1
|
Xa LK, Lacombe MJ, Mercure C, Lazure C, Reudelhuber TL. General lysosomal hydrolysis can process prorenin accurately. Am J Physiol Regul Integr Comp Physiol 2014; 307:R505-13. [PMID: 24965790 DOI: 10.1152/ajpregu.00467.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renin, an aspartyl protease that catalyzes the rate-limiting step of the renin-angiotensin system, is first synthesized as an inactive precursor, prorenin. Prorenin is activated by the proteolytic removal of an amino terminal prosegment in the dense granules of the juxtaglomerular (JG) cells of the kidney by one or more proteases whose identity is uncertain but commonly referred to as the prorenin-processing enzyme (PPE). Because several extrarenal tissues secrete only prorenin, we tested the hypothesis that the unique ability of JG cells to produce active renin might be explained by the existence of a PPE whose expression is restricted to JG cells. We found that inducing renin production by the mouse kidney by up to 20-fold was not associated with the concomitant induction of candidate PPEs. Because the renin-containing granules of JG cells also contain several lysosomal hydrolases, we engineered mouse Ren1 prorenin to be targeted to the classical vesicular lysosomes of cultured HEK-293 cells, where it was accurately processed and stored. Furthermore, we found that HEK cell lysosomes hydrolyzed any artificial extensions placed on the protein and that active renin was extraordinarily resistant to proteolytic degradation. Altogether, our results demonstrate that accurate processing of prorenin is not restricted to JG cells but can occur in classical vesicular lysosomes of heterologous cells. The implication is that renin production may not require a specific PPE but rather can be achieved by general hydrolysis in the lysosome-like granules of JG cells.
Collapse
Affiliation(s)
- Lucie K Xa
- Laboratories of Molecular Biochemistry of Hypertension and Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; and
| | | | | | - Claude Lazure
- Neuropeptide Structure and Metabolism, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Timothy L Reudelhuber
- Laboratories of Molecular Biochemistry of Hypertension and Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Rholam M, Brakch N, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P. Role of Amino Acid Sequences Flanking Dibasic Cleavage Sites in Precursor Proteolytic Processing. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0707p.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Caron KMI, James LR, Kim HS, Morham SG, Sequeira Lopez MLS, Gomez RA, Reudelhuber TL, Smithies O. A genetically clamped renin transgene for the induction of hypertension. Proc Natl Acad Sci U S A 2002; 99:8248-52. [PMID: 12034874 PMCID: PMC123053 DOI: 10.1073/pnas.112222199] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Experimental analysis of the effects of individual components of complex mammalian systems is frequently impeded by compensatory adjustments that animals make to achieve homeostasis. We here introduce a genetic procedure for eliminating this type of impediment, by using as an example the development and testing of a transgene for "genetically clamping" the expression of renin, the major homeostatically responding component of the renin-angiotensin system, one of the most important regulators of blood pressure. To obtain a renin transgene whose expression is genetically clamped at a constant level, we have used single-copy chosen-site gene targeting to insert into a liver-specific locus a single copy of a modified mouse renin transgene driven by a liver-specific promoter/enhancer. The resulting transgene expresses renin ectopically at a constant high level in the liver and leads to elevated plasma levels of prorenin and active renin. The transgenic mice display high blood pressure, enhanced thirst, high urine output, proteinuria, and kidney damage. Treatment with the angiotensin II type I receptor antagonist, losartan, reduces the hypertension, albuminuria, and kidney damage, but does not affect expression of the transgene. This genetically clamped renin transgene can be used in models in which hypertension and its complications need to be investigated in a high prorenin/renin environment that is not subject to homeostatic compensations by the animal when other factors are changed.
Collapse
Affiliation(s)
- Kathleen M I Caron
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Vishnuvardhan D, Beinfeld MC. Biosynthesis and post-translational processing of site-directed endoproteolytic cleavage mutants of Pro-CCK in AtT-20 cells. Biochemistry 2002; 41:570-8. [PMID: 11781096 DOI: 10.1021/bi015566u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis in which individual cleavage site P1 amino acids were changed to Ala was performed to delineate their importance in the processing of pro-CCK in mouse pituitary tumor AtT-20 cells. Individual substitution of cleavage sites on pro-CCK, viz., CCK 58 cleavage site R/A to A/A, CCK 33 cleavage site R/K to A/K, CCK 22 cleavage site K/N to A/N, and CCK 8 cleavage site R/D to A/D, did not inhibit pro-CCK expression or the production of some form of amidated CCK. Wild-type CCK cDNA expression in these cells results in production and secretion of CCK 8 and CCK 22. Substitution of the 58R/A cleavage site with A/A produces only CCK 33; 33A/K and 22A/N produce only CCK 8, whereas 8A/D produces CCK 12 and some CCK 22. Where the GRR residues on the C-terminus of CCK 8 were mutated to GAA, no amidated CCK was produced. Significant amounts of the pro-CCK, C-terminal peptide S9S was found in the medium of cells transfected with GAA mutant cDNA, indicating that this pro-CCK was cleaved at the GAA site probably by a nonprohormone convertase enzyme. Further analysis of the cells expressing the GAA mutant demonstrated that it is not extensively cleaved at other sites to produce CCK 8 GAA or larger peptides. In the mutant where the entire pro-CCK, C-terminal S9S was deleted, CCK 8 is processed and secreted normally. Thus, the cleavage at the C-terminal GRR site is essential for subsequent cleavages, and modification of other cleavage sites (58, 33, 22, and 8) has a major impact on pro-CCK processing. These results suggest that there is a temporal order of cleavages, and the structure of pro-CCK has a strong influence on where and whether pro-CCK is processed.
Collapse
Affiliation(s)
- Daesety Vishnuvardhan
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
5
|
Fray J. Endocrine Control of Sodium Balance. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Morris BJ. Renin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Rosenfeld RD, Zeni L, Welcher AA, Narhi LO, Hale C, Marasco J, Delaney J, Gleason T, Philo JS, Katta V, Hui J, Baumgartner J, Graham M, Stark KL, Karbon W. Biochemical, biophysical, and pharmacological characterization of bacterially expressed human agouti-related protein. Biochemistry 1998; 37:16041-52. [PMID: 9819197 DOI: 10.1021/bi981027m] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The agouti-related protein gene (Agrp) is a novel gene implicated in the control of feeding behavior. The hypothalamic expression of Agrp is regulated by leptin, and overexpression of Agrp in transgenic animals results in obesity and diabetes. By analogy with the known actions of agouti, these data suggest a role for the Agrp gene product in the regulation of melanocortin receptors expressed in the central nervous system. The availability of recombinant, highly purified protein is required to fully address this potential interaction. A nearly full-length form of AGRP (MKd5-AGRP) was expressed in the cytosolic or soluble fraction of Escherichia coli and appeared as large intermolecular disulfide-bonded aggregates. Following oxidation, refolding, and purification, this protein was soluble, and eluted as a single symmetric peak on RP-HPLC. Circular dichroism studies indicated that the purified protein contains primarily random coil and beta-sheet secondary structure. Sedimentation velocity studies at neutral pH demonstrated that MKd5-AGRP is monomeric at low micromolar concentrations. Mobility shifts observed using SDS-PAGE under reducing and nonreducing conditions for bacterially expressed and mammalian expressed AGRP were identical, an indication of a similar disulfide structure. The purification to homogeneity of a second, truncated form of AGRP (Md65-AGRP) which was expressed in the insoluble or inclusion body fraction is also described. Both forms act as competitive antagonists of alpha-melanocyte stimulating hormone (alpha-MSH) at melanocortin-3 (MC-3) and melanocortin-4 receptors (MC-4). The demonstration that AGRP is an endogenous antagonist with respect to these receptors is a unique mechanism within the central nervous system, and has important implications in the control of feeding.
Collapse
Affiliation(s)
- R D Rosenfeld
- Amgen Inc., Thousand Oaks, California 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Clark AF, Sharp MG, Morley SD, Fleming S, Peters J, Mullins JJ. Renin-1 is essential for normal renal juxtaglomerular cell granulation and macula densa morphology. J Biol Chem 1997; 272:18185-90. [PMID: 9218454 DOI: 10.1074/jbc.272.29.18185] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The secretion of renin from granules stored in renal juxtaglomerular cells plays a key role in blood pressure homeostasis. The synthesis and release of renin and the extent of granulation is regulated by several mechanisms including signaling from the macula densa, neuronal input, and blood pressure. Through the use of a gene-targeting vector containing homology arms generated using the polymerase chain reaction, we have inactivated the Ren-1(d) gene, one of two mouse genes encoding renin, and report that lack of renin-1(d) results in altered morphology of the macula densa of the kidney distal tubule and complete absence of juxtaglomerular cell granulation. Furthermore, Ren-1(d-/-) mice exhibit sexually dimorphic hypotension. The altered growth morphology of the macula densa in Ren-1(d)-null mice should provide a tool for the investigation of the JG cell-macula densa signaling. Furthermore, the current data indicate that expression of the Ren-1(d) gene is a prerequisite for the formation of storage granules, even though the related protein renin-2 is present in these mice, suggesting that renin-1(d) and renin-2 are secreted by distinct pathways in vivo.
Collapse
Affiliation(s)
- A F Clark
- Centre for Genome Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Jones CA, Petrovic N, Novak EK, Swank RT, Sigmund CD, Gross KW. Biosynthesis of renin in mouse kidney tumor As4.1 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:181-90. [PMID: 9030738 DOI: 10.1111/j.1432-1033.1997.0181a.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As4.1, a renin-expressing cell line isolated from a mouse renal tumor, was characterized for synthesis, processing, storage and secretion of renin polypeptides. Metabolic labeling, immunoprecipitation and SDS/PAGE analysis revealed that renin was secreted into the culture supernatant predominantly in the form of prorenin which migrated as products of 42-47 kDa. The predominant intracellular renin was processed into two chains, of 33-34 and 5 kDa. N-glycanase treatment removed N-linked oligosaccharides and yielded products of 41 kDa for prorenin and 31-32 kDa for the heavier chain of two-chain renin. The N-terminus of the constitutively secreted prorenin was determined by automated Edman degradation to be Leu22 while the N-terminus of the heavy chain was Ser72. Renin polypeptides constituted 3.1 +/- 1.4% (mean percentage of total precipitable radioactivity +/- SD) of de-novo-synthesized protein secreted into the medium and 0.2 +/- 0.17% retained intracellularly. Extrapolation of renin activity assays suggest that a single cell stores approximately 680 fg of active renin. A slow incremental release into the medium of processed renin heavy chain was detected by immunoprecipitation and SDS/PAGE. Renin activity assays confirmed the release of approximately 4 fg prorenin and 0.32 fg active renin cell(-1) h(-1). Indirect immunofluorescence demonstrated intracellular renin to be distributed in a punctate pattern. Renin was found to be colocalized with the lysosomal marker, beta-glucuronidase, by double-fluorescent labeling. These cells have enabled characterization of glycosylated mouse renin-1 and may prove a valuable tool for studying intracellular trafficing of renin and associated processing enzymes.
Collapse
Affiliation(s)
- C A Jones
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
11
|
Véniant M, Ménard J, Bruneval P, Morley S, Gonzales MF, Mullins J. Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver. J Clin Invest 1996; 98:1966-70. [PMID: 8903314 PMCID: PMC507639 DOI: 10.1172/jci119000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have developed a transgenic animal model to investigate the effects of overexpression of rat prorenin on the cardiovascular system. Two transgenic rat lines were generated in which rat prorenin expression was directed to the liver by a human alpha1-antitrypsin promoter. Liver-specific expression was confirmed by RNase protection assay. Plasma prorenin concentrations in transgenic rats were increased 400-fold in the males of both lines but were increased only two- to threefold in the females. Thus, transgene expression exhibited sexual dimorphism. Blood pressures were not significantly higher in transgenic rats than in nontransgenic controls. The ratio of heart weight to body weight was greater in male transgenic rats than in the nontransgenic controls. Histological analysis revealed severe renal lesions and hypertrophic cardiomyocytes in transgenic males only. This transgenic model demonstrates a likely role of prorenin in the development of cardiac and renal pathology independent of hypertension. These animals will facilitate studies of the effects of blockade of the renin-angiotensin system and other pharmacological interventions on the development and treatment of cardiac, vascular, and renal lesions induced by changes in this system in the absence of chronic hypertension.
Collapse
Affiliation(s)
- M Véniant
- Centre for Genome Research, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Brechler V, Chu WN, Baxter JD, Thibault G, Reudelhuber TL. A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J Biol Chem 1996; 271:20636-40. [PMID: 8702811 DOI: 10.1074/jbc.271.34.20636] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfected mouse pituitary AtT-20 cells were used to examine the sorting of human prorenin to dense core secretory granules and the regulated secretory pathway. These cells secrete prorenin constitutively and sort a portion of the prorenin to secretory granules, where it is converted to active renin by proteolytic processing. Pulse-chase labeling of transfected AtT-20 cells demonstrated that regulated secretion of prorenin was prevented by: 1) the mutagenic deletion of the prosegment, 2) the premature proteolytic removal of the prosegment by a Golgi-resident processing protease, or 3) the mutation of the native cleavage site so as to prevent removal of the prosegment. In addition, expression of fusion proteins containing portions of the prorenin prosegment demonstrated that exposure of potential proteolytic cleavage sites was sufficient to confer cleavage-dependent regulated secretion of the corresponding protein. These data implicate the protease cleavage event in the regulated secretion of prorenin and are consistent with the involvement of a subclass of processing proteases in the sorting of certain proteins to secretory granules in AtT-20 cells.
Collapse
Affiliation(s)
- V Brechler
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal (IRCM), Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
13
|
Favrel P, Mathieu M. Molecular cloning of a cDNA encoding the precursor of Ala-Pro-Gly-Trp amide-related neuropeptides from the bivalve mollusc Mytilus edulis. Neurosci Lett 1996; 205:210-4. [PMID: 8852595 DOI: 10.1016/0304-3940(96)12390-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We isolated and characterised a cDNA clone encoding the precursor of neuropeptides related to the molluscan neuropeptide Ala-Pro-Gly-Trp amide from the marine mussel Mytilus edulis. The preproprotein is posttranslationally processed to generate a 20 amino acid signal peptide together with five sequences of the neuropeptide Arg-Pro-Gly-Trp amide (RPGWamide), one Lys-Pro-Gly-Trp amide (KPGWamide), one Thr-Pro-Gly-Trp amide (TPGW amide) as well as a putative 31 amino acid long C-terminal peptide. In situ hybridisation showed that the gene encoding this precursor is expressed in discrete neurons within the three ganglia of the central nervous system.
Collapse
Affiliation(s)
- P Favrel
- Laboratoire de Biologie et Biotechnologies Marines, Université de Caen, France.
| | | |
Collapse
|
14
|
Kaufmann JE, Irminger JC, Halban PA. Sequence requirements for proinsulin processing at the B-chain/C-peptide junction. Biochem J 1995; 310 ( Pt 3):869-74. [PMID: 7575420 PMCID: PMC1135976 DOI: 10.1042/bj3100869] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proinsulin is converted into insulin by the action of two endoproteases. Type I (PC1/PC3) is thought to cleave between the B-chain and the connecting peptide (C-peptide) and type II (PC2) between the C-peptide and the A-chain. An acidic region immediately C-terminal to the point of cleavage at the B-chain/C-peptide junction is well conserved throughout evolution and has been suggested to be important for proinsulin conversion [Gross, Villa-Komaroff, Kahn, Weir and Halban (1989) J. Biol. Chem. 264, 21486-21490]. We have here compared the precise role of this region as a whole and just the first acidic residue C-terminal to the point of cleavage in processing of proinsulin by PC3. To this end, several mutations were introduced in this region of human proinsulin (native sequence, B-chain RREAEDL C-peptide): RRPAEDL (C1Pro mutant); RRLAEDL (C1Leu mutant); RRL (C1-C4del mutant); RRE (del-C1Glu mutant). Mutant and native cDNAs were stably transfected into AtT20 (pituitary corticotroph) cells, in which PC3 is known to be the major conversion endoprotease, and kinetics of proinsulin conversion were studied (pulse-chase/HPLC analysis of proinsulin-related peptides). The results show that the acidic region following the B-chain/C-peptide junction is indeed important for PC3 cleavage at this site, and that the reduced cleavage observed for the C1-C4del mutant proinsulin can be partially overcome by replacing the acidic region with a single acidic residue (del-C1Glu mutant). Replacing only the first residue of the acidic region with leucine (C1Leu mutant) has no impact on conversion, whereas its replacement with proline (C1Pro mutant) almost completely abolishes cleavage at the B-chain/C-peptide junction without affecting that at the C-peptide/A-chain junction.
Collapse
Affiliation(s)
- J E Kaufmann
- Laboratoires de Recherche Louis Jeantet, University Medical Center, Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Rholam M, Brakch N, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P. Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:707-14. [PMID: 7867629 DOI: 10.1111/j.1432-1033.1995.tb20192.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amino acid sequences flanking 352 dibasic moieties contained in 83 prohormones and pro-proteins listed in a database were examined. Frequency calculations on the occurrence of given residues at positions P6 to P'4 allowed us to delineate a number of features which might be in part responsible for the in vivo discrimination between cleaved and uncleaved dibasic sites. These include the following: amino acids at these positions were characterized by a large variability in composition and properties; no major contribution of a given precursor subsite to endoprotease specificity was observed; some amino acid residues appeared to occupy preferentially certain precursor subsites (for instance, Met in P6 and P3, Asp and Ala in P'1, Pro in P6, Gly in P3 and P'2 etc.) whereas some others appeared to be excluded. Most amino acid residues occupying the P'1 position in these precursor cleavage sites were tolerated. But the beta-carbon branched side chain residues (Thr, Val, Leu, Ile) and Pro, Cys, Met and Trp were either totally excluded or poorly represented, suggesting that they might be unfavourable to cleavage. The biological relevance of these observations to the efficacy of dibasic cleavage by model propeptide convertases was in vitro tested using both pro-ocytocin convertase and Kex2 protease action on a series of pro-ocytocin related synthetic substrates reproducing the Pro7-->Leu15 sequence of the precursor in which the Ala13 residue (P'1 in the LysArg-Ala motif) was replaced by various amino acid residues. A good correlation was obtained on this model system indicating that P'1 residue of precursor dibasic processing sites is an important feature and may play the role of anchoring motif to S'1 convertase subsite. We tentatively propose that the present database, and the corresponding model, may be used for further investigation of dibasic endoproteolytic processing of propeptides and pro-proteins.
Collapse
Affiliation(s)
- M Rholam
- Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reudelhuber TL, Ramla D, Chiu L, Mercure C, Seidah NG. Proteolytic processing of human prorenin in renal and non-renal tissues. Kidney Int 1994; 46:1522-4. [PMID: 7699995 DOI: 10.1038/ki.1994.435] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have demonstrated that the mouse proprotein convertase PC1 (mPC1) accurately cleaves human prorenin to generate active renin and that this processing event appears to require co-packaging in secretory granules. In the current study, we have tested human PC1 (hPC1; also called PC3) for its ability to activate human prorenin. Our results suggest that while hPC1 is capable of carrying out the specific cleavage of human prorenin, it does so at a reduced efficiency as compared to mPC1. This difference is due to sequences in the carboxy-terminus of PC1 as demonstrated by the activity of hybrid hPC1/mPC1 molecules. These studies demonstrate that PC1 cleavage of prorenin can occur in humans and identify a functionally important region in the hPC1 protein for this interaction. Moreover, the localization of PC1 in human tissues suggests that it may participate in the generation of active renin in the adrenal medulla and possibly in certain adrenal tumors.
Collapse
Affiliation(s)
- T L Reudelhuber
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
17
|
Danoff A, Mai XP, Shields D. Intracellular degradation of prohormone-chloramphenicol-acetyl-transferase chimeras in a pre-lysosomal compartment. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:1063-70. [PMID: 7904239 DOI: 10.1111/j.1432-1033.1993.tb18466.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small peptide hormones (less than 50 amino acids) are synthesized as larger inactive precursors. Work from several laboratories, including our own, has implicated the propeptide of various precursors in mediating intracellular transport and targeting to secretory granules. We previously demonstrated that the proregion of prosomatostatin, one of the simplest peptide hormone precursors, when fused to alpha-globin, enabled the globin polypeptide to be transported to the regulated secretory pathway. To identify sorting motifs in this propeptide, we have now constructed a chimera comprising the somatostatin signal peptide and proregion fused to chloramphenicol acetyl transferase (CAT) and a control protein consisting of the signal peptide fused to CAT, both of which were expressed in rat anterior-pituitary GH3 cells. Both molecules were translocated into the endoplasmic reticulum (ER) efficiently and core-glycosylated on the single cryptic N-linked glycosylation site present in CAT. Surprisingly, the glycosylated propeptide-CAT and signal without CAT were degraded intracellularly with half-lives of 30 min and 90 min, respectively. Based on the kinetics of degradation, temperature sensitivity, and resistance to lysosomotrophic agents, we suggest that degradation occurred in the ER. Our data imply that the pro-region is not an a priori universal sorter, but only directs heterologous peptides to the secretory pathway when the passenger peptide assumes a secretion-competent conformation.
Collapse
Affiliation(s)
- A Danoff
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
18
|
Zhou A, Bloomquist B, Mains R. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53918-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Abstract
In humans, active renin is generated by the removal of a 43-amino acid prosegment from the zymogen prorenin. This cleavage event is highly specific, occurring at only one of the seven pairs of basic amino acids in the body of preprorenin. This cleavage site selectivity is also displayed by a number of other proteases in vitro and in mouse pituitary AtT-20 cells transfected with a human preprorenin expression vector, suggesting that specificity of cleavage is directed in part by the primary sequence, the higher order structure, or both of prorenin itself. To test this hypothesis, single amino acid mutations were introduced in the region of human preprorenin surrounding the natural cleavage site, and the resultant recombinant proteins were expressed in cultured Chinese hamster ovary and AtT-20 cells. The results suggest that amino acids in addition to the pair of basic amino acids surrounding the cleavage site affect the ability of both trypsin and the endogenous AtT-20 processing enzyme to cleave prorenin. Notably, although a proline at position -4 is essential for processing of prorenin in AtT-20 cells and is correlated with predicted formation of a beta-turn at this position, site-directed mutations suggest that this structural feature in addition to a pair of basic amino acids is not sufficient to lead to proteolytic activation of prorenin. Displacement of sequences surrounding the cleavage site to a position 10 amino acids toward the amino terminus led to partial processing of a mutated prorenin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W N Chu
- Metabolic Research Unit, University of California, San Francisco
| | | | | | | |
Collapse
|
20
|
Taylor NA, Docherty K. Sequence requirements for processing of proinsulin in transfected mouse pituitary AtT20 cells. Biochem J 1992; 286 ( Pt 2):619-22. [PMID: 1382412 PMCID: PMC1132943 DOI: 10.1042/bj2860619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To investigate the sequence requirements for proteolytic processing of prohormones at pairs of basic amino acids, normal and mutant proinsulins were expressed in the mouse pituitary corticotrophic cell line AtT20. The extent of processing was determined by h.p.l.c. analysis of insulin-like immunoreactivity secreted into the media of transfected cells. In this model system, normal proinsulin was efficiently processed to insulin. The mutant des-38-62-proinsulin, in which all but six amino acids of the C-peptide were deleted, was also processed to insulin but less efficiently than the wild-type. The mutant Lys64-Arg65 to Thr64-Arg65 was partially processed to insulin, while the mutant Arg31-Arg32 to Arg31-Gly32 was not processed at either site. These results indicate: (i) that a six-amino-acid spacer between the two pairs of basic amino acids in proinsulin is sufficient to permit processing at both sites; (ii) that the endoproteinase responsible for cleavage at the Lys64-Arg65 site will also recognize Thr64-Arg65; (iii) that the endoproteinase responsible for cleavage at the Arg31-Arg32 site will not recognize Arg31-Gly32; and (iv) that the change Arg31-Arg32 to Arg31-Gly32 affects processing at the Lys64-Arg65 site.
Collapse
Affiliation(s)
- N A Taylor
- Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, U.K
| | | |
Collapse
|
21
|
Consensus sequence for precursor processing at mono-arginyl sites. Evidence for the involvement of a Kex2-like endoprotease in precursor cleavages at both dibasic and mono-arginyl sites. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42006-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Hatsuzawa K, Nagahama M, Takahashi S, Takada K, Murakami K, Nakayama K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41971-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Watanabe T, Nakagawa T, Ikemizu J, Nagahama M, Murakami K, Nakayama K. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42437-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Kim W, Nakayama K, Nakagawa T, Kawamura Y, Haraguchi K, Murakami K. Mouse submandibular gland prorenin-converting enzyme is a member of glandular kallikrein family. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54995-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98867-8] [Citation(s) in RCA: 438] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|