.4-fold less specific activity. All forms crystallized, indicating they were not random coils. Data have been collected to 2.8 A resolution for the D45Y mutant. The mutant is not isomorphous with the native protein and work is underway to solve the structure by molecular replacement.
Collapse
Affiliation(s)
- D R Breiter
- Department of Biochemistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
44
|
Reng W, Riessland R, Scheibe R, Jaenicke R. Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:189-97. [PMID: 8223554 DOI: 10.1111/j.1432-1033.1993.tb18233.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chloroplast NADP-dependent malate dehydrogenase is regulated by a dithiol redox reaction. The assignment of the groups involved, requires the primary structure of the enzyme to be known. Using the polymerase chain reaction and the cDNA library of Pisum sativum, the sequence of the enzyme and its targeting signal was determined. The gene was cloned in Escherichia coli JM83 and expressed in E. coli JM83 and E. coli B at high yield. The determination of the physical properties of the gene product proves the recombinant protein to be indistinguishable from the enzyme purified from the plant. This holds true, in spite of the fact that the plant enzyme lacks 11 N-terminal residues. The lengths of the complete polypeptide chain of the recombinant enzyme and its transit peptide are 388 and 53 residues, respectively. The comparison of the sequences of the mature enzyme with those of known chloroplast NADP-MDH shows 83-95% identity, but with mitochondrial or bacterial MDH only approximately 20%. Reduction of the (inactive) oxidized enzyme with dithiothreitol allows mimicking of the in vivo activation. The reaction follows a consecutive second-order-kinetics mechanism. Guanidinium chloride (GdmCl) at concentrations below 0.4 M leads to a significant activation of the oxidized form of the enzyme. At [GdmCl] = 0.4-0.46 M, both oxidized and reduced NADP-MDH show highly cooperative changes in the hydrodynamic and spectral properties, indicating the synchronous breakdown of the quaternary, tertiary and secondary structures. Site-directed mutations C23A and C28A do not quench the regulatory properties of the enzyme; additional substitution of alanine for Cys206 and Cys376 renders the enzyme equally active in both the reduced and the oxidized state. Therefore, one can consider these residues, either alone or in combination with Cys23 and Cys28, as responsible for enzyme activation.
Collapse
Affiliation(s)
- W Reng
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
45
|
Jendrossek D, Kratzin HD, Steinbüchel A. The Alcaligenes eutrophus ldh structural gene encodes a novel type of lactate dehydrogenase. FEMS Microbiol Lett 1993; 112:229-35. [PMID: 8405966 DOI: 10.1111/j.1574-6968.1993.tb06453.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The lactate dehydrogenase gene, ldh, of Alcaligenes eutrophus H16 was identified on a 14-kbp EcoRI restriction fragment of a genomic library in the cosmid pHC79 by hybridization with a 50-mer synthetic oligonucleotide which was derived from the N-terminal amino acid sequence of the purified enzyme. Recombinant strains of Escherichia coli JM83, which harboured a 2.0-kbp PstI subfragment in pUC9-1, expressed LDH at a high level, if ldh was downstream from and colinear to the E. coli lac promoter. The nucleotide sequence of a region of 4245 bp revealed several open reading frames which might represent coding regions. One represented the ldh gene. The amino acid sequence deduced from ldh exhibited 29% and 36% identity to the L-malate dehydrogenase of Methanothermus fervidus and to the putative translation product of an E. coli sequence of unknown function, respectively. The ldh was separated by short intergenic regions from two other open reading frames: ORF5 was located downstream of and colinear to ldh, and its putative translational product revealed 38 to 56% amino acid identity to penicillin-binding proteins. ORF3 was located upstream of and colinear to ldh, and its putative gene translational product represented a hydrophobic protein. A sequence, which resembled the A. eutrophus alcohol dehydrogenase promoter, was detected upstream of ORF3, which most probably represents the first transcribed gene of an operon consisting of ORF3, ldh and ORF5.
Collapse
Affiliation(s)
- D Jendrossek
- Institut für Mikrobiologie der Georg-August Universität Göttingen, FRG
| | | | | |
Collapse
|
46
|
Pepper CB, Monbouquette HG. Issues in the culture of the extremely thermophilic methanogen,methanothermus fervidus. Biotechnol Bioeng 1993; 41:970-8. [DOI: 10.1002/bit.260411008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Chapter 7 Proteins of extreme thermophiles. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Fothergill-Gilmore LA, Michels PA. Evolution of glycolysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 59:105-235. [PMID: 8426905 DOI: 10.1016/0079-6107(93)90001-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Chapter 1 Central metabolism of the archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Chapter 16 Structure and function of methanogen genes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|