1
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Liu YC, Chu KT, Wang HR, Lee GH, Tseng MC, Wang CH, Horng YC, Chiang MH. Chloride- and Hydrosulfide-Bound 2Fe Complexes as Models of the Oxygen-Stable State of [FeFe] Hydrogenase. Angew Chem Int Ed Engl 2024; 63:e202408142. [PMID: 38818643 DOI: 10.1002/anie.202408142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
[FeFe] hydrogenases demonstrate remarkable catalytic efficiency in hydrogen evolution and oxidation processes. However, susceptibility of these enzymes to oxygen-induced degradation impedes their practical deployment in hydrogen-production devices and fuel cells. Recent investigations into the oxygen-stable (Hinact) state of the H-cluster revealed its inherent capacity to resist oxygen degradation. Herein, we present findings on Cl- and SH-bound [2Fe-2S] complexes, bearing relevance to the oxygen-stable state within a biological context. A characteristic attribute of these complexes is the terminal Cl-/SH- ligation to the iron center bearing the CO bridge. Structural analysis of the t-Cl demonstrates a striking resemblance to the Hinact state of DdHydAB and CbA5H. The t-Cl/t-SH exhibit reversible oxidation, with both redox species, electronically, being the first biomimetic analogs to the Htrans and Hinact states. These complexes exhibit notable resistance against oxygen-induced decomposition, supporting the potential oxygen-resistant nature of the Htrans and Hinact states. The swift reductive release of the Cl-/SH-group demonstrates its labile and kinetically controlled binding. The findings garnered from these investigations offer valuable insights into properties of the enzymatic O2-stable state, and key factors governing deactivation and reactivation conversion. This work contributes to the advancement of bio-inspired molecular catalysts and the integration of enzymes and artificial catalysts into H2-evolution devices and fuel-cell applications.
Collapse
Affiliation(s)
- Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hong-Ru Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Cheng-Hsin Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua, 500, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
3
|
Clary KE, Gibson AC, Glass RS, Pyun J, Lichtenberger DL. Natural Assembly of Electroactive Metallopolymers on the Electrode Surface: Enhanced Electrocatalytic Production of Hydrogen by [2Fe-2S] Metallopolymers in Neutral Water. J Am Chem Soc 2023. [PMID: 37315082 DOI: 10.1021/jacs.3c03379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A molecular catalyst attached to an electrode surface can offer the advantages of both homogeneous and heterogeneous catalysis. Unfortunately, some molecular catalysts constrained to a surface lose much or all of their solution performance. In contrast, we found that when a small molecule [2Fe-2S] catalyst is incorporated into metallopolymers of the form PDMAEMA-g-[2Fe-2S] (PDMAEMA = poly(2-dimethylamino)ethyl methacrylate) and adsorbed to the surface, the observed rate of hydrogen production increases to kobs > 105 s-1 per active site with lower overpotential, increased lifetime, and tolerance to oxygen. Herein, the electrocatalytic performances of these metallopolymers with different length polymer chains are compared to reveal the factors that lead to this high performance. It was anticipated that smaller metallopolymers would have faster rates due to faster electron and proton transfers to more accessible active sites, but the experiments show that the rates of catalysis per active site are independent of the polymer size. Molecular dynamics modeling reveals that the high performance is a consequence of adsorption of these metallopolymers on the surface with natural assembly that brings the [2Fe-2S] catalytic sites into close contact with the electrode surface while maintaining exposure of the sites to protons in solution. The assembly is conducive to fast electron transfer, fast proton transfer, and a high rate of catalysis regardless of the polymer size. These results offer a guide to enhancing the performance of other electrocatalysts with incorporation into a polymer that provides an optimal interaction of the catalyst with the electrode and solution.
Collapse
Affiliation(s)
- Kayla E Clary
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Arthur C Gibson
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Richard S Glass
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Abaalkhail SA, Abul-Futouh H, Görls H, Weigand W. Electrochemical Behavior of Mono‐Substituted [FeFe]‐Hydrogenase H‐Cluster Mimic Mediated by Stannylated Dithiolato Ligand. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hassan Abul-Futouh
- The Hashemite University Chemistry P.O. Box 330127, Zarqa 13133 13133 Zaraqa JORDAN
| | | | | |
Collapse
|
5
|
Daraosheh AQ, Abul-Futouh H, Murakami N, Ziems KM, Görls H, Kupfer S, Gräfe S, Ishii A, Celeda M, Mlostoń G, Weigand W. Novel [FeFe]-Hydrogenase Mimics: Unexpected Course of the Reaction of Ferrocenyl α-Thienyl Thioketone with Fe 3(CO) 12. MATERIALS 2022; 15:ma15082867. [PMID: 35454560 PMCID: PMC9029206 DOI: 10.3390/ma15082867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
The influence of the substitution pattern in ferrocenyl α-thienyl thioketone used as a proligand in complexation reactions with Fe3(CO)12 was investigated. As a result, two new sulfur–iron complexes, considered [FeFe]-hydrogenase mimics, were obtained and characterized by spectroscopic techniques (1H, 13C{1H} NMR, IR, MS), as well as by elemental analysis and X-ray single crystal diffraction methods. The electrochemical properties of both complexes were studied and compared using cyclic voltammetry in the absence and in presence of acetic acid as a proton source. The performed measurements demonstrated that both complexes can catalyze the reduction of protons to molecular hydrogen H2. Moreover, the obtained results showed that the presence of the ferrocene moiety at the backbone of the linker of both complexes improved the stability of the reduced species.
Collapse
Affiliation(s)
- Ahmad Q. Daraosheh
- Department of Chemistry, College of Arts and Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| | - Natsuki Murakami
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; (N.M.); (A.I.)
| | - Karl Michael Ziems
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany;
| | - Stephan Kupfer
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Stefanie Gräfe
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; (N.M.); (A.I.)
| | - Małgorzata Celeda
- Department of Organic & Applied Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
| | - Grzegorz Mlostoń
- Department of Organic & Applied Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany;
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| |
Collapse
|
6
|
Felbek C, Arrigoni F, de Sancho D, Jacq-Bailly A, Best RB, Fourmond V, Bertini L, Léger C. Mechanism of Hydrogen Sulfide-Dependent Inhibition of FeFe Hydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina Felbek
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia-San Sebastián, Spain
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland 20892-0520, United States
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| |
Collapse
|
7
|
Mulder DW, Peters JW, Raugei S. Catalytic bias in oxidation-reduction catalysis. Chem Commun (Camb) 2021; 57:713-720. [PMID: 33367317 DOI: 10.1039/d0cc07062a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
8
|
Land H, Sekretareva A, Huang P, Redman HJ, Németh B, Polidori N, Mészáros LS, Senger M, Stripp ST, Berggren G. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chem Sci 2020; 11:12789-12801. [PMID: 34094474 PMCID: PMC8163306 DOI: 10.1039/d0sc03319g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
[FeFe]-hydrogenases are known for their high rates of hydrogen turnover, and are intensively studied in the context of biotechnological applications. Evolution has generated a plethora of different subclasses with widely different characteristics. The M2e subclass is phylogenetically distinct from previously characterized members of this enzyme family and its biological role is unknown. It features significant differences in domain- and active site architecture, and is most closely related to the putative sensory [FeFe]-hydrogenases. Here we report the first comprehensive biochemical and spectroscopical characterization of an M2e enzyme, derived from Thermoanaerobacter mathranii. As compared to other [FeFe]-hydrogenases characterized to-date, this enzyme displays an increased H2 affinity, higher activation enthalpies for H+/H2 interconversion, and unusual reactivity towards known hydrogenase inhibitors. These properties are related to differences in active site architecture between the M2e [FeFe]-hydrogenase and "prototypical" [FeFe]-hydrogenases. Thus, this study provides new insight into the role of this subclass in hydrogen metabolism and the influence of the active site pocket on the chemistry of the H-cluster.
Collapse
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Alina Sekretareva
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Ping Huang
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Holly J Redman
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Brigitta Németh
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Nakia Polidori
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Lívia S Mészáros
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Sven T Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| |
Collapse
|
9
|
Rodríguez‐Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA. Caught in the H inact : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O 2 -stable State of [FeFe] Hydrogenase. Angew Chem Int Ed Engl 2020; 59:16786-16794. [PMID: 32488975 PMCID: PMC7540559 DOI: 10.1002/anie.202005208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Indexed: 01/25/2023]
Abstract
[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2 -stable state called Hinact . To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Å crystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in-depth spectroscopic characterization by X-ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2 -stable hydrogenases and molecular catalysts.
Collapse
Affiliation(s)
- Patricia Rodríguez‐Maciá
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Lisa M. Galle
- Physikalische BiologieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Ragnar Bjornsson
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Christian Lorent
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ingo Zebger
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Yoshitaka Yoda
- Japanese Synchrotron Radiation Institute, Spring-81-1-1 Kouto, Mikazuki-choSayo-gunHyogo679-5198Japan
| | | | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Ingrid Span
- Physikalische BiologieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - James A. Birrell
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
10
|
Oughli AA, Hardt S, Rüdiger O, Birrell JA, Plumeré N. Reactivation of sulfide-protected [FeFe] hydrogenase in a redox-active hydrogel. Chem Commun (Camb) 2020; 56:9958-9961. [PMID: 32789390 DOI: 10.1039/d0cc03155k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe] hydrogenases are highly active hydrogen conversion catalysts but are notoriously sensitive to oxidative damage. Redox hydrogels have been used for protecting hydrogenases from both high potential inactivation and oxygen inactivation under turnover conditions. However, [FeFe] hydrogenase containing redox hydrogels must be fabricated under strict anoxic conditions. Sulfide coordination at the active center of the [FeFe] hydrogenase from Desulfovibrio desulfuricans protects this enzyme from oxygen in an inactive state, which can be reactivated upon reduction. Here, we show that this oxygen-stable inactive form of the hydrogenase can be reactivated in a redox hydrogel enabling practical use of this highly O2 sensitive enzyme without the need for anoxic conditions.
Collapse
Affiliation(s)
- Alaa A Oughli
- Centre for Electrochemical Sciences-Molecular Nanostructures, Ruhr-Universität Bochum Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
11
|
Rodríguez‐Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA. Kristallstruktur und Spektroskopie offenbaren einen Schwefel‐Liganden am aktiven Zentrum einer O
2
‐stabilen [FeFe]‐Hydrogenase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patricia Rodríguez‐Maciá
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Lisa M. Galle
- Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Ragnar Bjornsson
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Christian Lorent
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Ingo Zebger
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Yoshitaka Yoda
- Japanese Synchrotron Radiation Institute, Spring-8 1-1-1 Kouto, Mikazuki-cho Sayo-gun Hyogo 679-5198 Japan
| | - Stephen P. Cramer
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Ingrid Span
- Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - James A. Birrell
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
12
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
13
|
Nishikawa K, Ogata H, Higuchi Y. Structural Basis of the Function of [NiFe]-hydrogenases. CHEM LETT 2020. [DOI: 10.1246/cl.190814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Institute of Low Temperature Science, Hokkaido University, Kita19Nishi8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
14
|
Faujdar H, Spannenberg A, Kaur-Ghumaan S. Structural and HER studies of diphosphine-monothiolate complexes [Fe2(CO)4(μ-naphthalene-2-thiolate)2(μ-dppe)] and [Fe2(CO)4(μ-naphthalene-2-thiolate)2(μ-DPEPhos)]. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Birrell JA, Pelmenschikov V, Mishra N, Wang H, Yoda Y, Tamasaku K, Rauchfuss TB, Cramer SP, Lubitz W, DeBeer S. Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates. J Am Chem Soc 2019; 142:222-232. [PMID: 31820961 PMCID: PMC6956316 DOI: 10.1021/jacs.9b09745] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
[FeFe] hydrogenases are extremely active H2-converting
enzymes. Their mechanism remains highly controversial, in particular,
the nature of the one-electron and two-electron reduced intermediates
called HredH+ and HsredH+. In one model, the HredH+ and HsredH+ states contain a semibridging CO, while in the other
model, the bridging CO is replaced by a bridging hydride. Using low-temperature
IR spectroscopy and nuclear resonance vibrational spectroscopy, together
with density functional theory calculations, we show that the bridging
CO is retained in the HsredH+ and HredH+ states in the [FeFe] hydrogenases from Chlamydomonas
reinhardtii and Desulfovibrio desulfuricans, respectively. Furthermore, there is no evidence for a bridging
hydride in either state. These results agree with a model of the catalytic
cycle in which the HredH+ and HsredH+ states are integral, catalytically competent components.
We conclude that proton-coupled electron transfer between the two
subclusters is crucial to catalysis and allows these enzymes to operate
in a highly efficient and reversible manner.
Collapse
Affiliation(s)
- James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Vladimir Pelmenschikov
- Institut für Chemie , Technische Universität Berlin , Strasse des 17 Juni 135 , 10623 Berlin , Germany
| | - Nakul Mishra
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Hongxin Wang
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Yoshitaka Yoda
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Kenji Tamasaku
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , 600 S. Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stephen P Cramer
- SETI Institute , Mountain View , California 94043 , United States
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
16
|
Reijerse EJ, Pelmenschikov V, Birrell JA, Richers CP, Kaupp M, Rauchfuss TB, Cramer SP, Lubitz W. Asymmetry in the Ligand Coordination Sphere of the [FeFe] Hydrogenase Active Site Is Reflected in the Magnetic Spin Interactions of the Aza-propanedithiolate Ligand. J Phys Chem Lett 2019; 10:6794-6799. [PMID: 31580680 PMCID: PMC6844125 DOI: 10.1021/acs.jpclett.9b02354] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
[FeFe] hydrogenases are very active enzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. Their active site, the H-cluster, contains a unique binuclear iron complex, [2Fe]H, with CN- and CO ligands as well as an aza-propane-dithiolate (ADT) moiety featuring a central amine functionality that mediates proton transfer during catalysis. We present a pulsed 13C-ENDOR investigation of the H-cluster in which the two methylene carbons of ADT are isotope labeled with 13C. We observed that the corresponding two 13C hyperfine interactions are of opposite sign and corroborated this finding using density functional theory calculations. The spin polarization in the ADT ligand is shown to be linked to the asymmetric coordination of the distal iron site with its terminal CN- and CO ligands. We propose that this asymmetry is relevant for the enzyme reactivity and is related to the (optimal) stabilization of the iron-hydride intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vladimir Pelmenschikov
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - James A. Birrell
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casseday P. Richers
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin Kaupp
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas B. Rauchfuss
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | - Wolfgang Lubitz
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
|
18
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
19
|
Abul-Futouh H, Skabeev A, Botteri D, Zagranyarski Y, Görls H, Weigand W, Peneva K. Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hassan Abul-Futouh
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Department of Pharmacy, Al-Zytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Davide Botteri
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Avenue, Sofia 1164, Bulgaria
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Friedrich Schiller University, CEEC Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
20
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
21
|
Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Phys Chem Chem Phys 2018; 20:3128-3140. [PMID: 28884175 DOI: 10.1039/c7cp04757f] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN-) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN- vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN- infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Stefan Mebs
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Olga Shulenina
- Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Konstantin Laun
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Leonie Kertess
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Chongdar N, Birrell JA, Pawlak K, Sommer C, Reijerse EJ, Rüdiger O, Lubitz W, Ogata H. Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory [FeFe] Hydrogenase. J Am Chem Soc 2018; 140:1057-1068. [PMID: 29251926 DOI: 10.1021/jacs.7b11287] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory type [FeFe] hydrogenases are predicted to play a role in transcriptional regulation by detecting the H2 level of the cellular environment. These hydrogenases contain the hydrogenase domain with distinct modifications in the active site pocket, followed by a Per-Arnt-Sim (PAS) domain. As yet, neither the physiological function nor the biochemical or spectroscopic properties of these enzymes have been explored. Here, we present the characterization of an artificially maturated, putative sensory [FeFe] hydrogenase from Thermotoga maritima (HydS). This enzyme shows lower hydrogen conversion activity than prototypical [FeFe] hydrogenases and a reduced inhibition by CO. Using FTIR spectroelectrochemistry and EPR spectroscopy, three redox states of the active site were identified. The spectroscopic signatures of the most oxidized state closely resemble those of the Hox state from the prototypical [FeFe] hydrogenases, while the FTIR spectra of both singly and doubly reduced states show large differences. The FTIR bands of both the reduced states are strongly red-shifted relative to the Hox state, indicating reduction at the diiron site, but with retention of the bridging CO ligand. The unique functional and spectroscopic features of HydS are discussed with regard to the possible role of altered amino acid residues influencing the electronic properties of the H-cluster.
Collapse
Affiliation(s)
- Nipa Chongdar
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Constanze Sommer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany.,Institute of Low Temperature Science, Hokkaido University , Kita19 Nishi8, Kita-ku, 060-0819 Sapporo, Japan
| |
Collapse
|
23
|
Möller F, Piontek S, Miller RG, Apfel UP. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Chemistry 2017; 24:1471-1493. [PMID: 28816379 DOI: 10.1002/chem.201703451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 12/12/2022]
Abstract
The design of non-noble metal-containing heterogeneous catalysts for the activation of small molecules is of utmost importance for our society. While nature possesses very sophisticated machineries to perform such conversions, rationally designed catalytic materials are rare. Herein, we aim to raise the awareness of the overall common design and working principles of catalysts incorporating aspects of biology, chemistry, and material sciences.
Collapse
Affiliation(s)
- Frauke Möller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Stefan Piontek
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Reece G Miller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| |
Collapse
|
24
|
Rodríguez-Maciá P, Pawlak K, Rüdiger O, Reijerse EJ, Lubitz W, Birrell JA. Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases. J Am Chem Soc 2017; 139:15122-15134. [DOI: 10.1021/jacs.7b08193] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Plummer SM, Plummer MA, Merkel PA, Hagen M, Biddle JF, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species. Enzyme Microb Technol 2016; 93-94:132-141. [DOI: 10.1016/j.enzmictec.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
|
27
|
Morra S, Arizzi M, Valetti F, Gilardi G. Oxygen Stability in the New [FeFe]-Hydrogenase from Clostridium beijerinckii SM10 (CbA5H). Biochemistry 2016; 55:5897-5900. [DOI: 10.1021/acs.biochem.6b00780] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Morra
- Department of Life Sciences
and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Mariaconcetta Arizzi
- Department of Life Sciences
and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Francesca Valetti
- Department of Life Sciences
and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences
and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| |
Collapse
|
28
|
Covalent Attachment of the Water‐insoluble Ni(P
Cy
2
N
Phe
2
)
2
Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution. ELECTROANAL 2016. [DOI: 10.1002/elan.201600306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Birrell JA, Wrede K, Pawlak K, Rodriguez-Maciá P, Rüdiger O, Reijerse EJ, Lubitz W. Artificial Maturation of the Highly Active Heterodimeric [FeFe] Hydrogenase from Desulfovibrio desulfuricans
ATCC 7757. Isr J Chem 2016. [DOI: 10.1002/ijch.201600035] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James A. Birrell
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Kathrin Wrede
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Patricia Rodriguez-Maciá
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
30
|
Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proc Natl Acad Sci U S A 2016; 113:8454-9. [PMID: 27432985 DOI: 10.1073/pnas.1606178113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle.
Collapse
|
31
|
Yang H, Gandhi H, Cornish AJ, Moran JJ, Kreuzer HW, Ostrom NE, Hegg EL. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:285-292. [PMID: 27071219 DOI: 10.1002/rcm.7432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RATIONALE Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. METHODS We used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. RESULTS All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27–0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41–0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing a more complete picture of the reactions catalyzed by hydrogenases. CONCLUSIONS The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.
Collapse
|
32
|
Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T. Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 2015; 8:179-85. [PMID: 26791902 DOI: 10.1038/nchem.2416] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
Collapse
Affiliation(s)
- Paul C Jordan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407-7102, USA.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Dustin P Patterson
- Department of Chemistry &Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, USA
| | - Kendall N Saboda
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Ethan J Edwards
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407-7102, USA.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Heini M Miettinen
- Department of Microbiology &Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Gautam Basu
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407-7102, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407-7102, USA
| |
Collapse
|
33
|
Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Phys Chem Chem Phys 2015; 17:5421-30. [PMID: 25613229 DOI: 10.1039/c4cp05426a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are enzymes that catalyze the oxidation of H2 as well as the reduction of protons to form H2. The active site of [FeFe] hydrogenase is referred to as the "H-cluster" and consists of a "classical" [4Fe-4S] cluster connected via a bridging cysteine thiol group to a unique [2Fe]H sub-cluster, containing CN(-) and CO ligands as well as a bidentate azadithiolate ligand. It has been recently shown that the biomimetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-) = azadithiolate) complex resembling the diiron sub-cluster can be inserted in vitro into the apo-protein of [FeFe] hydrogenase, which contains only the [4Fe-4S] part of the H-cluster, resulting in a fully active enzyme. This synthetic tool allows convenient incorporation of a variety of diiron mimics, thus generating hydrogenases with artificial active sites. [FeFe] hydrogenase from Chlamydomonas reinhardtii maturated with the biomimetic complex [Fe2(pdt)(CO)4(CN)2](2-) (pdt(2-) = propanedithiolate), in which the bridging adt(2-) ligand is replaced by pdt(2-), can be stabilized in a state strongly resembling the active oxidized (Hox) state of the native protein. This state is EPR active and the signal originates from the mixed valence Fe(I)Fe(II) state of the diiron sub-cluster. Taking advantage of the variant with (15)N and (13)C isotope labeled CN(-) ligands we performed HYSCORE and ENDOR studies on this hybrid protein. The (13)C hyperfine couplings originating from both CN(-) ligands were determined and assigned. Only the (15)N coupling from the CN(-) ligand bound to the terminal iron was observed. Detailed orientation selective ENDOR and HYSCORE experiments at multiple field positions enabled the extraction of accurate data for the relative orientations of the nitrogen and carbon hyperfine tensors. These data are consistent with the crystal structure assuming a g-tensor orientation following the local symmetry of the binuclear sub-cluster.
Collapse
Affiliation(s)
- Agnieszka Adamska-Venkatesh
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Antal TK, Krendeleva TE, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. PHOTOSYNTHESIS RESEARCH 2015; 125:357-81. [PMID: 25986411 DOI: 10.1007/s11120-015-0157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell.
Collapse
Affiliation(s)
- Taras K Antal
- Faculty of Biology, Moscow State University, Vorobyevi Gory, Moscow, 119992, Russia,
| | | | | |
Collapse
|
35
|
Kochem A, O'Hagan M, Wiedner ES, van Gastel M. Combined Spectroscopic and Electrochemical Detection of a NiI⋅⋅⋅HN Bonding Interaction with Relevance to Electrocatalytic H2Production. Chemistry 2015; 21:10338-47. [DOI: 10.1002/chem.201500954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/11/2022]
|
36
|
Siebel JF, Adamska-Venkatesh A, Weber K, Rumpel S, Reijerse E, Lubitz W. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. Biochemistry 2015; 54:1474-83. [PMID: 25633077 DOI: 10.1021/bi501391d] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme.
Collapse
Affiliation(s)
- Judith F Siebel
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Tooley CA, Pazicni S, Berda EB. Toward a tunable synthetic [FeFe] hydrogenase mimic: single-chain nanoparticles functionalized with a single diiron cluster. Polym Chem 2015. [DOI: 10.1039/c5py01196e] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two novel “clickable” [(μ-S2C2H4NR)Fe2(CO)6] complexes and their incorporation into single-chain nanoparticles.
Collapse
Affiliation(s)
- C. A. Tooley
- University of New Hampshire
- Department of Chemistry
- Durham
- USA
| | - S. Pazicni
- University of New Hampshire
- Department of Chemistry
- Durham
- USA
| | - E. B. Berda
- University of New Hampshire
- Department of Chemistry
- Durham
- USA
- University of New Hampshire
| |
Collapse
|
38
|
Trautwein R, Almazahreh LR, Görls H, Weigand W. Steric effect of the dithiolato linker on the reduction mechanism of [Fe2(CO)6{μ-(XCH2)2CRR′}] hydrogenase models (X = S, Se). Dalton Trans 2015; 44:18780-94. [DOI: 10.1039/c5dt01387a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the electrochemical properties of [Fe2(CO)6{μ-(XCH2)2CRR′}] (X = S, Se; R or R′ = H or Me) showed that the complex with the bulkiest CMe2moiety undergoes reduction with potential inversion.
Collapse
Affiliation(s)
- Ralf Trautwein
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| |
Collapse
|
39
|
Adamska-Venkatesh A, Krawietz D, Siebel J, Weber K, Happe T, Reijerse E, Lubitz W. New Redox States Observed in [FeFe] Hydrogenases Reveal Redox Coupling Within the H-Cluster. J Am Chem Soc 2014; 136:11339-46. [DOI: 10.1021/ja503390c] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Danuta Krawietz
- Fakultät
für Biologie und Biotechnologie, Lehrstuhl für Biochemie
der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Judith Siebel
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Katharina Weber
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Happe
- Fakultät
für Biologie und Biotechnologie, Lehrstuhl für Biochemie
der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Edward Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
40
|
|
41
|
Preparation and characterization of diiron diselenolato complexes containing a dioxane ring as models for [FeFe]-hydrogenases. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9844-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Hall GB, Chen J, Mebi CA, Okumura N, Swenson MT, Ossowski SE, Zakai UI, Nichol GS, Lichtenberger DL, Evans DH, Glass RS. Redox Chemistry of Noninnocent Quinones Annulated to 2Fe2S Cores. Organometallics 2013. [DOI: 10.1021/om400913p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gabriel B. Hall
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jinzhu Chen
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Charles A. Mebi
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Noriko Okumura
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Matthew T. Swenson
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Stephanie E. Ossowski
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Uzma I. Zakai
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Gary S. Nichol
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dennis L. Lichtenberger
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dennis H. Evans
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Richard S. Glass
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
44
|
El-khateeb M, Harb M, Abu-Salem Q, Görls H, Weigand W. Substitution reactions of [FeFe]-hydrogenase model complexes containing diselenolate bridges. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.04.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Kampa M, Pandelia ME, Lubitz W, van Gastel M, Neese F. A Metal–Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution. J Am Chem Soc 2013; 135:3915-25. [DOI: 10.1021/ja3115899] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Kampa
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Maria-Eirini Pandelia
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
46
|
Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water. Proc Natl Acad Sci U S A 2013; 110:2017-22. [PMID: 23341607 DOI: 10.1073/pnas.1215149110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain bacterial enzymes, the diiron hydrogenases, have turnover numbers for hydrogen production from water as large as 10(4)/s. Their much smaller common active site, composed of earth-abundant materials, has a structure that is an attractive starting point for the design of a practical catalyst for electrocatalytic or solar photocatalytic hydrogen production from water. In earlier work, our group has reported the computational design of [FeFe](P)/FeS(2), a hydrogenase-inspired catalyst/electrode complex, which is efficient and stable throughout the production cycle. However, the diiron hydrogenases are highly sensitive to ambient oxygen by a mechanism not yet understood in detail. An issue critical for practical use of [FeFe](P)/FeS(2) is whether this catalyst/electrode complex is tolerant to the ambient oxygen. We report demonstration by ab initio simulations that the complex is indeed tolerant to dissolved oxygen over timescales long enough for practical application, reducing it efficiently. This promising hydrogen-producing catalyst, composed of earth-abundant materials and with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant.
Collapse
|
47
|
Finkelmann AR, Stiebritz MT, Reiher M. Electric-field effects on the [FeFe]-hydrogenase active site. Chem Commun (Camb) 2013; 49:8099-101. [DOI: 10.1039/c3cc44112a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Li YL, Xie B, Zou LK, Zhang XL, Lin X. Investigations on synthesis, structural characterization, and new pathway to the butterfly [2Fe2Se] cluster complexes. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Adamska A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W. Identification and characterization of the "super-reduced" state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed Engl 2012; 51:11458-62. [PMID: 23109267 DOI: 10.1002/anie.201204800] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/06/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Agnieszka Adamska
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Feng YN, Xu FF, Chen RP, Wen N, Li ZH, Du SW. Preparation, structures and electrochemical property of diiron dithiolate complexes with hydrophilic N-donor ligands. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|