1
|
Kitazawa T, Matsui T, Katsuki S, Goto A, Akagi K, Hatano N, Tokumitsu H, Takeya K, Eto M. A temporal Ca 2+-desensitization of myosin light chain kinase in phasic smooth muscles induced by CaMKKß/PP2A pathways. Am J Physiol Cell Physiol 2021; 321:C549-C558. [PMID: 34106787 DOI: 10.1152/ajpcell.00136.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell signaling pathways regulating myosin regulatory light chain (LC20) phosphorylation contribute to determining contractile responses in smooth muscles. Following excitation and contraction, phasic smooth muscles, such as digestive tract and urinary bladder, undergo a relaxation due to a decline of cellular [Ca2+] and a decreased Ca2+ sensitivity of LC20 phosphorylation, named Ca2+ desensitization. Here, we determined mechanisms underlying the temporal Ca2+ desensitization of LC20 phosphorylation in phasic smooth muscles using permeabilized strips of mouse ileum and urinary bladder. Upon the stimulation with pCa6.0 at 20°C, the contraction and the LC20 phosphorylation peaked within 30 sec and then declined to about 50% of the peak force at 2 min after stimulation. During the relaxation phase after the contraction, the LC20 kinase (MLCK) was inactivated, but no fluctuation in the LC20 phosphatase activity occurred, suggesting that the MLCK inactivation is a cause of the Ca2+-induced Ca2+-desensitization of LC20 phosphorylation. The MLCK inactivation was associated with phosphorylation at the calmodulin binding domain of the kinase. Treatment with antagonists for CaMKKß (STO-609 and TIM-063) attenuated both the phasic response of the contraction and MLCK phosphorylation, whereas neither CaMKII, AMPK nor PAK induced the MLCK inactivation in phasic smooth muscles. Conversely, PP2A inhibition amplified the phasic response. Signaling pathways through CaMKKß and PP2A may contribute to regulating the Ca2+ sensitivity of MLCK and the contractile response of phasic smooth muscles.
Collapse
Affiliation(s)
- Toshio Kitazawa
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia Pennsylvania, United States
| | - Toshiyasu Matsui
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shuichi Katsuki
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Akira Goto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kai Akagi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Naoya Hatano
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hiroshi Tokumitsu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kosuke Takeya
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Masumi Eto
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia Pennsylvania, United States.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
2
|
Skelding KA, Rostas JAP. The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:703-30. [PMID: 22453966 DOI: 10.1007/978-94-007-2888-2_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium/calmodulin-stimulated protein kinases can be classified as one of two types - restricted or multifunctional. This family of kinases contains several structural similarities: all possess a calmodulin binding motif and an autoinhibitory region. In addition, all of the calcium/calmodulin-stimulated protein kinases examined in this chapter are regulated by phosphorylation, which either activates or inhibits their kinase activity. However, as the multifunctional calcium/calmodulin-stimulated protein kinases are ubiquitously expressed, yet regulate a broad range of cellular functions, additional levels of regulation that control these cell-specific functions must exist. These additional layers of control include gene expression, signaling pathways, and expression of binding proteins and molecular targeting. All of the multifunctional calcium/calmodulin-stimulated protein kinases examined in this chapter appear to be regulated by these additional layers of control, however, this does not appear to be the case for the restricted kinases.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
3
|
Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR. Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 2011. [PMID: 21565153 DOI: 10.1016/j.abb.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, 89557, USA
| | | | | | | | | | | |
Collapse
|
4
|
Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 2011; 510:135-46. [PMID: 21565153 DOI: 10.1016/j.abb.2011.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022]
Abstract
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
Collapse
|
5
|
Mabuchi Y, Mabuchi K, Stafford WF, Grabarek Z. Modular structure of smooth muscle Myosin light chain kinase: hydrodynamic modeling and functional implications. Biochemistry 2010; 49:2903-17. [PMID: 20196616 DOI: 10.1021/bi901963e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smooth muscle myosin light chain kinase (smMLCK) is a calcium-calmodulin complex-dependent enzyme that activates contraction of smooth muscle. The polypeptide chain of rabbit uterine smMLCK (Swiss-Prot entry P29294) contains the catalytic/regulatory domain, three immunoglobulin-related motifs (Ig), one fibronectin-related motif (Fn3), a repetitive, proline-rich segment (PEVK), and, at the N-terminus, a unique F-actin-binding domain. We have evaluated the spatial arrangement of these domains in a recombinant 125 kDa full-length smMLCK and its two catalytically active C-terminal fragments (77 kDa, residues 461-1147, and 61 kDa, residues 461-1002). Electron microscopic images of smMLCK cross-linked to F-actin show particles at variable distances (11-55 nm) from the filament, suggesting that a well-structured C-terminal segment of smMLCK is connected to the actin-binding domain by a long, flexible tether. We have used structural homology and molecular dynamics methods to construct various all-atom representation models of smMLCK and its two fragments. The theoretical sedimentation coefficients computed with HYDROPRO were compared with those determined by sedimentation velocity. We found agreement between the predicted and observed sedimentation coefficients for models in which the independently folded catalytic domain, Fn3, and Ig domains are aligned consecutively on the long axis of the molecule. The PEVK segment is modeled as an extensible linker that enables smMLCK to remain bound to F-actin and simultaneously activate the myosin heads of adjacent myosin filaments at a distance of >or=40 nm. The structural properties of smMLCK may contribute to the elasticity of smooth muscle cells.
Collapse
Affiliation(s)
- Yasuko Mabuchi
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829, USA
| | | | | | | |
Collapse
|
6
|
Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 1998; 19:839-54. [PMID: 10047984 DOI: 10.1023/a:1005417926585] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation has been implicated in Rho-mediated stress fibre formation. The recent observation that Rho kinase phosphorylates RLC in vitro suggests that serine/threonine kinases other than those in the myosin light chain kinase (MLCK) family have the potential to activate myosin II. In this study we report that gamma-PAK, which is activated by the GTP-binding proteins Cdc42 and Rac, catalyses phosphorylation of intact non-muscle myosin II and isolated recombinant RLC. gamma-PAK phosphorylated endothelial cell myosin II to 0.85 +/- 0.02 mol PO4 per mol RLC. Phosphorylation is Ca2+/calmodulin-independent and the enzyme has a K(m) and Vmax for myosin II regulatory light chain of 12 microM and 180 nmol/min/mg respectively. No myosin II heavy chain phosphorylation was detected. Phosphopeptide maps and phosphoamino acid analysis revealed that gamma-PAK phosphorylates Ser-19 but does not phosphorylate Thr-18. A panel of recombinant RLC mutants was used to confirm that Ser-19 is the only phosphorylation site modified by gamma-PAK. On substitution of both Ser-19 and Thr-18 with Ala or Glu, no phosphorylation of other Ser/Thr residues in the RLC was detected. Similar to MLCK, Arg-16 is required for interaction of gamma-PAK with the substrate, since converting Arg-16 to Ala significantly reduced RLC phosphorylation. Endothelial cell monolayers permeabilized with saponin retract upon exposure to either Cdc42 or trypsin-activated gamma-PAK and ATP. Activation of gamma-PAK is required to initiate Ca2+/calmodulin-independent cell retraction and actin rearrangement. Taken together, these data suggest that myosin II activation by the p21-activated family of kinases may be physiologically important in regulating cytoskeletal organization.
Collapse
Affiliation(s)
- T L Chew
- Department of Pathology, St Louis University School of Medicine, Missouri 63104-1028, USA
| | | | | | | |
Collapse
|
7
|
Filenko AM, Danilova VM, Sobieszek A. Smooth muscle myosin light chain kinase, supramolecular organization, modulation of activity, and related conformational changes. Biophys J 1997; 73:1593-606. [PMID: 9284326 PMCID: PMC1181058 DOI: 10.1016/s0006-3495(97)78191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has recently been suggested that activation of smooth muscle myosin light chain kinase (MLCK) can be modulated by formation of supramolecular structures (Sobieszek, A. 1991. Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by CaM. J. Mol. Biol. 220:947-957). The present light scattering data demonstrate that the inactive (calmodulin-free) MLCK apoenzyme exists in solution as a mixture of oligomeric (2% by weight), dimeric (53%), and monomeric (45%) species at physiological ionic strength (160 mM salt). These long-living assemblies, the lifetime of which was measured by minutes, were in equilibrium with each other. The most likely form of the oligomer was a spiral-like hexamer, the dimensions of which fit very well the helical structure of self-assembled myosin filaments (Sobieszek, A. 1972. Cross-bridges on self-assembled smooth muscle myosin filaments. J. Mol. Biol. 70:741-744). After activation of the kinase by calmodulin (CaM) we could not detect any appreciable changes in the distribution of the kinase species either when the kinase was saturated with CaM or when its molar concentration exceeded that of CaM. Our fluorescent measurements suggest that the earlier observed inhibition of kinase at substoichiometric amounts of CaM (Sobieszek, A., A. Strobl, B. Ortner, and E. Babiychuk. 1993. Ca2+-calmodulin-dependent modification of smooth-muscle myosin light chain kinase leading to its co-operative activation by calmodulin. Biochem. J. 295:405-411) is associated with slow conformational change(s) of the activated (CaM-bound) kinase molecules. Such conformational rearrangements also took place with equimolar kinase to CaM; however, in this case there was no decrease in MLCK activity. The nature of these conformational changes, which are accompanied by reduction of the kinase for CaM affinity, is discussed.
Collapse
Affiliation(s)
- A M Filenko
- Institute of Physiology, Taras Shevchenko Kiev University, Ukraine
| | | | | |
Collapse
|
8
|
Barden JA, Sehgal P, Kemp BE. Structure of the pseudosubstrate recognition site of chicken smooth muscle myosin light chain kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:106-12. [PMID: 8547332 DOI: 10.1016/0167-4838(95)00171-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure of the chicken smooth muscle myosin light chain kinase pseudosubstrate sequence MLCK(774-807)amide was studied using two-dimensional proton NMR spectroscopy. Resonance assignments were made with the aid of totally correlated and nuclear Overhauser effect spectroscopy. A distance geometry algorithm was used to process the body of NMR distance and angle data and the resulting family of structures was further refined using dynamic simulated annealing. The major structural features determined include two helical segments extending from Asp-777 to Lys-785 and from Arg-790/Met-791 to Trp-800 connected by a turn region from Leu-786 to Asp-789 enabling the helices to interact in solution. The C-terminal helix incorporates the bulk of the pseudosubstrate recognition site which is partially overlapped by the calmodulin binding site while the N-terminal helix forms the bulk of the connecting peptide. The demonstrated turn between the helices may assist in enabling the autoregulatory or pseudosubstrate recognition sequence to be rotated out of the active site of the catalytic core following calmodulin binding.
Collapse
Affiliation(s)
- J A Barden
- University of Sydney, Department of Anatomy and Histology, N.S.W., Australia
| | | | | |
Collapse
|
9
|
Kemp BE, Barden JA, Kobe B, House C, Parker MW. Intrasteric regulation of calmodulin-dependent protein kinases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:221-49. [PMID: 8783562 DOI: 10.1016/s1054-3589(08)60584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B E Kemp
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
10
|
Structural requirement of the regulatory light chain of smooth muscle myosin as a substrate for myosin light chain kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46909-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Abstract
Calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transient via the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.
Collapse
Affiliation(s)
- M P Walsh
- MRC Group in Signal Transduction, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
12
|
Francis SH, Corbin JD. Progress in understanding the mechanism and function of cyclic GMP-dependent protein kinase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 26:115-70. [PMID: 8038103 DOI: 10.1016/s1054-3589(08)60053-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
13
|
Komatsu H, Ikebe M. Affinity labelling of smooth-muscle myosin light-chain kinase with 5'-[p-(fluorosulphonyl)benzoyl]adenosine. Biochem J 1993; 296 ( Pt 1):53-8. [PMID: 8250857 PMCID: PMC1137654 DOI: 10.1042/bj2960053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
5'-(p-(Fluorosulphonyl)[14C]benzoyl)adenosine (FSBA) was synthesized and used as a probe to study the ATP-binding site of smooth-muscle myosin light-chain kinase (MLCK). FSBA modified both free MLCK and calmodulin/MLCK complex, resulting in inactivation of the kinase activity. Nearly complete protection of the calmodulin/MLCK complex against FSBA modification was obtained by addition of excess ATP whereas MLCK activity alone was lost in a dose-dependent manner even in the presence of excess ATP. These results suggest that FSBA modified ATP-binding sites and ATP-independent sites, and the latter sites are protected by calmodulin binding. The results also suggest that the ATP-binding site is accessible to the nucleotide substrate regardless of calmodulin binding. The FSBA-labelled MLCK was completely proteolysed by alpha-chymotrypsin, and the 14C-labelled peptides were isolated and sequenced. The sequence of the labelled peptide was Ala-Gly-X-Phe, where X is the labelled residue. The sequence was compared with the known MLCK sequence, and the labelled residue was identified as lysine-548, which is located downstream of the GXGXXG motif conserved among ATP-utilizing enzymes.
Collapse
Affiliation(s)
- H Komatsu
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
14
|
Faux MC, Mitchelhill KI, Katsis F, Wettenhall RE, Kemp BE. Chicken smooth muscle myosin light chain kinase is acetylated on its NH2-terminal methionine. Mol Cell Biochem 1993; 127-128:81-91. [PMID: 7935365 DOI: 10.1007/bf01076759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reported cDNA structure of chicken smooth muscle myosin light chain kinase (smMLCK) encodes a protein of 972 residues (Olson et al. Proc. Natl. Acad. Sci USA, 87:2284-2288, 1990). The calculated M(r) is 107,534 whereas the estimate by SDS-PAGE is approximately 130,000. Gibson and Higgins (DNA Sequence (in press)) have recently reported the possibility of errors in the cDNA sequence for non-muscle MLCK and that the NH2-terminus of both it and smMLCK may extend beyond the reported coding region. The native smMLCK is NH2-terminally blocked. A CNBr peptide derived from smMLCK contains the NH2-terminal sequence Asp-Phe-Arg-Ala corresponding to residues 2 to 4 in the smMLCK sequence indicating that Met-1 is present. Using a limited thermolysin digest we isolated an NH2-terminally blocked peptide by reversed-phase HPLC. This thermolytic peptide had a mass of approximately 797 by time of flight mass spectrometry. Amino acid analysis and Edman sequencing of a CNBr-subfragment of the thermolytic peptide indicated that it had the composition and sequence, (Met)-Asp-Phe-Arg-Ala-Asn, with a calculated mass of 753. The difference in mass corresponds to the NH2-terminal Met being blocked by acetylation. The results demonstrate that the NH2-terminal sequence of smMLCK inferred from the reported cDNA sequence is correct and that the proposed initiating Met is not removed, but modified by alpha-NH2 acetylation of the translation product.
Collapse
Affiliation(s)
- M C Faux
- St. Vincent's Institute of Medical Research, Fitzroy Vic., Australia
| | | | | | | | | |
Collapse
|
15
|
Kanoh S, Ito M, Niwa E, Kawano Y, Hartshorne DJ. Actin-binding peptide from smooth muscle myosin light chain kinase. Biochemistry 1993; 32:8902-7. [PMID: 8364036 DOI: 10.1021/bi00085a023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this study was to localize the actin-binding site in the smooth muscle myosin light chain kinase. Limited proteolysis by thermolysin indicated that hydrolysis of the kinase at the N-terminal end of the molecule resulted in loss of actin-binding ability. Various methods of cleavage were investigated for the generation of a discrete actin-binding peptide. The method chosen was cleavage at the cysteine residues by the 5,5'-dithiobis(2-nitrobenzoic acid)-cyanide complex. This procedure yielded an actin-binding peptide of approximate M(r) 17,000. The peptide was purified and shown to possess the actin-binding properties of the native myosin light chain kinase. The binding constant of the isolated peptide and parent enzyme to actin was estimated as 7.5 x 10(4) M-1. From the amino acid composition of the peptide and comparison with the sequence of gizzard myosin light chain kinase, it was suggested that the actin-binding site is located within the N-terminal sequence 1-114. Comparison with other actin-binding proteins shows some similarities to gizzard alpha-actinin and caldesmon.
Collapse
Affiliation(s)
- S Kanoh
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | |
Collapse
|
16
|
Vorherr T, Knöpfel L, Hofmann F, Mollner S, Pfeuffer T, Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 1993; 32:6081-8. [PMID: 7685187 DOI: 10.1021/bi00074a020] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptides corresponding to regions of the calmodulin-activated NO-synthase and of the calmodulin dependent adenylyl cyclase, which could represent the calmodulin binding domains of the two proteins, have been synthesized and tested for calmodulin binding. The chosen peptides were those in the sequence of the two proteins which most closely corresponded to the accepted general properties of the calmodulin binding domains, i.e., a hydrophobic sequence containing basic amino acids. In the case of the NO-synthase, the putative high-affinity calmodulin binding domain was identified by urea gel electrophoresis and fluorescence spectroscopy with dansylcalmodulin as peptide NO-30 (amino acids 725-754). The highest affinity calmodulin binding site of the calmodulin-dependent adenylyl cyclase was assigned to peptide AC-28 (amino acids 495-522) by titration with dansylcalmodulin and by the ability to inhibit the calmodulin-stimulated activity of purified calmodulin-stimulated adenylyl cyclase. The sequence 495-522 is located in the unit protruding into the cytosol from the sixth putative transmembrane domain of the molecule. It has the typical hydrophobic/basic composition of canonical calmodulin binding domains, and also contains, like most calmodulin binding domains, an aromatic amino acid in its N-terminal portion. It also contains two Cys residues in the central portion, which is an unusual feature of the calmodulin binding domain of this enzyme.
Collapse
Affiliation(s)
- T Vorherr
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Telokin is a protein which consiste of the C-terminal portion of smooth muscle myosin light chain kinase (MLCK) (M. Ito, R. Dabrowska, V. Guerriero, Jr., and D. J. Hartshone (1989) J. Biol. Chem. 264, 13971-13974). In this study, the chicken gizzard telokin cDNA and gene were cloned and analyzed. The telokin cDNA coded 157 amino acid residues which were completely identical to the C-terminal portion of the amino acid sequence of chicken gizzard MLCK. The telokin gene was coded in a 6.3-kb EcoRI genomic fragment and it consisted of three exons. The 5'-leader sequence of the telokin cDNA and genomic sequence revealed that the telokin gene was included in the MLCK gene and the transcription started in the intronic sequence of the MLCK gene. The analysis of the telokin gene suggests that the telokin expression was under the control of an independent promotor. Northern blotting and the reverse transcriptase-polymerase chain reaction methods revealed that telokin was expressed not only in chicken gizzard but also in chicken heart, lung, intestine, and skeletal muscle although the levels of the expression in the latter were much less than that in the gizzard.
Collapse
Affiliation(s)
- S Yoshikai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | | |
Collapse
|
18
|
Ikebe M, Reardon S, Fay FS. Primary structure required for the inhibition of smooth muscle myosin light chain kinase. FEBS Lett 1992; 312:245-8. [PMID: 1426258 DOI: 10.1016/0014-5793(92)80944-c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myosin light chain kinase (MLCK) contains the autoinhibitor sequence right next to the N-terminus side of the calmodulin binding region. In this paper, the structural requirement of the inhibition of MLCK activity was studied using synthetic peptide analogs. Peptides Ala-783-Lys-799 and Ala-783-Arg-798 inhibited calmodulin independent MLCK at the same potency as the peptide Ala-783-Gly-804. Deletion of Arg-797-Lys-799 or substitution of these residues to Ala markedly increased the Ki while the substitution of Lys-792 and Lys-793 to Ala and the deletion of Lys-784-Lys-785 did not affect the inhibitory activity of the peptides. The results suggest that Arg-797-Arg-798 are especially important for the inhibitory activity among other basic residues in the autoinhibitory region.
Collapse
Affiliation(s)
- M Ikebe
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970
| | | | | |
Collapse
|
19
|
Knighton DR, Pearson RB, Sowadski JM, Means AR, Ten Eyck LF, Taylor SS, Kemp BE. Structural basis of the intrasteric regulation of myosin light chain kinases. Science 1992; 258:130-5. [PMID: 1439761 DOI: 10.1126/science.1439761] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The smooth muscle myosin light chain kinase (smMLCK) catalytic core was modeled by using the crystallographic coordinates of the cyclic AMP-dependent protein kinase catalytic subunit (cAPK) and a bound pseudosubstrate inhibitor peptide, PKI(5-24). Despite only 30% identity in amino acid sequence, the MLCK sequence can be readily accommodated in this structure. With the exception of the short B-helix, all major elements of secondary structure in the core are very likely conserved. The active site of the modeled MLCK complements the known requirements for peptide substrate recognition. MLCK contains a pseudosubstrate sequence that overlaps the calmodulin binding domain and has been proposed to act as an intrasteric inhibitor and occupy the substrate binding site in the absence of Ca(2+)-calmodulin. The pseudosubstrate sequence can be modeled easily into the entire backbone of PKI(5-24). The results demonstrate that the intrasteric model for regulation of MLCK by intramolecular competitive inhibition is structurally plausible.
Collapse
Affiliation(s)
- D R Knighton
- Department of Chemistry, University of California San Diego, La Jolla 92093-0654
| | | | | | | | | | | | | |
Collapse
|
20
|
Phosphorylation of CCAAT-enhancer binding protein by protein kinase C attenuates site-selective DNA binding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41789-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|