1
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
2
|
Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 2024; 9:55-69. [PMID: 38177297 PMCID: PMC11055453 DOI: 10.1038/s41564-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
Collapse
Affiliation(s)
- Alexander S Little
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Isaac T Younker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Matthew S Schechter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Paola Nol Bernardino
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Joshua Stemczynski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - William Leiter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Matthew A Odenwald
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Methner A, Kuzyk SB, Petersen J, Bauer S, Brinkmann H, Sichau K, Wanner G, Wolf J, Neumann-Schaal M, Henke P, Tank M, Spröer C, Bunk B, Overmann J. Thiorhodovibrio frisius and Trv. litoralis spp. nov., Two Novel Members from a Clade of Fastidious Purple Sulfur Bacteria That Exhibit Unique Red-Shifted Light-Harvesting Capabilities. Microorganisms 2023; 11:2394. [PMID: 37894052 PMCID: PMC10609205 DOI: 10.3390/microorganisms11102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the pursuit of cultivating anaerobic anoxygenic phototrophs with unusual absorbance spectra, a purple sulfur bacterium was isolated from the shoreline of Baltrum, a North Sea island of Germany. It was designated strain 970, due to a predominant light harvesting complex (LH) absorption maximum at 963-966 nm, which represents the furthest infrared-shift documented for such complexes containing bacteriochlorophyll a. A polyphasic approach to bacterial systematics was performed, comparing genomic, biochemical, and physiological properties. Strain 970 is related to Thiorhodovibrio winogradskyi DSM 6702T by 26.5, 81.9, and 98.0% similarity via dDDH, ANI, and 16S rRNA gene comparisons, respectively. The photosynthetic properties of strain 970 were unlike other Thiorhodovibrio spp., which contained typical LH absorbing characteristics of 800-870 nm, as well as a newly discovered absorption band at 908 nm. Strain 970 also had a different photosynthetic operon composition. Upon genomic comparisons with the original Thiorhodovibrio strains DSM 6702T and strain 06511, the latter was found to be divergent, with 25.3, 79.1, and 97.5% similarity via dDDH, ANI, and 16S rRNA gene homology to Trv. winogradskyi, respectively. Strain 06511 (=DSM 116345T) is thereby described as Thiorhodovibrio litoralis sp. nov., and the unique strain 970 (=DSM 111777T) as Thiorhodovibrio frisius sp. nov.
Collapse
Affiliation(s)
- Anika Methner
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Steven B Kuzyk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Sabine Bauer
- Former Institution: Paläomikrobiologie, Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Postfach 2503, 26111 Oldenburg, Germany
| | - Henner Brinkmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Katja Sichau
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Jacqueline Wolf
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Petra Henke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Marcus Tank
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Former Institution: Paläomikrobiologie, Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Postfach 2503, 26111 Oldenburg, Germany
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Wells M, Kim M, Akob DM, Basu P, Stolz JF. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Microbiol Spectr 2023; 11:e0414522. [PMID: 36951557 PMCID: PMC10100899 DOI: 10.1128/spectrum.04145-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
The dimethyl sulfoxide reductase (or MopB) family is a diverse assemblage of enzymes found throughout Bacteria and Archaea. Many of these enzymes are believed to have been present in the last universal common ancestor (LUCA) of all cellular lineages. However, gaps in knowledge remain about how MopB enzymes evolved and how this diversification of functions impacted global biogeochemical cycles through geologic time. In this study, we perform maximum likelihood phylogenetic analyses on manually curated comparative genomic and metagenomic data sets containing over 47,000 distinct MopB homologs. We demonstrate that these enzymes constitute a catalytically and mechanistically diverse superfamily defined not by the molybdopterin- or tungstopterin-containing [molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)] cofactor but rather by the structural fold that binds it in the protein. Our results suggest that major metabolic innovations were the result of the loss of the metal cofactor or the gain or loss of protein domains. Phylogenetic analyses also demonstrated that formate oxidation and CO2 reduction were the ancestral functions of the superfamily, traits that have been vertically inherited from the LUCA. Nearly all of the other families, which drive all other biogeochemical cycles mediated by this superfamily, originated in the bacterial domain. Thus, organisms from Bacteria have been the key drivers of catalytic and biogeochemical innovations within the superfamily. The relative ordination of MopB families and their associated catalytic activities emphasize fundamental mechanisms of evolution in this superfamily. Furthermore, it underscores the importance of prokaryotic adaptability in response to the transition from an anoxic to an oxidized atmosphere. IMPORTANCE The MopB superfamily constitutes a repertoire of metalloenzymes that are central to enduring mysteries in microbiology, from the origin of life and how microorganisms and biogeochemical cycles have coevolved over deep time to how anaerobic life adapted to increasing concentrations of O2 during the transition from an anoxic to an oxic world. Our work emphasizes that phylogenetic analyses can reveal how domain gain or loss events, the acquisition of novel partner subunits, and the loss of metal cofactors can stimulate novel radiations of enzymes that dramatically increase the catalytic versatility of superfamilies. We also contend that the superfamily concept in protein evolution can uncover surprising kinships between enzymes that have remarkably different catalytic and physiological functions.
Collapse
Affiliation(s)
- Michael Wells
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Minjae Kim
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Denise M. Akob
- United States Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - John F. Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Wang S, Jiang L, Cui L, Alain K, Xie S, Shao Z. Transcriptome Analysis of Cyclooctasulfur Oxidation and Reduction by the Neutrophilic Chemolithoautotrophic Sulfurovum indicum from Deep-Sea Hydrothermal Ecosystems. Antioxidants (Basel) 2023; 12:antiox12030627. [PMID: 36978876 PMCID: PMC10045233 DOI: 10.3390/antiox12030627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chemolithoautotrophic Campylobacterota are widespread and predominant in worldwide hydrothermal vents, and they are key players in the turnover of zero-valence sulfur. However, at present, the mechanism of cyclooctasulfur activation and catabolism in Campylobacterota bacteria is not clearly understood. Here, we investigated these processes in a hydrothermal vent isolate named Sulfurovum indicum ST-419. A transcriptome analysis revealed that multiple genes related to biofilm formation were highly expressed during both sulfur oxidation and reduction. Additionally, biofilms containing cells and EPS coated on sulfur particles were observed by SEM, suggesting that biofilm formation may be involved in S0 activation in Sulfurovum species. Meanwhile, several genes encoding the outer membrane proteins of OprD family were also highly expressed, and among them, gene IMZ28_RS00565 exhibited significantly high expressions by 2.53- and 7.63-fold changes under both conditions, respectively, which may play a role in sulfur uptake. However, other mechanisms could be involved in sulfur activation and uptake, as experiments with dialysis bags showed that direct contact between cells and sulfur particles was not mandatory for sulfur reduction activity, whereas cell growth via sulfur oxidation did require direct contact. This indirect reaction could be ascribed to the role of H2S and/or other thiol-containing compounds, such as cysteine and GSH, which could be produced in the culture medium during sulfur reduction. In the periplasm, the sulfur-oxidation-multienzyme complexes soxABXY1Z1 and soxCDY2Z2 are likely responsible for thiosulfate oxidation and S0 oxidation, respectively. In addition, among the four psr gene clusters encoding polysulfide reductases, only psrA3B3C3 was significantly upregulated under the sulfur reduction condition, implying its essential role in sulfur reduction. These results expand our understanding of the interactions of Campylobacterota with the zero-valence sulfur and their adaptability to deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Correspondence: (L.J.); (Z.S.)
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China
| | - Karine Alain
- CNRS, Université Brest, Ifremer, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France
| | - Shaobin Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (L.J.); (Z.S.)
| |
Collapse
|
6
|
Williams TJ, Allen MA, Panwar P, Cavicchioli R. Into the darkness: the ecologies of novel 'microbial dark matter' phyla in an Antarctic lake. Environ Microbiol 2022; 24:2576-2603. [PMID: 35466505 PMCID: PMC9324843 DOI: 10.1111/1462-2920.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Uncultivated microbial clades ('microbial dark matter') are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%-100% complete) were generated for four 'dark matter' phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%-100% identity) suggests these 'dark matter' phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.
Collapse
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Michelle A. Allen
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
7
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
9
|
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. J Bacteriol 2019; 201:JB.00614-18. [PMID: 30642986 DOI: 10.1128/jb.00614-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a V max of 23 ± 2.5 μM min-1, and a k cat of 23 ± 2.68 s-1 These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.
Collapse
|
10
|
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:323-344. [PMID: 28419734 PMCID: PMC5573963 DOI: 10.1111/1758-2229.12538] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| |
Collapse
|
11
|
Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Stand Genomic Sci 2016; 11:67. [PMID: 27617057 PMCID: PMC5016858 DOI: 10.1186/s40793-016-0184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.
Collapse
Affiliation(s)
- Emily Denise Melton
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Chertkov
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Alicia Clum
- Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett 2016; 363:fnw103. [DOI: 10.1093/femsle/fnw103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
|
13
|
Lebedinsky AV, Mardanov AV, Kublanov IV, Gumerov VM, Beletsky AV, Perevalova AA, Bidzhieva SK, Bonch-Osmolovskaya EA, Skryabin KG, Ravin NV. Analysis of the complete genome of Fervidococcus fontis confirms the distinct phylogenetic position of the order Fervidicoccales and suggests its environmental function. Extremophiles 2013; 18:295-309. [DOI: 10.1007/s00792-013-0616-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander V Lebedinsky
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospekt 60-let Oktyabrya, 7/2, Moscow, 117312, Russia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dahl C, Franz B, Hensen D, Kesselheim A, Zigann R. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process. MICROBIOLOGY-SGM 2013; 159:2626-2638. [PMID: 24030319 DOI: 10.1099/mic.0.071019-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5'-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron-sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A. vinosum and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in A. vinosum and provided a model for the interplay between these systems despite their localization in different cellular compartments.
Collapse
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Bettina Franz
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Daniela Hensen
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Anne Kesselheim
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Renate Zigann
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| |
Collapse
|
15
|
Wright JJ, Mewis K, Hanson NW, Konwar KM, Maas KR, Hallam SJ. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME JOURNAL 2013; 8:455-68. [PMID: 24030600 PMCID: PMC3906813 DOI: 10.1038/ismej.2013.152] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 01/20/2023]
Abstract
Marine Group A (MGA) is a deeply branching and uncultivated phylum of bacteria. Although their functional roles remain elusive, MGA subgroups are particularly abundant and diverse in oxygen minimum zones and permanent or seasonally stratified anoxic basins, suggesting metabolic adaptation to oxygen-deficiency. Here, we expand a previous survey of MGA diversity in O2-deficient waters of the Northeast subarctic Pacific Ocean (NESAP) to include Saanich Inlet (SI), an anoxic fjord with seasonal O2 gradients and periodic sulfide accumulation. Phylogenetic analysis of small subunit ribosomal RNA (16S rRNA) gene clone libraries recovered five previously described MGA subgroups and defined three novel subgroups (SHBH1141, SHBH391, and SHAN400) in SI. To discern the functional properties of MGA residing along gradients of O2 in the NESAP and SI, we identified and sequenced to completion 14 fosmids harboring MGA-associated 16S RNA genes from a collection of 46 fosmid libraries sourced from NESAP and SI waters. Comparative analysis of these fosmids, in addition to four publicly available MGA-associated large-insert DNA fragments from Hawaii Ocean Time-series and Monterey Bay, revealed widespread genomic differentiation proximal to the ribosomal RNA operon that did not consistently reflect subgroup partitioning patterns observed in 16S rRNA gene clone libraries. Predicted protein-coding genes associated with adaptation to O2-deficiency and sulfur-based energy metabolism were detected on multiple fosmids, including polysulfide reductase (psrABC), implicated in dissimilatory polysulfide reduction to hydrogen sulfide and dissimilatory sulfur oxidation. These results posit a potential role for specific MGA subgroups in the marine sulfur cycle.
Collapse
Affiliation(s)
- Jody J Wright
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Keith Mewis
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Niels W Hanson
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Kishori M Konwar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kendra R Maas
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- 1] Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada [2] Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
17
|
Prat L, Maillard J, Rohrbach-Brandt E, Holliger C. An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense. FEBS J 2012; 279:2754-67. [PMID: 22686689 DOI: 10.1111/j.1742-4658.2012.08660.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rhodanese protein domain is common throughout all kingdoms of life and is characterized by an active site cysteine residue that is able to bind sulfane sulfur and catalyse sulfur transfer. No unique function has been attributed to rhodanese-domain-containing proteins, most probably because of their diversity at both the level of sequence and protein domain architecture. In this study, we investigated the biochemical properties of an unusual rhodanese protein, PhsE, from Desulfitobacterium hafniense strain TCE1 which we have previously shown to be massively expressed under anaerobic respiration with tetrachloroethene. The peculiarity of the PhsE protein is its domain architecture which is constituted of two rhodanese domains each with an active site cysteine. The N-terminal rhodanese domain is preceded by a lipoprotein signal peptide anchoring PhsE on the outside of the cytoplasmic membrane. In vitro sulfur-transferase activity of recombinant PhsE variants was measured for both domains contrasting with other tandem-domain rhodaneses in which usually only the C-terminal domain has been found to be active. The genetic context of phsE shows that it is part of a six-gene operon displaying homology with gene clusters encoding respiratory molybdoenzymes of the PhsA/PsrA family, possibly involved in the reduction of sulfur compounds. Our data suggest, however, that the presence of sulfide in the medium is responsible for the high expression of PhsE in Desulfitobacterium, where it could play a role in the sulfur homeostasis of the cell.
Collapse
Affiliation(s)
- Laure Prat
- Laboratory for Environmental Biotechnology, Institute of Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
18
|
Stoffels L, Krehenbrink M, Berks BC, Unden G. Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. J Bacteriol 2012; 194:475-85. [PMID: 22081391 PMCID: PMC3256639 DOI: 10.1128/jb.06014-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/01/2011] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (ΔE°' = -328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined oxidation of sulfide and sulfite to thiosulfate in a reverse of the physiological reaction. In contrast to the forward reaction the exergonic thiosulfate-forming reaction was PMF independent. Electron transfer from formate to thiosulfate in whole cells occurs predominantly by intraspecies hydrogen transfer.
Collapse
Affiliation(s)
- Laura Stoffels
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Mainz, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Krehenbrink
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C. Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
19
|
Tang H, Rothery RA, Voss JE, Weiner JH. Correct assembly of iron-sulfur cluster FS0 into Escherichia coli dimethyl sulfoxide reductase (DmsABC) is a prerequisite for molybdenum cofactor insertion. J Biol Chem 2011; 286:15147-54. [PMID: 21357619 DOI: 10.1074/jbc.m110.213306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FS0 [4Fe-4S] cluster of the catalytic subunit (DmsA) of Escherichia coli dimethyl sulfoxide reductase (DmsABC) plays a key role in the electron transfer relay. We have now established an additional role for the cluster in directing molybdenum cofactor assembly during enzyme maturation. EPR spectroscopy indicates that FS0 has a high spin ground state (S = 3/2) in its reduced form, resulting in an EPR spectrum with a peak at g ∼ 5.0. The cluster is predicted to be in close proximity to the molybdo-bis(pyranopterin guanine dinucleotide) (Mo-bisPGD) cofactor, which provides the site of dimethyl sulfoxide reduction. Comparison with nitrate reductase A (NarGHI) indicates that a sequence of residues ((18)CTVNC(22)) plays a role in both FS0 and Mo-bisPGD coordination. A DmsA(ΔN21) mutant prevented Mo-bisPGD binding and resulted in a degenerate [3Fe-4S] cluster form of FS0 being assembled. DmsA belongs to the Type II subclass of Mo-bisPGD-containing catalytic subunits that is distinguished from the Type I subclass by having three rather than two residues between the first two Cys residues coordinating FS0 and a conserved Arg residue rather than a Lys residue following the fourth cluster coordinating Cys. We introduced a Type I Cys group into DmsA in two stages. We changed its sequence from (18)C(A)TVNC(B)GSRC(C)P(27) to (18)C(A)TYC(B)GVGC(C)G(26) (similar to that of formate dehydrogenase (FdnG)) and demonstrated that this eliminated both Mo-bisPGD binding and EPR-detectable FS0. We then combined this change with a DmsA(R61K) mutation and demonstrated that this additional change partially rescued Mo-bisPGD insertion.
Collapse
Affiliation(s)
- Huipo Tang
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
20
|
Rothery RA, Bertero MG, Spreter T, Bouromand N, Strynadka NCJ, Weiner JH. Protein crystallography reveals a role for the FS0 cluster of Escherichia coli nitrate reductase A (NarGHI) in enzyme maturation. J Biol Chem 2010; 285:8801-7. [PMID: 20053990 DOI: 10.1074/jbc.m109.066027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used site-directed mutagenesis, EPR spectroscopy, redox potentiometry, and protein crystallography to monitor assembly of the FS0 [4Fe-4S] cluster and molybdo-bis(pyranopterin guanine dinucleotide) cofactor (Mo-bisPGD) of the Escherichia coli nitrate reductase A (NarGHI) catalytic subunit (NarG). Cys and Ser mutants of NarG-His(49) both lack catalytic activity, with only the former assembling FS0 and Mo-bisPGD. Importantly, both prosthetic groups are absent in the NarG-H49S mutant. EPR spectroscopy of the Cys mutant reveals that the E(m) value of the FS0 cluster is decreased by at least 500 mV, preventing its participation in electron transfer to the Mo-bisPGD cofactor. To demonstrate that decreasing the FS0 cluster E(m) results in decreased enzyme activity, we mutated a critical Arg residue (NarG-Arg(94)) in the vicinity of FS0 to a Ser residue. In this case, the E(m) of FS0 is decreased by 115 mV, with a concomitant decrease in enzyme turnover to approximately 30% of the wild type. Analysis of the structure of the NarG-H49S mutant reveals two important aspects of NarGHI maturation: (i) apomolybdo-NarGHI is able to bind GDP moieties at their respective P and Q sites in the absence of the Mo-bisPGD cofactor, and (ii) a critical segment of residues in NarG, (49)HGVNCTG(55), must be correctly positioned to ensure holoenzyme maturation.
Collapse
Affiliation(s)
- Richard A Rothery
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Anderson IJ, Dharmarajan L, Rodriguez J, Hooper S, Porat I, Ulrich LE, Elkins JG, Mavromatis K, Sun H, Land M, Lapidus A, Lucas S, Barry K, Huber H, Zhulin IB, Whitman WB, Mukhopadhyay B, Woese C, Bristow J, Kyrpides N. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genomics 2009; 10:145. [PMID: 19341479 PMCID: PMC2678158 DOI: 10.1186/1471-2164-10-145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 04/02/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. RESULTS The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced -- Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. CONCLUSION The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.
Collapse
Affiliation(s)
- Iain J Anderson
- Genome Biology Program, Joint Genome Institute, Walnut Creek, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.
Collapse
|
24
|
Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 2008; 74:7723-32. [PMID: 18931292 DOI: 10.1128/aem.01545-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crenarchaeal order Sulfolobales collectively contain at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force, their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. Open reading frames from all five terminal oxidase or bc(1)-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467 to Msed0489) and soxNL-cbsABA (Msed0500 to Msed0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD' terminal oxidase cluster (Msed0285 to Msed0291) were induced by tetrathionate and S(0). Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/dimethyl sulfoxide reductase-like complex (Msed0812 to Msed0818), and a novel heterodisulfide reductase-like complex (Msed1542 to Msed1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon.
Collapse
|
25
|
Rothery RA, Workun GJ, Weiner JH. The prokaryotic complex iron–sulfur molybdoenzyme family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1897-929. [DOI: 10.1016/j.bbamem.2007.09.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 08/17/2007] [Accepted: 09/02/2007] [Indexed: 10/22/2022]
|
26
|
Duval S, Ducluzeau AL, Nitschke W, Schoepp-Cothenet B. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol 2008; 8:206. [PMID: 18631373 PMCID: PMC2500031 DOI: 10.1186/1471-2148-8-206] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/16/2008] [Indexed: 12/01/2022] Open
Abstract
Background Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. Results We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. Conclusion These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.
Collapse
Affiliation(s)
- Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines UPR 9036, Institut de Biologie Structurale et Microbiologie, CNRS, F-13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
27
|
Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 2008; 190:2957-65. [PMID: 18263724 DOI: 10.1128/jb.01949-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.
Collapse
|
28
|
Dahl C. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_17] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Klotz MG, Arp DJ, Chain PSG, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM, Poret-Peterson AT, Vergez LM, Ward BB. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 2006; 72:6299-315. [PMID: 16957257 PMCID: PMC1563620 DOI: 10.1128/aem.00463-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H(+)-dependent F(0)F(1) type, one Na(+)-dependent V type).
Collapse
Affiliation(s)
- Martin G Klotz
- Department of Biology, University of Louisville, 139 Life Science Building, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brüggemann H, Chen C. Comparative genomics of Thermus thermophilus: Plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 2006; 124:654-61. [PMID: 16713647 DOI: 10.1016/j.jbiotec.2006.03.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 02/01/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The bacterium Thermus thermophilus grows at temperatures up to 85 degrees C and is equipped with thermostable enzymes of biotechnological interest. The recently decoded genomes of two strains of T. thermophilus, HB27 and HB8, each composed of a chromosome and a megaplasmid, must certainly encode specific strategies to encounter the thermophile challenge. Here, a genome comparison was undertaken to distinguish common functions from the flexible gene pool, which gave some clues about the biological traits involved in a thermophile lifestyle. The chromosomes were highly conserved, with about 100 strain-specific genes probably reflecting adaptations to the corresponding biological niche, such as metabolic specialities and distinct cell surface determinates including type IV pili. The two megaplasmids showed an elevated plasticity. Upon comparison and re-examination of their gene content, both megaplasmids seem to be implicated in assisting thermophilic growth: a large portion of their genes are apparently involved in DNA repair functions. About 30 plasmid-encoded genes exhibit sequence and domain composition similarity to a predicted DNA repair system specific for thermophilic Archaea and bacteria. Moreover, the plasmid-encoded carotenoid biosynthesis gene cluster is interlocked with genes involved in UV-induced DNA damage repair. This illustrates the importance of DNA protection and repair at elevated growth temperatures.
Collapse
Affiliation(s)
- Holger Brüggemann
- Institut Pasteur, Department of Genomes and Genetics, Unité Genomics of Microbial Pathogens, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
32
|
Cheng VWT, Rothery RA, Bertero MG, Strynadka NCJ, Weiner JH. Investigation of the Environment Surrounding Iron−Sulfur Cluster 4 of Escherichia coli Dimethylsulfoxide Reductase. Biochemistry 2005; 44:8068-77. [PMID: 15924426 DOI: 10.1021/bi050362p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-sulfur ([Fe-S]) clusters are common in electron transfer proteins, and their midpoint potentials (E(m) values) play a major role in defining the rate at which electrons are shuttled. The E(m) values of [Fe-S] clusters are largely dependent on the protein environment as well as solvent accessibility. The electron transfer subunit (DmsB) of Escherichia coli dimethylsulfoxide reductase contains four [4Fe-4S] clusters (FS1-FS4) with E(m) values between -50 and -330 mV. We have constructed an in silico model of DmsB and addressed the roles of a group of residues surrounding FS4 in electron transfer, menaquinol (MQH(2)) binding, and protein control of its E(m). Residues Pro80, Ser81, Cys102, and Tyr104 of DmsB are located at the DmsB-DmsC interface and are critical for the binding of the MQH(2) inhibitor analogue 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) and the transfer of electrons from MQH(2) to FS4. Because the EPR spectrum of FS4 is complicated by spectral overlap and spin-spin interactions with the other [4Fe-4S] clusters of DmsB, we evaluated mutant effects on FS4 in double mutants (with a DmsB-C102S mutation) in which FS4 is assembled as a [3Fe-4S] cluster (FS4([3Fe)(-)(4S])). The DmsB-C102S/Y104D and DmsB-C102S/Y104E mutants dramatically lower the E(m) of FS4([3Fe)(-)(4S]) from 275 to 150 mV and from 275 to 145 mV, respectively. Mutations of positively charged residues around FS4([3Fe)(-)(4S]) lower its E(m), but mutations of negatively charged residues have negligible effects. The E(m) of FS4([3Fe)(-)(4S]) in the DmsB-C102S mutant is insensitive to HOQNO as well as to changes in pH from 5 to 7. The FS4([3Fe)(-)(4S]) E(m) of the DmsB-C102S/Y104D mutant increases in the presence of HOQNO and decreasing pH. Analyses of the mutants suggest that the maximum achievable E(m) for FS4([3Fe)(-)(4S]) of DmsB is approximately 275 mV.
Collapse
Affiliation(s)
- Victor W T Cheng
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, 474 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
33
|
Tomiki T, Saitou N. Phylogenetic Analysis of Proteins Associated in the Four Major Energy Metabolism Systems: Photosynthesis, Aerobic Respiration, Denitrification, and Sulfur Respiration. J Mol Evol 2004; 59:158-76. [PMID: 15486691 DOI: 10.1007/s00239-004-2610-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 11/28/2004] [Indexed: 11/27/2022]
Abstract
The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.
Collapse
Affiliation(s)
- Takeshi Tomiki
- Division of Population Genetics, National Institute of Genetics, and Department of Genetics, School of Life Sciences, Graduate University for Advanced Studies, Mishima, Japan
| | | |
Collapse
|
34
|
Lubitz SP, Weiner JH. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 2003; 418:205-16. [PMID: 14522592 DOI: 10.1016/j.abb.2003.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ynfEFGHI operon is a paralogue of the Escherichia coli dmsABC operon. ynfE and ynfF are paralogues of dmsA. ynfG and ynfH are paralogues of dmsB and dmsC, respectively. YnfI (dmsD) has no dms paralogue. YnfE/F and YnfG could be detected by immunoblotting with anti-DmsAB antibodies when expressed under the control of a tac or dms promoter. Cells harbouring ynfFGH on a multicopy plasmid supported anaerobic growth with dimethyl sulfoxide (DMSO) as respiratory oxidant in a dmsABC deletion, suggesting that YnfFGH forms a heterotimeric enzyme complex similar to DmsABC. Exchange of DmsC by YnfH (DmsAB-YnfH) resulted in membrane localization, anaerobic growth on DMSO, and binding of 2-n-heptyl 4-hydroxyquinoline-N-oxide, indicating that YnfH was a competent anchor. YnfG can also replace DmsB as the electron transfer subunit and assembled [Fe-S] clusters as judged by electron paramagnetic resonance spectroscopy. YnfE and/or YnfF could not form a functional complex with DmsBC and expression of YnfE prevented the accumulation of YnfFGH.
Collapse
Affiliation(s)
- Shannon P Lubitz
- CIHR Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Alta., T6G 2H7, Edmonton, Canada
| | | |
Collapse
|
35
|
Berks BC, Palmer T, Sargent F. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 2003; 47:187-254. [PMID: 14560665 DOI: 10.1016/s0065-2911(03)47004-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tat (twin arginine translocation) protein transport system functions to export folded protein substrates across the bacterial cytoplasmic membrane and to insert certain integral membrane proteins into that membrane. It is entirely distinct from the Sec pathway. Here, we describe our current knowledge of the molecular features of the Tat transport system. In addition, we discuss the roles that the Tat pathway plays in the bacterial cell, paying particular attention to the involvement of the Tat pathway in the biogenesis of cofactor-containing proteins, in cell wall biosynthesis and in bacterial pathogenicity.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
36
|
Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 2003; 226:107-12. [PMID: 13129615 DOI: 10.1016/s0378-1097(03)00609-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent K(m) for arsenate of 34 microM and V(max) of 2.5 micromol min(-1) mg(-1). Optimal activity occurred at pH 9.5 and 150 g l(-1) of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins.
Collapse
Affiliation(s)
- Eman Afkar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | |
Collapse
|
37
|
Prisner T, Lyubenova S, Atabay Y, MacMillan F, Kröger A, Klimmek O. Multifrequency cw-EPR investigation of the catalytic molybdenum cofactor of polysulfide reductase from Wolinella succinogenes. J Biol Inorg Chem 2003; 8:419-26. [PMID: 12761663 DOI: 10.1007/s00775-002-0432-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 11/11/2002] [Indexed: 11/30/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra of the molybdenum centre in polysulfide reductase (Psr) from Wolinella succinogenes with unusually high G-tensor values have been observed for the first time. Three different Mo(V) states have been generated (by the addition of the substrate polysulfide and different redox agents) and analysed by their G- and hyperfine tensors using multifrequency (S-, X- and Q-band) cw-EPR spectroscopy. The unusually high G-tensor values are attributed to a large number of sulfur ligands. Four sulfur ligands are assumed to arise from two pterin cofactors; one additional sulfur ligand was identified from mutagenesis studies to be a cysteine residue of the protein backbone. One further sulfur ligand is proposed for two of the Mo(V) states, based on the experimentally observed shift of the g(av) value. This sixth sulfur ligand is postulated to belong to the polysulfide substrate consumed within the catalytic reaction cycle of the enzyme. The influence of the co-protein sulfur transferase on the Mo(V) G-tensor supports this assignment.
Collapse
Affiliation(s)
- Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie-Strasse 11, 60439, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.
Collapse
Affiliation(s)
- Russ Hille
- Dept of Molecular and Cellular Biochemistry and The Protein Research Group, The Ohio State University, Columbus, OH 43210-1218, USA.
| |
Collapse
|
39
|
Dietrich W, Klimmek O. The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1086-95. [PMID: 11856339 DOI: 10.1046/j.0014-2956.2001.02662.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolinella succinogenes grows by oxidative phosphorylation with polysulfide as terminal electron acceptor and either H2 or formate as electron donor (polysulfide respiration). The function of the respiratory chains catalyzing these reactions was investigated. Proteoliposomes containing polysulfide reductase (Psr) and either hydrogenase or formate dehydrogenase isolated from the membrane fraction of Wolinella succinogenes catalyzed polysulfide respiration, provided that methyl-menaquinone-6 isolated from W. succinogenes was also present. The specific activities of electron transport were commensurate with those of the bacterial membrane fraction. Using site-directed mutagenesis, certain residues were substituted in PsrC, the membrane anchor of polysulfide reductase. Replacement of Y23, D76, Y159, D218, E225 or R305 caused nearly full inhibition of polysulfide respiration without affecting the activity of Psr, which was still bound to the membrane. These residues are predicted to be located in hydrophobic helices of PsrC, or next to them. Substitution of 13 other residues of PsrC either caused partial inhibition ofblankpolysulfide respiration or had no effect. The function of methyl-menaquinone-6, which is thought to be bound to PsrC, is discussed.
Collapse
Affiliation(s)
- Wiebke Dietrich
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
40
|
Abstract
Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.
Collapse
Affiliation(s)
- J Castresana
- European Molecular Biology Laboratory, Biocomputing Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
41
|
Affiliation(s)
- K Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
42
|
Krafft T, Bowen A, Theis F, Macy JM. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:365-77. [PMID: 10826693 DOI: 10.3109/10425170009015604] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The periplasmic selenate reductase (Ser) of Thauera selennatis is a component of the electron transport chain catalyzing selenate reduction with acetate as the electron donor (i.e., selenate respiration). The purified enzyme consists of three subunits (SerA, SerB and SerC). Using transposon (i.e., Tn5) mutagenesis selenate reductase mutants were isolated. Junction fragments of DNA adjacent to the integrated Tn5 were used, together with oligonucleotides derived from the N-termini of SerA and SerB, to clone from a gene bank a DNA fragment that contained the corresponding genes. After sequencing, serA, serB and serC were identified by sequence comparison with the N-termini of the three subunits. The genes are arranged in the order serA, serB, serC; a fourth open reading frame (serD) in between, but overlapping serB and serC, is also present. The serA gene product contains an apparent leader peptide with a twin-arginine motif. The remainder of the translated amino acid sequence is similar to that of a number of prokaryotic molybdenum-containing enzymes (e.g., nitrate reductases and formate dehydrogenases of Escherichia coli). The serB gene product contains four cysteine clusters and is similar to various iron-sulfur protein subunits. The serC gene product contains a putative Sec-dependent leader peptide, but there are no similarities between the remainder of the translated protein and other protein subunits. The SerC contains two histidine and four methionine residues, and these may noncovalently bind heme b--which is a component of the active selenate reductase. The serD gene product encodes a putative protein that shows no significant sequence similarities to other proteins. However, the location of the serD within the other ser genes is similar to that of narJ within the E. coli narGHJI operon (nitrate reductase A); thus suggesting that the role of SerD may be similar to that of NarJ, which is a system-specific chaperone protein.
Collapse
Affiliation(s)
- T Krafft
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
43
|
Baas D, Rétey J. Cloning, sequencing and heterologous expression of pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:896-901. [PMID: 10518782 DOI: 10.1046/j.1432-1327.1999.00752.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genomic lambda-library of Pelobacter acidigallici has been established. Proteolytic digestion of homogeneous pyrogallol-phloroglucinol transhydroxylase from the same microorganism afforded polypeptide fragments whose N-terminal sequences allowed the generation of oligonucleotide primers. Together with primers deduced from the known N-terminal sequences of the two intact subunits these were used in PCR experiments to obtain three amplificates. Screening the lambda-library with the three amplificates led eventually to clones containing the whole gene coding for the transhydroxylase. Sequencing the gene revealed two open reading frames coding for 875 and 275 amino acids which correspond to the alpha- and beta-subunits of THL, respectively. The two subunits are separated by a 48-bp noncoding region. Comparison of the sequence with those of other molybdopterin cofactor (MoCo)-enzymes places THL in the dimethylsulfoxide reductase family. Possible contact sites to the MoCo and to the iron-sulphur clusters were spotted. Using the expression vectors pQE 30 and pT 7-7 three constructs harbouring the THL gene were created. One of them carried a His6-tag at the N-terminus of the alpha-subunit, another at the C-terminus of the beta-subunit. Immunoblot analysis showed high expression of THL, but the inclusion bodies could not be refolded to active enzyme.
Collapse
Affiliation(s)
- D Baas
- Lehrstuhl für Biochemie im Institut für Organische Chemie der Universität Karlsruhe, Germany
| | | |
Collapse
|
44
|
Rothery RA, Blasco F, Magalon A, Asso M, Weiner JH. The hemes of Escherichia coli nitrate reductase A (NarGHI): potentiometric effects of inhibitor binding to narI. Biochemistry 1999; 38:12747-57. [PMID: 10504245 DOI: 10.1021/bi990533o] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have potentiometrically characterized the two hemes of Escherichia coli nitrate reductase A (NarGHI) using EPR and optical spectroscopy. NarGHI contains two hemes, a low-potential heme b(L) (E(m,7) = 20 mV; g(z)() = 3.36) and a high-potential heme b(H) (E(m, 7) = 120 mV; g(z)() = 3.76). Potentiometric analyses of the g(z)() features of the heme EPR spectra indicate that the E(m,7) values of both hemes are sensitive to the menaquinol analogue 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO). This inhibitor causes a potential-inversion of the two hemes (for heme b(L), E(m,7) = 120 mV; for heme b(H), E(m,7) = 60 mV). This effect is corroborated by optical spectroscopy of a heme b(H)-deficient mutant (NarGHI(H56R)) in which the heme b(L) undergoes a DeltaE(m,7) of 70 mV in the presence of HOQNO. Another potent inhibitor of NarGHI, stigmatellin, elicits a moderate heme b(L) DeltaE(m,7) of 30 mV, but has no detectable effect on heme b(H). No effect is elicited by either inhibitor on the line shape or the E(m,7) values of the [3Fe-4S] cluster coordinated by NarH. When NarI is expressed in the absence of NarGH [NarI(DeltaGH)], two hemes are detected in potentiometric titrations with E(m,7) values of 37 mV (heme b(L); g(z)() = 3.15) and -178 mV (heme b(H); g(z)() = 2.92), suggesting that heme b(H) may be exposed to the aqueous milieu in the absence of NarGH. The identity of these hemes was confirmed by recording EPR spectra of NarI(DeltaGH)(H56R). HOQNO binding titrations followed by fluorescence spectroscopy suggest that in both NarGHI and NarI(DeltaGH), this inhibitor binds to a single high-affinity site with a K(d) of approximately 0.2 microM. These data support a functional model for NarGHI in which a single dissociable quinol binding site is associated with heme b(L) and is located toward the periplasmic side of NarI.
Collapse
Affiliation(s)
- R A Rothery
- Medical Research Council of Canada Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
45
|
Rothery RA, Trieber CA, Weiner JH. Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase. J Biol Chem 1999; 274:13002-9. [PMID: 10224050 DOI: 10.1074/jbc.274.19.13002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used site-directed mutagenesis to study the interactions between the molybdo-bis(molybdopterin guanine dinucleotide) cofactor (Mo-bisMGD) and the other prosthetic groups of Escherichia coli Me2SO reductase (DmsABC). In redox-poised preparations, there is a significant spin-spin interaction between the reduced Em,7 = -120 mV [4Fe-4S] cluster of DmsB and the Mo(V) of the Mo-bisMGD of DmsA. This interaction is significantly modified in a DmsA-C38S mutant that contains a [3Fe-4S] cluster in DmsA, suggesting that the [3Fe-4S] cluster is in close juxtaposition to the vector connecting the Mo(V) and the Em,7 = -120 mV cluster of DmsB. In a DmsA-R77S mutant, the interaction is eliminated, indicating the importance of this residue in defining the interaction pathway. In ferricyanide-oxidized glycerol-inhibited DmsAC38SBC, there is no detectable interaction between the oxidized [3Fe-4S] cluster and the Mo-bisMGD, except for a minor broadening of the Mo(V) spectrum. In a double mutant, DmsAS176ABC102SC, which contains an engineered [3Fe-4S] cluster in DmsB, no significant paramagnetic interaction is detected between the oxidized [3Fe-4S] cluster and the Mo(V). These results have important implications for (i) understanding the magnetic interactions between the Mo(V) and other paramagnetic centers and (ii) delineating the electron transfer pathway from the [4Fe-4S] clusters of DmsB to the Mo-bisMGD of DmsA.
Collapse
Affiliation(s)
- R A Rothery
- Department of Biochemistry and the Medical Research Council Group in the Molecular Biology of Membranes, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
46
|
Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 1999; 32:275-87. [PMID: 10231485 DOI: 10.1046/j.1365-2958.1999.01345.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A range of bacteria are able to use tetrathionate as a terminal respiratory electron acceptor. Here we report the identification and characterization of the ttrRSBCA locus required for tetrathionate respiration in Salmonella typhimurium LT2a. The ttr genes are located within Salmonella pathogenicity island 2 at centisome 30.5. ttrA, ttrB and ttrC are the tetrathionate reductase structural genes. Sequence analysis suggests that TtrA contains a molybdopterin guanine dinucleotide cofactor and a [4Fe-4S] cluster, that TtrB binds four [4Fe-4S] clusters, and that TtrC is an integral membrane protein containing a quinol oxidation site. TtrA and TtrB are predicted to be anchored by TtrC to the periplasmic face of the cytoplasmic membrane implying a periplasmic site for tetrathionate reduction. It is inferred that the tetrathionate reductase, together with thiosulphate and polysulphide reductases, make up a previously unrecognized class of molybdopterin-dependent enzymes that carry out the reductive cleavage of sulphur-sulphur bonds. Cys-256 in TtrA is proposed to be the amino acid ligand to the molybdopterin cofactor. TtrS and TtrR are the sensor and response regulator components of a two-component regulatory system that is absolutely required for transcription of the ttrBCA operon. Expression of an active tetrathionate reduction system also requires the anoxia-responsive global transcriptional regulator Fnr. The ttrRSBCA gene cluster confers on Escherichia coli the ability to respire with tetrathionate as electron acceptor.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
47
|
Johnson MK, Duderstadt RE, Duin EC. Biological and Synthetic [Fe3S4] Clusters. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 1998. [DOI: 10.1111/j.1574-6976.1998.tb00376.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Kisker C, Schindelin H, Baas D, Rétey J, Meckenstock RU, Kroneck PM. A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiol Rev 1998; 22:503-21. [PMID: 9990727 DOI: 10.1111/j.1574-6976.1998.tb00384.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This work gives an overview of the recent achievements which have contributed to the understanding of the structure and function of molybdenum and tungsten enzymes. Known structures of molybdo-pterin cofactor-containing enzymes will be described briefly and the structural differences between representatives of the same and different families will be analyzed. This comparison will show that the molybdo-pterin cofactor-containing enzymes represent a very heterogeneous group with differences in overall enzyme structure, cofactor composition and stoichiometry, as well as differences in the immediate molybdenum environment. Two recently discovered molybdo-pterin cofactor-containing enzymes will be described with regard to molecular and EPR spectroscopic properties, pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici and acetylene hydratase from Pelobacter acetylenicus. On the basis of its amino acid sequence, transhydroxylase can be classified as a member of the dimethylsulfoxide reductase family, whereas classification of the tungsten/molybdenum-containing acetylene hydratase has to await the determination of its amino acid sequence.
Collapse
Affiliation(s)
- C Kisker
- Department of Pharmacological Sciences, School of Medicine, SUNY Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | |
Collapse
|
50
|
Oh JI, Bowien B. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J Biol Chem 1998; 273:26349-60. [PMID: 9756865 DOI: 10.1074/jbc.273.41.26349] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fdsGBACD operon encoding the four subunits of the NAD+-reducing formate dehydrogenase of Ralstonia eutropha H16 was cloned and sequenced. Sequence comparisons indicated a high resemblance of FdsA (alpha-subunit) to the catalytic subunits of formate dehydrogenases containing a molybdenum (or tungsten) cofactor. The NH2-terminal region (residues 1-240) of FdsA, lacking in formate dehydrogenases not linked to NAD(P)+, exhibited considerable similarity to that of NuoG of the NADH:ubiquinone oxidoreductase from Escherichia coli as well as to HoxU and the NH2-terminal segment of HndD of NAD(P)+-reducing hydrogenases. FdsB (beta-subunit) and FdsG (gamma-subunit) are closely related to NuoF and NuoE, respectively, as well as to HoxF and HndA. It is proposed that the NH2-terminal domain of FdsA together with FdsB and FdsG constitute a functional entity corresponding to the NADH dehydrogenase (diaphorase) part of NADH:ubiquinone oxidoreductase and the hydrogenases. No significant similarity to any known protein was observed for FdsD (delta-subunit). The predicted product of fdsC showed the highest resemblance to FdhD from E. coli, a protein required for the formation of active formate dehydrogenases in this organism. Transcription of the fds operon is subject to formate induction. A promoter structure resembling the consensus sequence of sigma70-dependent promoters from E. coli was identified upstream of the transcriptional start site determined by primer extension analysis.
Collapse
Affiliation(s)
- J I Oh
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | |
Collapse
|