1
|
A review on regulation of cell cycle by extracellular matrix. Int J Biol Macromol 2023; 232:123426. [PMID: 36708893 DOI: 10.1016/j.ijbiomac.2023.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The extracellular matrix (ECM) is a network of structural proteins, glycoproteins and proteoglycans that assists independent cells in aggregating and forming highly organized functional structures. ECM serves numerous purposes and is an essential component of tissue structure and functions. Initially, the role of ECM was considered to be confined to passive functions like providing mechanical strength and structural identity to tissues, serving as barriers and platforms for cells. The doors to understanding ECM's proper role in tissue functioning opened with the discovery of cellular receptors, integrins to which ECM components binds and influences cellular activities. Understanding and utilizing ECM's potential to control cellular function has become a topic of much interest in recent decades, providing different outlooks to study processes involved in developmental programs, wound healing and tumour progression. On another front, the regulatory mechanisms operating to prevent errors in the cell cycle have been topics of a titanic amount of studies. This is expected as many diseases, most infamously cancer, are associated with defects in their functioning. This review focuses on how ECM, through different methods, influences the progression of the somatic cell cycle and provides deeper insights into molecular mechanisms of functional communication between adhesion complex, signalling pathways and cell cycle machinery.
Collapse
|
2
|
Thomas LB, Steindler DA. Review : Glial Boundaries and Scars: Programs for Normal Development and Wound Healing in the Brain. Neuroscientist 2016. [DOI: 10.1177/107385849500100305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early studies of glial boundaries, which are composed of immature astrocytes and extracellular matrix mol ecules (which they express), initially offered insight into the partitioning that occurs in the developing nervous system. More recently, however, it has been suggested that similar "boundaries" may have important roles in other processes occurring in the brain, including repair after traumatic brain injury. As more is understood about the expression and function of boundary molecules and glia, their potential importance is becoming apparent in numerous neuropathological conditions, including neurodegeneration and neuroregeneration in Alzheimer's and Huntington's diseases as well as in brain neoplasms. Furthermore, before we can hope to fully understand and facilitate regeneration in the compromised brain, our knowledge of the glial boundary, both during development and in the adult, must be more complete. The Neuroscientist 1:142-154, 1995
Collapse
Affiliation(s)
- L. Brannon Thomas
- Department of Anatomy and Neurobiology Department of Neurosurgery The University of Tennessee Memphis, Tennessee
| | - Dennis A. Steindler
- Department of Anatomy and Neurobiology Department of Neurosurgery The University of Tennessee Memphis, Tennessee
| |
Collapse
|
3
|
Tracy LE, Minasian RA, Caterson E. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle) 2016; 5:119-136. [PMID: 26989578 DOI: 10.1089/wound.2014.0561] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts.
Collapse
Affiliation(s)
- Lauren E. Tracy
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel A. Minasian
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Mane DR, Bhat K, Kale AD, Hallikerimath S. Immunoexpression of tenascin as a predictor of the malignancy potential of oral leukoplakia associated with a tobacco habit. Biotech Histochem 2015; 90:544-51. [PMID: 25839195 DOI: 10.3109/10520295.2015.1015055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oral leukoplakia is a morphological alteration of tissue that is an early indicator for malignancy. Tenascin (TN) is a large hexameric extracellular matrix (ECM) protein with anti-adhesive properties that fosters cell migration during development, wound healing and tissue remodeling; it is present in small amounts in adult tissues. Overexpression of TN in a pathological condition may be either a cause or a consequence of the disease. We evaluated the efficacy of TN for early prediction of tobacco-associated oral cancers. We studied retrospectively 95 cases of oral leukoplakia, including mild, moderate and severe cases, using immunohistochemistry for TN. We evaluated the intensity, area and pattern of TN expression. Greater intensity and area of TN expression was observed in mild and severe dysplasia than in moderate dysplasia. Most cases showed a reticular pattern of expression, especially in mild and moderate dysplasia; a fibrillar pattern was more evident in severe dysplasia. We also observed homogeneous expression pattern in some cases. TN is a marker for dysplastic changes in epithelium and its expression may be helpful for predicting the malignancy potential of tobacco-associated oral leukoplakia.
Collapse
Affiliation(s)
- D R Mane
- a Department of Oral Pathology and Microbiology , KLE VK Institute of Dental Sciences and Hospital , Belgaum, Karnataka , India
| | - K Bhat
- b Basic Science Research Laboratory, KLE VK Institute of Dental Sciences and Hospital , Belgaum, Karnataka , India
| | - A D Kale
- a Department of Oral Pathology and Microbiology , KLE VK Institute of Dental Sciences and Hospital , Belgaum, Karnataka , India
| | - S Hallikerimath
- a Department of Oral Pathology and Microbiology , KLE VK Institute of Dental Sciences and Hospital , Belgaum, Karnataka , India
| |
Collapse
|
5
|
Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Tenascin-C promotes differentiation of rat dental pulp cellsin vitro. Int Endod J 2012; 46:30-9. [DOI: 10.1111/j.1365-2591.2012.02089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - M. Yoshinari
- Oral Health Science Center HRC7; Tokyo Dental College; Chiba, Tokyo; and; Japan
| | | |
Collapse
|
6
|
Brissett M, Veraldi KL, Pilewski JM, Medsger TA, Feghali-Bostwick CA. Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. ACTA ACUST UNITED AC 2012; 64:272-80. [PMID: 21898349 DOI: 10.1002/art.30647] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine the role of insulin-like growth factor binding protein 3 (IGFBP-3) in mediating the effects of transforming growth factor β (TGFβ) on tenascin-C (TN-C) production and to assess the levels of TN-C in vivo in patients with systemic sclerosis (SSc)-associated pulmonary fibrosis. METHODS Human primary lung fibroblasts were stimulated with TGFβ or IGFBP-3 in the presence or absence of specific small interfering RNAs and chemical inhibitors of the signaling cascade. TN-C levels in lung tissue specimens obtained from patients with SSc-associated pulmonary fibrosis were assessed using immunohistochemical analysis and were compared with the levels in specimens obtained from normal donors. TN-C levels were quantified in sera from normal donors and patients with SSc with or without pulmonary fibrosis, using an enzyme-linked immunosorbent assay. RESULTS IGFBP-3 mediated the induction of TN-C by TGFβ. Direct induction of TN-C by IGFBP-3 occurred in a p38 MAP kinase-dependent manner. TN-C levels were abundant in lung tissues from patients with SSc and were localized to subepithelial layers of the distal airways. No TN-C was detectable around the proximal airways. Patients with SSc-associated pulmonary fibrosis had significantly higher levels of circulating TN-C compared with SSc patients without pulmonary fibrosis. Longitudinal samples obtained from patients with SSc before and after the onset of pulmonary fibrosis showed increased levels of TN-C after the onset of pulmonary fibrosis. CONCLUSION IGFBP-3, which is overexpressed in fibrotic lungs, induces production of TN-C by subepithelial fibroblasts. The increased lung tissue levels of TN-C parallel the levels detected in the sera of SSc patients with pulmonary fibrosis, suggesting that TN-C may be a useful biomarker for SSc-related pulmonary fibrosis.
Collapse
Affiliation(s)
- Monique Brissett
- University of Pittsburgh, Department of Medicine, Pittsburgh, Pennsylvania 15231, USA
| | | | | | | | | |
Collapse
|
7
|
Paron I, Berchtold S, Vörös J, Shamarla M, Erkan M, Höfler H, Esposito I. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS One 2011; 6:e21684. [PMID: 21747918 PMCID: PMC3126842 DOI: 10.1371/journal.pone.0021684] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.
Collapse
Affiliation(s)
- Igor Paron
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sonja Berchtold
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Julia Vörös
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Madhavi Shamarla
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Heinz Höfler
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
8
|
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
|
9
|
Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 2009; 3:287-310. [PMID: 19838819 PMCID: PMC2778592 DOI: 10.1007/s12079-009-0075-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
Affiliation(s)
- Kim S. Midwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London, W6 8LH UK
| | - Gertraud Orend
- Inserm U682, Strasbourg, 67200 France
- University of Strasbourg, UMR-S682, Strasbourg, 67081 France
- Department of Molecular Biology, CHRU Strasbourg, Strasbourg, 67200 France
| |
Collapse
|
10
|
Singh P. Role of Annexin-II in GI cancers: interaction with gastrins/progastrins. Cancer Lett 2006; 252:19-35. [PMID: 17188424 PMCID: PMC1941619 DOI: 10.1016/j.canlet.2006.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/06/2006] [Indexed: 12/27/2022]
Abstract
The role of the gastrin peptide hormones (G17, G34) and their precursors (progastrins, PG; gly-extended gastrin, G-gly), in gastrointestinal (GI) cancers has been extensively reviewed in recent years [W. Rengifo-Cam, P. Singh, Role of progastrins and gastrins and their receptors in GI and pancreatic cancers: targets for treatment, Curr. Pharm. Des. 10 (19) (2004) 2345-2358; M. Dufresne, C. Seva, D. Fourmy, Cholecystokinin and gastrin receptors, Physiol. Rev. 86 (3) (2006) 805-847; A. Ferrand, T.C. Wang, Gastrin and cancer: a review, Cancer Lett. 238 (1) (2006) 15-29]. A possible important role of progastrin peptides in colon carcinogenesis has become evident from experiments with transgenic mouse models [W. Rengifo-Cam, P. Singh, (2004); A. Ferrand, T.C. Wang, (2006)]. It is now known that growth stimulatory and co-carcinogenic effects of gastrin/PG peptides are mediated by both proliferative and anti-apoptotic effects of the peptides on target cells [H. Wu, G.N. Rao, B. Dai, P. Singh, Autocrine gastrins in colon cancer cells Up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3, J. Biol. Chem. 275 (42) (2000) 32491-32498; H. Wu, A. Owlia, P. Singh, Precursor peptide progastrin(1-80) reduces apoptosis of intestinal epithelial cells and upregulates cytochrome c oxidase Vb levels and synthesis of ATP, Am. J. Physiol. Gastrointest. Liver Physiol. 285 (6) (2003) G1097-G1110]. Several receptor subtypes have been described that mediate growth effects of gastrin peptides [W. Rengifo-Cam, P. Singh (2004); M. Dufresne, C. Seva, D. Fourmy, (2006)]. Recently, we identified Annexin II as a high affinity binding protein for gastrin/PG peptides [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798]. Importantly, the expression of Annexin II was required for mediating growth stimulatory effects of gastrin and PG peptides on intestinal epithelial and colon cancer cells [P. Singh, H. Wu, C. Clark, A. Owlia, Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells, Oncogene (2006), doi:10.1038/sj.onc.1209798], suggesting that Annexin-II may represent the elusive novel receptor for gastrin/PG peptides. The importance of this finding in relation to the structure and function of Annexin-II, especially in GI cancers, is described below. Since this surprising finding represents a new front in our understanding of the mechanisms involved in mediating growth effects of gastrin/PG peptides in GI cancers, our current understanding of the role of Annexin-II in proliferation and metastasis of cancer cells is additionally reviewed.
Collapse
Affiliation(s)
- Pomila Singh
- Department of Neuroscience and Cell Biology, 10.104 Medical Research Building, Route 1043, University of Texas Medical Branch, 301University Blvd., Mail Route 1043, Galveston, TX 77555-1043, USA.
| |
Collapse
|
11
|
Griga T, Tromm A, Schmiegel W, Pfisterer O, Müller KM, Brasch F. Collagenous colitis: implications for the role of vascular endothelial growth factor in repair mechanisms. Eur J Gastroenterol Hepatol 2004; 16:397-402. [PMID: 15028972 DOI: 10.1097/00042737-200404000-00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Collagenous colitis is a chronic inflammatory bowel disease with a band-like subepithelial deposition of immature extracellular matrix. Because the extracellular matrix deposition is potentially reversible, an imbalance between fibrogenesis and fibrolysis with reduced matrix degradation has been suspected. Vascular endothelial growth factor plays a central role in extracellular matrix degradation. Therefore, we investigated the expression of vascular endothelial growth factor in the colonic mucosa of patients with collagenous colitis before and after long-term treatment with oral budesonide. METHOD A quantitative immunohistochemical method was used to measure the amount of immunoreactive vascular endothelial growth factor, tenascin and leucocyte common antigen within the epithelium and the lamina propria of colonic biopsies by area morphometry. RESULTS Strong immunostaining for vascular endothelial growth factor within the epithelium and the lamina propria, and for tenascin, was seen in patients with collagenous colitis compared with normal controls. The enhanced immunostaining for vascular endothelial growth factor within the lamina propria was accompanied by the accumulation of leucocytes, detected by staining for leucocyte common antigen. After long-term treatment with oral budesonide, the amount of immunostaining for leucocyte-derived vascular endothelial growth factor within the lamina propria decreased significantly to normal levels. In contrast, staining for vascular endothelial growth factor within the epithelium remained significantly increased. CONCLUSIONS Our data suggest an important role of vascular endothelial growth factor in counteracting the local imbalance of fibrogenesis and fibrolysis, leading to an accumulation of immature subepithelial matrix in collagenous colitis.
Collapse
Affiliation(s)
- Thomas Griga
- Department of Gastroenterology, University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Cui W, Bryant MR, Sweet PM, McDonnell PJ. Changes in gene expression in response to mechanical strain in human scleral fibroblasts. Exp Eye Res 2004; 78:275-84. [PMID: 14729359 DOI: 10.1016/j.exer.2003.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Scleral fibroblasts are involved in scleral remodeling during axial elongation in myopia. Mechanical load is a potent stimulator of gene expression. This study seeks to identify changes in gene expression of scleral fibroblasts in response to mechanical load and speculate on possible mechanisms of scleral remodeling in the development of myopia. Human scleral fibroblasts (HSFs) were mechanically stretched for 30 min and 24 hr. A gene microarray analysis was used to measure changes in gene expression. A total of 237 genes revealed differential and significant changes in expression (P<0.01) after 30 min of stretching. Of these, 28 unexpressed genes began to be expressed (turned on), while 31 expressed genes were no longer expressed (turned off). After 24 hr, 308 genes showed reproducible changes in expression (P<0.01), while 29 genes were turned on and 17 genes were turned off. After 30 min, 25 genes showed at least a threefold change in expression. These included genes for cell receptors, protein kinases, cell growth/differentiation factors, extracellular matrix (ECM) proteins, lipid metabolism, protein metabolism, transcription factors, binding proteins and water channels. After 24 hr, 21 genes showed at least a threefold change in expression. These included genes for cell receptors, protein kinases, cell growth/differentiation factors, lipid metabolism, ECM proteins, transcription factors, and carbohydrate metabolism. RT-PCR and Southern blotting confirmed the changes in expression of selected genes. In this study we identified a large number of early and late mechanical response genes in HSFs. These changes in gene expression will provide potential candidate genes that might be involved in scleral remodeling during axial elongation in myopia.
Collapse
Affiliation(s)
- Wei Cui
- Doheny Eye Institute and the Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer 2002; 98:362-9. [PMID: 11920587 DOI: 10.1002/ijc.10233] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extracellular matrix protein tenascin-C is expressed in processes like embryogenesis and wound healing and in neoplasia. Tenascin-C expression in gliomas has been described previously; however, the relation to clinical data remains inconsistent. Generally, analysis of tenascin-C function is difficult due to different alternatively spliced isoforms. Our studies focus on changes in tenascin-C expression in human gliomas, correlating these changes with tumor progression and elucidating the functional role of the glioma cell-specific tenascin-C isoform pool. Eighty-six glioma tissues of different World Health Organization (WHO) grades were analyzed immunohistochemically for tenascin-C expression. The influence of the specific tenascin-C isoforms produced by glioblastoma cells on proliferation and migration was examined in vitro using blocking antibodies recognizing all isoforms. In general, tenascin-C expression increased with tumor malignancy. Perivascular staining of tenascin-C around tumor-supplying blood vessels was observed in all glioblastoma tissues, whereas in WHO II and III gliomas, perivascular tenascin-C staining appeared less frequently. The appearance of perivascular tenascin-C correlated significantly with a shorter disease-free time. Analysis of proliferation and migration in the presence of blocking antibodies revealed an inhibition of proliferation by around 30% in all 3 glioblastoma cell cultures, as well as a decrease in migration of 30.6-46.7%. Thus we conclude that the endogenous pool of tenascin-C isoforms in gliomas supports both tumor cell proliferation and tumor cell migration. In addition, our data on the perivascular staining of tenascin-C in WHO II and III gliomas and its correlation with a shorter disease-free time suggest that tenascin-C may be a new and potent prognostic marker for an earlier tumor recurrence.
Collapse
Affiliation(s)
- Christel Herold-Mende
- Molecular Biology Laboratory, Neurosurgery Hospital, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
This study aims at the in situ identification of factors mediating glioma cell invasion requiring adhesion, extracellular matrix degradation, and migration. Forty-five gliomas (astrocytomas, glioblastomas, oligodendrogliomas, and mixed gliomas) were investigated for the immunohistochemical expression of the membrane protein CD44s, the basal lamina proteins laminin, collagen IV, and fibronectin, the lectin galectin-3 recognizing tenascin and N-CAM, as well as for the matrix-degrading enzymes metalloproteinases MMP-2, MMP-9, and cathepsin D. Besides vessels expressing basal lamina proteins, tenascin, MMP-2, MMP-9, and galectin-3, tumor cells revealed strong immunoreactivity for CD44s, tenascin, galectin-3, and N-CAM, which was restricted to solid tumor masses. Single invading cells displayed distinct expression of MMP-2 and MMP-9, also found in solid tumor areas, as well as of cathepsin D. Restricted expression of CD44s, galectin-3, tenascin, and N-CAM in solid tumor masses seems to contribute to homotypical tumor cell adhesion. However, switching to an invasive phenotype, single tumor cells lack this expression pattern and acquire degrading and phagocytic activities by expressing cathepsin D, MMP-2, and MMP-9, which are also expressed by solid tumor masses facilitating the loosening and invasion of single neoplastic cells. The blocking of these factors may be of potential benefit in anti-invasive therapy.
Collapse
Affiliation(s)
- D S Tews
- Division of Neuropathology, Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Murphy LI, Fischer D, Chiquet-Ehrismann R, Mackie EJ. Tenascin-C induced stimulation of chondrogenesis is dependent on the presence of the C-terminal fibrinogen-like globular domain. FEBS Lett 2000; 480:189-92. [PMID: 11034326 DOI: 10.1016/s0014-5793(00)01936-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relationship between structure of tenascin-C (Tn-C), a multi-domain extracellular matrix protein, and its stimulation of chondrogenesis was examined using recombinant Tn-C isoforms (full length or with specific domains deleted) as substrata for undifferentiated chicken mesenchymal cells. Of the Tn-C variants tested, only Tn-C lacking the fibrinogen-like domain or Tn-C comprised solely of fibrinogen-like domains failed to stimulate chondrogenesis. The ability of variants to stimulate chondrogenesis was not dependent on their ability to support adhesion or stimulate proliferation. These results demonstrate that the fibrinogen-like domain of Tn-C is necessary but not sufficient for induction of chondrogenesis.
Collapse
Affiliation(s)
- L I Murphy
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- J Wiesen
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
17
|
Häkkinen L, Hildebrand HC, Berndt A, Kosmehl H, Larjava H. Immunolocalization of tenascin-C, alpha9 integrin subunit, and alphavbeta6 integrin during wound healing in human oral mucosa. J Histochem Cytochem 2000; 48:985-98. [PMID: 10858276 DOI: 10.1177/002215540004800712] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tenascin-C (TN-C) and its isoforms are multidomain extracellular matrix (ECM) proteins that are believed to be involved in the regulation of stromal-epithelial interactions. Some of the interactions between TN-C and cells are mediated by integrins. In this study we analyzed the expression of TN-C and its large molecular weight splice isoform (TN-C(L)) and the putative TN-C-binding alpha9 and alphavbeta6 integrins during human wound repair. In 3-day-old oral mucosal wounds, immunoreactivity for alpha9 integrin localized abundantly at the migrating basal wound epithelial cells. TN-C and TN-C(L) were localized in the matrix between and underneath alpha9-expressing epithelial cells. In parallel with gradual downregulation of alpha9 integrin immunoreactivity in 7-day and older wounds, the expression of alphavbeta6 integrin was temporarily induced. Integrin alphavbeta6 co-localized in the same area as TN-C and TN-C(L) immunoreactivity at the cell-cell contacts of the basal and suprabasal cell layers of the wound epithelium. During granulation tissue formation and reorganization from 7 to 28 days after wounding, TN-C and TN-C(L) were abundantly localized in the granulation tissue. The findings show that TN-C(L) is expressed under the migrating epithelial front and in the granulation tissue during matrix deposition in wound repair. Preferential localization of alpha9 integrin in migrating epithelial cells and of alphavbeta6 integrin in epithelium after wound closure suggests different functions for these integrins in wound repair.
Collapse
Affiliation(s)
- L Häkkinen
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
18
|
Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000; 218:235-59. [PMID: 10842355 DOI: 10.1002/(sici)1097-0177(200006)218:2<235::aid-dvdy2>3.0.co;2-g] [Citation(s) in RCA: 474] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The determination of animal form depends on the coordination of events that lead to the morphological patterning of cells. This epigenetic view of development suggests that embryonic structures arise as a consequence of environmental influences acting on the properties of cells, rather than an unfolding of a completely genetically specified and preexisting invisible pattern. Specialized cells of developing multicellular organisms are surrounded by a complex extracellular matrix (ECM), comprised largely of different collagens, proteoglycans, and glycoproteins. This ECM is a substrate for tissue morphogenesis, lends support and flexibility to mature tissues, and acts as an epigenetic informational entity in the sense that it transduces and integrates intracellular signals via distinct cell surface receptors. Consequently, ECM-receptor interactions have a profound influence on major cellular programs including growth, differentiation, migration, and survival. In contrast to many other ECM proteins, the tenascin (TN) family of glycoproteins (TN-C, TN-R, TN-W, TN-X, and TN-Y) display highly restricted and dynamic patterns of expression in the embryo, particularly during neural development, skeletogenesis, and vasculogenesis. These molecules are reexpressed in the adult during normal processes such as wound healing, nerve regeneration, and tissue involution, and in pathological states including vascular disease, tumorigenesis, and metastasis. In concert with a multitude of associated ECM proteins and cell surface receptors that include members of the integrin family, TN proteins impart contrary cellular functions, depending on their mode of presentation (i.e., soluble or substrate-bound) and the cell types and differentiation states of the target tissues. Expression of tenascins is regulated by a variety of growth factors, cytokines, vasoactive peptides, ECM proteins, and biomechanical factors. The signals generated by these factors converge on particular combinations of cis-regulatory elements within the recently identified TN gene promoters via specific transcriptional activators or repressors. Additional complexity in regulating TN gene expression is achieved through alternative splicing, resulting in variants of TN polypeptides that exhibit different combinations of functional protein domains. In this review, we discuss some of the recent advances in TN biology that provide insights into the complex way in which the ECM is regulated and how it functions to regulate tissue morphogenesis and gene expression.
Collapse
Affiliation(s)
- F S Jones
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
19
|
Jones FS, Jones PL. The tenascin family of ECM glycoproteins: Structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000. [DOI: 10.1002/(sici)1097-0177(200006)218:2%3c235::aid-dvdy2%3e3.0.co;2-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
20
|
Mikic B, Wong M, Chiquet M, Hunziker EB. Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. J Orthop Res 2000; 18:406-15. [PMID: 10937627 DOI: 10.1002/jor.1100180312] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to investigate how temporal and spatial patterns of characteristic extracellular matrix molecules are altered in the absence of normal functional skeletal muscle contractions during avian synovial joint development. By using in situ detection of protein and mRNA expression in developing avian feet and femorotibial joints from a wide range of developmental stages, we demonstrate that the morphological abnormalities that result from embryonic immobilization are associated with altered patterns of tenascin-C and collagen-XII expression within developing joint structures. As the joints fuse in immobilized embryos, the cells of the presumptive articular surface differentiate from flattened fibroblasts to more rounded chondrocytes and collagens XII and I are no longer detected at sites of complete joint fusion. Although the expression of collagen XII persists at normal levels elsewhere within the immobilized joint, tenascin-C expression is diminished within the chondroepiphysis, synovium, and tendons, as well as within the remains of the fibrous articular surface. This effect is most notable for the shortest tenascin variant (Tn190) within the chondroepiphysis and the largest variant (Tn230) within tendons, synovium, and the fibrous surface layer of the joint. This study thus provides in vivo support of previous in vitro work that suggests that tenascin expression is sensitive to external changes in mechanical loading environment. However, these data do not support a similar conclusion for collagen XII during early development.
Collapse
Affiliation(s)
- B Mikic
- Department of Orthopaedics, University of Virginia, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
21
|
Koukoulis GK, Koso-Thomas AK, Zardi L, Gabbiani G, Gould VE. Enhanced tenascin expression correlates with inflammation in primary sclerosing cholangitis. Pathol Res Pract 1999; 195:727-31. [PMID: 10605691 DOI: 10.1016/s0344-0338(99)80113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tenascin (Tn) is an extracellular matrix (ECM) glycoprotein upregulated during development, repair and oncogenesis. In the normal adult liver, Tn is limited to vessels and, focally, to sinusoidal walls. In this study, samples were obtained from 12 livers removed during transplantation for primary sclerosing cholangitis (PSC). Paraffin sections were immunostained with monoclonal antibodies BC-4 which recognizes all isoforms of Tn and alpha-SMA-1 to alpha smooth muscle actin (alpha-SMA). Intense Tn reactions were noted in areas of ductular proliferation and inflammation at the parenchyma-stroma interface. In the absence of ductular proliferation, no selective Tn upregulation was noted. Staining was preferentially located adjacent to ductular basement membranes, with minimal extension into the surrounding ECM. Advanced histologic stages with micronodules rimmed by proliferating ductules showed the most florid Tn reactions, whereas fibrous septa and edematous perinodular haloes did not react. Increased periductal Tn was also seen associated with active inflammation, notably around large, dilated septal ducts, while fibro-obliterative ductal lesions and "onion skin fibrosis" did not stain. Focally enhanced Tn staining was noted in sinusoids neighboring ductular proliferation, and in dilated sinusoids within cirrhotic nodules. Reactions with alpha-SMA-1 highlighted myofibroblasts and activated Ito cells in topographic association with Tn reactions. We conclude that Tn is upregulated in PSC where it is preferentially localized in the remodeling matrix encompassing proliferating ductules and in altered periductal matrix. Our results suggest that Tn determinations in tissue or serum samples might be helpful in the clinical assessment of "activity" in PSC.
Collapse
Affiliation(s)
- G K Koukoulis
- Department of Pathology Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
22
|
Kusubata M, Hirota A, Ebihara T, Kuwaba K, Matsubara Y, Sasaki T, Kusakabe M, Tsukada T, Irie S, Koyama Y. Spatiotemporal changes of fibronectin, tenascin-C, fibulin-1, and fibulin-2 in the skin during the development of chronic contact dermatitis. J Invest Dermatol 1999; 113:906-12. [PMID: 10594729 DOI: 10.1046/j.1523-1747.1999.00802.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to elucidate how chronic inflammation affects the organization of the extracellular matrix in the skin, a prolonged allergic contact dermatitis was induced in a mouse by repeated application to the ear of 2,4-dinitrofluorobenzene every 3 d for 66 d. Subsequently, the spatiotemporal changes of fibronectin, tenascin-C, fibulin-1, and fibulin-2 in the skin were examined. In the acute phase of inflammation (day 3-day 12), the amount of fibronectin and tenascin-C increased markedly and were degraded, whereas the amount of fibulin-2 changed slightly. Abundant deposition of tenascin-C was observed in the connective tissue. Fibulin-1 and fibulin-2 distributed as fine fibrils. In contrast, the amounts of fibronectin and tenascin-C decreased and their degradation was suppressed in the chronic phase (day 15-day 66), but the amount of fibulin-2 increased. Tenascin-C was observed mainly at and underneath the epidermal basement membrane. In the subepidermal region, many fibulin-2-positive microfibrils were distributed. The amount and distribution of fibulin-1 did not change markedly in either phase. MMP-like enzymes of 62 kDa, probably activated MMP-2, were upregulated in the chronic phase, whereas components of 92, 85, or 67 kDa were highly induced in the acute phase. These results suggest that chronic inflammation in allergic contact dermatitis is associated with temporal changes in the expression, deposition, and degradation of inducible extracellular matrix components.
Collapse
Affiliation(s)
- M Kusubata
- Nippi Research Institute of Biomatrix, Nippi Inc., Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schenk S, Chiquet-Ehrismann R, Battegay EJ. The fibrinogen globe of tenascin-C promotes basic fibroblast growth factor-induced endothelial cell elongation. Mol Biol Cell 1999; 10:2933-43. [PMID: 10473637 PMCID: PMC25533 DOI: 10.1091/mbc.10.9.2933] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe.
Collapse
Affiliation(s)
- S Schenk
- Department of Research, University Hospital Basel, 4031 Basel, Switzerland
| | | | | |
Collapse
|
24
|
Tan MI, Strunck E, Scholzen T, Gerdes J, Vollmer G. Extracellular matrix regulates steady-state mRNA levels of the proliferation associated protein Ki-67 in endometrial cancer cells. Cancer Lett 1999; 140:145-52. [PMID: 10403553 DOI: 10.1016/s0304-3835(99)00066-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated whether components of the extracellular matrix have the potential to regulate the proliferative activity of endometrial adenocarcinoma cells. Culturing of cells on the reconstituted basement membrane matrigel down-regulated the steady-state mRNA levels of the proliferation associated protein, Ki-67, in the endometrial adenocarcinoma cell lines HEC 1B(L) and Ishikawa after 48-96 h of culture on the matrix substrate. Proliferation of Ishikawa was stimulated again if cells were cultured on matrigel and challenged by proteins representing functional domains of tenascin-C, a mesenchymal glycoprotein. The fibronectin-type-III-like repeats 6-8 of tenascin-C were found to be the most potent. In summary, evidence is provided that components of both epithelial and stromal extracellular matrices can function as regulators of cell growth.
Collapse
Affiliation(s)
- M I Tan
- Institut für Molekulare Medizin, Medizinische Universität zu Lübeck, Germany
| | | | | | | | | |
Collapse
|
25
|
Faouzi S, Le Bail B, Neaud V, Boussarie L, Saric J, Bioulac-Sage P, Balabaud C, Rosenbaum J. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol 1999; 30:275-84. [PMID: 10068108 DOI: 10.1016/s0168-8278(99)80074-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Marked changes in extracellular matrix occur in the stroma of hepatocellular carcinoma, as compared to normal or cirrhotic liver. The cell types responsible for extracellular matrix synthesis within hepatocellular carcinoma have not been clearly identified. METHODS In vivo collagen synthesis was studied by in situ hybridization and immunohistochemistry for types I, IV, V and VI collagen, together with immunolabeling of alpha-smooth muscle actin, a myofibroblast marker, and CD34, an endothelial cell marker. In vitro, extracellular matrix deposition by cultured myofibroblasts was studied by reticulin staining, immunocytochemistry and RNase protection. RESULTS All collagens studied were expressed in the stroma of the tumor, with a higher level of type VI and IV collagens than of type I and V. The majority of the cells expressing collagen transcripts in human hepatocellular carcinoma stroma were alpha-actin positive and CD 34 negative. In vitro experiments demonstrated that the hepatocellular carcinoma cell lines HepG2, HuH7 and Hep3B markedly increased extracellular matrix deposition by human liver myofibroblasts. This increase was mediated by a soluble mediator present in tumor cell conditioned medium. It was not explained by an increase in mRNA levels of extracellular matrix components, nor by a decrease in the secretion of matrix-degrading proteinases by myofibroblasts. CONCLUSIONS Myofibroblasts are the main source of collagens in the stroma of hepatocellular carcinoma. Our data also indicate that tumoral hepatocytes increase extracellular matrix deposition by cultured myofibroblasts, probably by post-transcriptional mechanisms. The generation of hepatocellular carcinoma stroma by myofibroblasts could thus be under control of tumoral cells.
Collapse
Affiliation(s)
- S Faouzi
- Groupe de Recherches pour l'Etude du Foie and Laboratoire d'Anatomie Pathologique, Université Victor Segalen Bordeaux 2, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
We have demonstrated previously that versican stimulated cell proliferation through the G3 domain. In these experiments, we show that versican mini-gene-transfected cell lines exhibited decreased cell-substratum interaction and increased cell proliferation. Exogenous addition of growth medium containing the versican gene product produced the same results. Because the G1 domain of versican is structurally similar to the G1 domain of aggrecan and to link protein, both of which play role in cell adhesion, we hypothesized that versican's proliferative effects may be a consequence of its ability to reduce cell adhesion, and may be mediated through the G1 domain. To investigate this, we expressed a G1 construct in NIH3T3 cells and showed that it reduced cell adhesion and enhanced cell proliferation. We then demonstrated that deletion of the G1 domain from versican greatly, but not completely, reversed the effects of versican: G1-deletion mutants of versican show slightly reduced amounts of cell adhesion and slightly increased rates of proliferation. We concluded that versican can stimulate cell proliferation via two mechanisms: through two EGF-like motifs in the G3 domain which play a role in stimulating cell growth, and through the G1 domain, which destabilizes cell adhesion and facilitates cell growth. We purified the G1 product with an affinity column and demonstrated that it reduced cell adhesion and enhanced cell proliferation.
Collapse
Affiliation(s)
- B L Yang
- Sunnybrook Health Science Centre and Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | | | | | | |
Collapse
|
27
|
Probstmeier R, Pesheva P. Tenascin-C inhibits beta1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 1999; 9:101-14. [PMID: 9949188 DOI: 10.1093/glycob/9.2.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously shown that the extracellular matrix molecule tenascin-C inhibits fibronectin-mediated cell adhesion and neurite outgrowth by an interaction with a cellular RGD-independent receptor which interferes with the adhesion and neurite outgrowth promoting activities of the fibronectin receptor(s). Here we demonstrate that the inhibitory effect of tenascin-C on beta1integrin-dependent cell adhesion and neurite outgrowth is mediated by the interaction of the protein with membrane-associated disialogangliosides, which interferes with protein kinase C-related signaling pathways. First, in substratum mixtures with fibronectin, an RGD sequence-containing fragment of the molecule or synthetic peptide, tenascin-C inhibited cell adhesion and spreading by a disialoganglioside-dependent, sialidase-sensitive mechanism leading to an inhibition of protein kinase C. Second, the interaction of intact or trypsinized, i.e., cell surface glycoprotein-free, cells with immobilized tenascin-C was strongly inhibited by gangliosides or antibodies to gangliosides and tenascin-C. Third, preincubation of immobilized tenascin-C with soluble disialogangliosides resulted in a delayed cell detachment as a function of time. Similar to tenascin-C, immobilized antibody to GD2 (3F8) or sphingosine, a protein kinase C inhibitor, strongly inhibited RGD-dependent cell spreading. Finally, the degree of tenascin-C-induced inhibition of cell adhesion was proportional to the degree of disialoganglioside levels of expression by different cells suggesting the relevance of such mechanism in modulating integrin-mediated cell-matrix interactions during pattern formation or tumor progression.
Collapse
Affiliation(s)
- R Probstmeier
- Department of Physiology, Neurophysiology, and Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
28
|
González-Sancho JM, Alvarez-Dolado M, Caelles C, Muñoz A. Inhibition of tenascin-C expression in mammary epithelial cells by thyroid hormone. Mol Carcinog 1999; 24:99-107. [PMID: 10078937 DOI: 10.1002/(sici)1098-2744(199902)24:2<99::aid-mc4>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple data suggest a relationship between thyroid hormone (triiodothyronine (T3)) and carcinogenesis. Studies on breast cancer have been inconclusive, suggesting contradictory effects of thyroid status and diseases. Recently, we reported that expression of the extracellular matrix glycoprotein tenascin-C is modulated by T3 during rat brain development. Because tenascin-C has been reported to have growth-, motility-, and angiogenic-promoting activities and to become upregulated during tumorigenesis in breast carcinoma and stromal cells, we analyzed the effects of T3 on tenascin-C expression in mammary epithelial cells. In this study, we showed that tenascin-C RNA expression was inhibited by T3 in normal un-transformed EpH4 mouse mammary epithelial cells expressing appropriate receptors. T3's action appeared to be due to a decreased half-life of the tenascin-C mRNA, with a maximum effect (85% at 100 nM) 48 h after addition. T3 also downregulated tenascin-C in the human mammary tumor cell line SKBR-3, which expresses endogenous thyroid receptors. Immunoprecipitation experiments confirmed that tenascin-C protein content was also decreased by T3 in EpH4 cells (70% reduction at 100 nM). Dexamethasone had a similar inhibitory effect (70% at 100 nM), whereas estradiol, the antiestrogen ICI 164,384, progesterone, and all-trans retinoic acid did not alter tenascin-C expression. Our data demonstrate an inhibitory action of T3 on tenascin-C expression in mammary epithelial cells that may play a role in the physiological regulation of this gene and in neoplastic processes.
Collapse
Affiliation(s)
- J M González-Sancho
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Koyama Y, Kusubata M, Yoshiki A, Hiraiwa N, Ohashi T, Irie S, Kusakabe M. Effect of tenascin-C deficiency on chemically induced dermatitis in the mouse. J Invest Dermatol 1998; 111:930-5. [PMID: 9856798 DOI: 10.1046/j.1523-1747.1998.00401.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tenascin-C is a large extracellular matrix glycoprotein characterized by its spatiotemporal expression during embryogenesis, carcinogenesis, and wound healing. Many in vitro studies on tenascin-C have revealed its multifunctional properties; however, disruption of the tenascin-C gene did not reveal any obvious abnormalities during development, and its function in vivo remains unclear. Here, we investigated whether tenascin-C is involved in inflammatory dermatitis in adults by studying chemically induced dermatitis in tenascin-C knockout mice. An epicutaneous application of a hapten, 2,4-dinitrofluorobenzene, to the ear skin of BALB/CA mice resulted in inflammation and induced the expression of tenascin-C. In congenic tenascin-C knockout mice, the dermatitis occurred more severely than in wild-type mice; infiltration of polymorphonuclear cells in knockout mice persisted longer than in wild-type mice, and the elastosis-like disorganized extracellular matrix was also seen in the ear. These results suggest that tenascin-C plays a role in vivo in inflammatory responses in the skin, and that the genetic background has profound effects on the function of tenascin-C in mouse dermatitis.
Collapse
Affiliation(s)
- Y Koyama
- Division of Experimental Animal Research, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Fishman HA, Greenwald DR, Zare RN. Biosensors in chemical separations. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:165-98. [PMID: 9646866 DOI: 10.1146/annurev.biophys.27.1.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of biomolecules in complex biological mixtures represents a major challenge in biomedical, environmental, and chemical research today. Chemical separations with traditional detection schemes such as absorption, fluorescence, refractive index, conductivity, and electrochemistry have been the standards for definitive identifications of many compounds. In many instances, however, the complexity of the biomixture exceeds the resolution capability of chemical separations. Biosensors based on molecular recognition can dramatically improve the selectivity of and provide biologically relevant information about the components. This review describes how coupling chemical separations with online biosensors solves challenging problems in sample analysis by identifying components that would not normally be detectable by either technique alone. This review also presents examples and principles of combining chemical separations with biosensor detection that uses living systems, whole cells, membrane receptors, enzymes, and immunosensors.
Collapse
Affiliation(s)
- H A Fishman
- Department of Chemistry, Stanford University, California 94305, USA.
| | | | | |
Collapse
|
31
|
Zhao Y, Young SL, McIntosh JC. Induction of tenascin in rat lungs undergoing bleomycin-induced pulmonary fibrosis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L1049-57. [PMID: 9609745 DOI: 10.1152/ajplung.1998.274.6.l1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung injury induced by bleomycin is associated with early inflammation and subsequent excessive deposition of extracellular matrix. In the present study, we investigated the expression of extracellular matrix glycoprotein tenascin (TN) during pulmonary injury induced by bleomycin. After the initial lung injury induced by intratracheal bleomycin instillation, TN and collagen type III (COL III) mRNAs were greatly induced. The pattern of induction of TN was distinct from that of COL III. TN was primarily induced during the early inflammatory phase, whereas the increase in COL III synthesis continued during the reparative phase. The induction and localization of TN mRNA during bleomycin-induced pulmonary injury were also examined by in situ hybridization. TN mRNA was focally induced in rat lungs 3 days after bleomycin administration. Induction of TN mRNA was spatially restricted in the areas of tissue inflammation. The interstitial cells in alveolar septal walls and secondary septal tips in the areas of tissue damage were the major source of TN mRNA production. Expression of TN mRNA was decreased as the inflammation attenuated and development of fibrosis proceeded. Immunocytochemical analyses of TN protein distribution in the lung yielded corroborative results. Immunoreactive TN protein was found in a patchy distribution in alveolar septal walls and secondary septal tips in the areas of damaged tissues. This study demonstrated that TN is a unique early-response extracellular matrix component to bleomycin-induced pulmonary injury and is induced at the sites of the inflammation, suggesting a potential role of TN as a modulator of pulmonary inflammation and repair.
Collapse
Affiliation(s)
- Y Zhao
- Department of Medicine and of Pediatrics, Duke University Medical Center and Research Service, Durham Veterans Affairs Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
32
|
Seiffert M, Beck SC, Schermutzki F, Müller CA, Erickson HP, Klein G. Mitogenic and adhesive effects of tenascin-C on human hematopoietic cells are mediated by various functional domains. Matrix Biol 1998; 17:47-63. [PMID: 9628252 DOI: 10.1016/s0945-053x(98)90124-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the adult organism, the extracellular matrix molecule tenascin-C is prominently expressed in the bone marrow. Bone marrow mononuclear cells can adhere to plastic-immobilized tenascin-C, and in the present study we have used bacterial expression proteins to map the domains of tenascin-C responsible for binding of hematopoietic cells. A strong binding site was found to be located within the fibrinogen-like domain, and this binding could be inhibited by heparin, suggesting interactions with membrane-bound heparan sulfate proteoglycans. A second strong binding site was identified within the fibronectin type III-like repeats 6-8, and was also inhibitable by heparin. Adhesion to both attachment sites could not be blocked by various anti-integrin antibodies. A third hematopoietic cell binding site is located in the fibronectin type III-like repeats 1-5, which harbor an RGD sequence in the third fibronectin type III-like repeat. Binding to this domain, however, seems to be RGD-independent, since RGD-containing peptides could not inhibit cell binding; the addition of heparin also did not block adhesion to this domain. Since contradictory results had been reported on a proliferative effect of soluble tenascin-C, we also analyzed its activity on hematopoietic cells. The heterogeneous bone marrow mononuclear cells show a striking proliferative response in the presence of tenascin-C which is concentration-dependent. This result indicates a strong mitogenic activity of tenascin-C on primary hematopoietic cells. Using recombinant fragments of human tenascin-C, we identified several mitogenic domains within the tenascin-C molecule. These adhesive and mitogenic effects of tenascin-C suggest a direct functional association with proliferation and differentiation of hematopoietic cells within the bone marrow microenvironment.
Collapse
Affiliation(s)
- M Seiffert
- University Medical Clinic, Dept. II, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kostianovsky M, Greco MA, Cangiarella J, Zagzag D. Tenascin-C expression in ultrastructurally defined angiogenic and vasculogenic lesions. Ultrastruct Pathol 1997; 21:537-44. [PMID: 9355236 DOI: 10.3109/01913129709016370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tenascin-C (TN) is an extracellular matrix glycoprotein expressed during embryogenesis. Its distribution is restricted in normal adult tissues and is upregulated in tumors and inflammatory conditions. Twenty-five specimens were studied, including 7 reactive vascular lesions (6 cases of granulation tissue and 1 case of bacillary angiomatosis), and 18 vascular tumors (6 angiosarcomas, 7 hemangioendotheliomas, and 5 AIDS-related nodular type Kaposi's sarcomas). Formalin fixed-paraffin-embedded tissues were stained with monoclonal antibody to TN (DAKO) and with MIB-1 (AMAC). Heterogeneous expression of TN immunoreactivity was seen in all cases, with a diffuse pattern in bacillary angiomatosis and most granulation tissue cases and a focal pattern in angiosarcoma and most hemangioendothelioma cases. Kaposi's sarcoma cases showed both a focal and diffuse pattern of distribution. In most cases proliferation indices (PI) did not correlate with TN expression. Electron microscopy demonstrated active angiogenesis in bacillary angiomatosis and granulation tissue and vasculogenesis in angiosarcoma and hemangioendothelioma. The study demonstrated positive TN expression in reactive lesions with angiogenesis (granulation tissue and bacillary angiomatosis) and neoplastic lesions showing vasculogenesis (angiosarcoma and hemangioendothelioma), although with a different pattern of distribution. These results suggest that TN might be an important extracellular matrix glycoprotein in angiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- M Kostianovsky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
34
|
Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 1997; 139:279-93. [PMID: 9314546 PMCID: PMC2139818 DOI: 10.1083/jcb.139.1.279] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1996] [Revised: 07/02/1997] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C (TN-C) is induced in pulmonary vascular disease, where it colocalizes with proliferating smooth muscle cells (SMCs) and epidermal growth factor (EGF). Furthermore, cultured SMCs require TN-C for EGF-dependent growth on type I collagen. In this study, we explore the regulation and function of TN-C in SMCs. We show that a matrix metalloproteinase (MMP) inhibitor (GM6001) suppresses SMC TN-C expression on native collagen, whereas denatured collagen promotes TN-C expression in a beta 3 integrin- dependent manner, independent of MMPs. Floating type I collagen gel also suppresses SMC MMP activity and TN-C protein synthesis and induces apoptosis, in the presence of EGF. Addition of exogenous TN-C to SMCs on floating collagen, or to SMCs treated with GM6001, restores the EGF growth response and "rescues" cells from apoptosis. The mechanism by which TN-C facilitates EGF-dependent survival and growth was then investigated. We show that TN-C interactions with alpha v beta 3 integrins modify SMC shape, and EGF- dependent growth. These features are associated with redistribution of filamentous actin to focal adhesion complexes, which colocalize with clusters of EGF-Rs, tyrosine-phosphorylated proteins, and increased activation of EGF-Rs after addition of EGF. Cross-linking SMC beta 3 integrins replicates the effect of TN-C on EGF-R clustering and tyrosine phosphorylation. Together, these studies represent a functional paradigm for ECM-dependent cell survival whereby MMPs upregulate TN-C by generating beta 3 integrin ligands in type I collagen. In turn, alpha v beta 3 interactions with TN-C alter SMC shape and increase EGF-R clustering and EGF-dependent growth. Conversely, suppression of MMPs downregulates TN-C and induces apoptosis.
Collapse
Affiliation(s)
- P L Jones
- Division of Cardiovascular Research, Research Institute, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
35
|
Maseruka H, Bonshek RE, Tullo AB. Tenascin-C expression in normal, inflamed, and scarred human corneas. Br J Ophthalmol 1997; 81:677-82. [PMID: 9349157 PMCID: PMC1722281 DOI: 10.1136/bjo.81.8.677] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS/BACKGROUND In adult tissues the expression of tenascin-cytotactin (TN-C), an extracellular matrix glycoprotein, is limited to tumours and regions of continuous renewal. It is also transiently expressed in cutaneous and corneal wound healing. There are limited data regarding its expression in inflammation and scarring of the adult human cornea. In this study, TN-C expression patterns in normal, inflamed, and scarred human corneas have been examined. METHODS Penetrating keratoplasty specimens were selected from cases of herpes simplex keratitis, herpes zoster ophthalmicus, rheumatoid arthritis ulceration, bacterial keratitis, rosacea keratitis, interstitial keratitis, and previous surgery so as to encompass varying degrees of active and chronic inflammation and scarring. TN-C in these and in normal corneas was immunodetected using TN2, a monoclonal antibody to human TN-C. RESULTS There was no TN2 immunopositivity in normal corneas except at the corneoscleral interface. In pathological corneas, TN2 immunopositivity was localised in and around regions of active inflammation, fibrosis, and neovascularisation. TN2 positivity was less in acute inflammation than in active chronic inflammation. Mature, avascular scar tissue and epithelial downgrowth were TN2 negative. CONCLUSION These results indicate that in the adult human cornea, TN-C expression is induced in regions of inflammation, fibrosis, and neovascularisation, but that expression is absent in mature, avascular scar tissue. This suggests a role for this glycoprotein in inflammation, healing, and extracellular matrix reorganisation of the cornea.
Collapse
Affiliation(s)
- H Maseruka
- Department of Pathological Sciences, University of Manchester
| | | | | |
Collapse
|
36
|
Yamane H, Nakagawa T, Iguchi H, Shibata S, Takayama M, Sunami K, Nakai Y. Triggers of hair cell regeneration in the avian inner ear. Auris Nasus Larynx 1997; 24:221-5. [PMID: 9251849 DOI: 10.1016/s0385-8146(97)00042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We performed an in vitro study in order to determine possible triggers of hair cell regeneration in the chick basilar papilla following degeneration. We compared the response of sensory epithelium damaged by collagenase treatment with that damaged by acoustic trauma. The former exhibited no proliferative activity, but the latter did. The basilar papillae damaged by acoustic trauma could have proliferating activity in medium containing fetal bovine serum (FBS) or epidermal growth factor (EGF) but not in the medium without FBS or EGF. These findings indicate that regeneration of basilar papillae depends on the manner of cell death and that FBS or EGF is required for regeneration.
Collapse
Affiliation(s)
- H Yamane
- Department of Otolaryngology, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Mettouchi A, Cabon F, Montreau N, Dejong V, Vernier P, Gherzi R, Mercier G, Binétruy B. The c-Jun-induced transformation process involves complex regulation of tenascin-C expression. Mol Cell Biol 1997; 17:3202-9. [PMID: 9154819 PMCID: PMC232173 DOI: 10.1128/mcb.17.6.3202] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In cooperation with an activated ras oncogene, the site-dependent AP-1 transcription factor c-Jun transforms primary rat embryo fibroblasts (REF). Although signal transduction pathways leading to activation of c-Jun proteins have been extensively studied, little is known about c-Jun cellular targets. We identified c-Jun-upregulated cDNA clones homologous to the tenascin-C gene by differential screening of a cDNA library from REF. This tightly regulated gene encodes a rare extracellular matrix protein involved in cell attachment and migration and in the control of cell growth. Transient overexpression of c-Jun induced tenascin-C expression in primary REF and in FR3T3, an established fibroblast cell line. Surprisingly, tenascin-C synthesis was repressed after stable transformation by c-Jun compared to that in the nontransformed parental cells. As assessed by using the tenascin-C (-220 to +79) promoter fragment cloned in a reporter construct, the c-Jun-induced transient activation is mediated by two binding sites: one GCN4/AP-1-like site, at position -146, and one NF-kappaB site, at position -210. Furthermore, as demonstrated by gel shift experiments and cotransfections of the reporter plasmid and expression vectors encoding the p65 subunit of NF-kappaB and c-Jun, the two transcription factors bind and synergistically transactivate the tenascin-C promoter. We previously described two other extracellular matrix proteins, SPARC and thrombospondin-1, as c-Jun targets. Thus, our results strongly suggest that the regulation of the extracellular matrix composition plays a central role in c-Jun-induced transformation.
Collapse
Affiliation(s)
- A Mettouchi
- Institut de Recherche sur le Cancer, CNRS UPR9079, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vollmer G. Biologic and oncologic implications of tenascin-C/hexabrachion proteins. Crit Rev Oncol Hematol 1997; 25:187-210. [PMID: 9177941 DOI: 10.1016/s1040-8428(97)00004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- G Vollmer
- Institut für Molekulare Medizin, Medizinische Universität, Lübeck, Germany.
| |
Collapse
|
39
|
Jones PL, Rabinovitch M. Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 1996; 79:1131-42. [PMID: 8943951 DOI: 10.1161/01.res.79.6.1131] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tenascin-C, an extracellular matrix glycoprotein prominent during tissue remodeling, has been linked to cell migration, proliferation, and apoptosis. To determine its potential role in the pathobiology of pulmonary hypertension, we compared tenascin expression in adult and infant rat pulmonary arteries (PAs) after injection of the toxin monocrotaline. Immunohistochemistry, in situ hybridization, and Northern blot analysis demonstrated induction of tenascin in adult rat central and peripheral PA. Tenascin was not, however, detected in infant vessels, which show spontaneous regression of vascular lesions. To determine a function for tenascin, we correlated its expression with evidence of apoptosis and cell proliferation using the TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay and 5-bromo-2'-deoxyuridine labeling, respectively. Apoptosis was observed only in the adult rat PA endothelial cell layer, preceding the induction of tenascin, which colocalized both temporally and spatially with proliferating smooth muscle cells (SMCs). A cause-and-effect relationship was documented in cultured rat PA SMCs, where tenascin promoted growth in response to basic fibroblast growth factor and was a prerequisite for epidermal growth factor-induced proliferation. These data provide novel functional information suggesting that endothelial cell apoptosis precedes progressive pulmonary hypertension and that induction of tenascin may be critical to growth factor-dependent SMC proliferation.
Collapse
Affiliation(s)
- P L Jones
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Häkkinen L, Westermarck J, Kähäri VM, Larjava H. Human granulation-tissue fibroblasts show enhanced proteoglycan gene expression and altered response to TGF-beta 1. J Dent Res 1996; 75:1767-78. [PMID: 8955672 DOI: 10.1177/00220345960750101001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Granulation-tissue fibroblasts are phenotypically unique cells that play an important role in wound repair and the development of chronic inflammatory lesions in connective tissue. In the present study, we compared proteoglycan, type I, and type III procollagen gene expression by granulation-tissue fibroblasts from wound and chronically inflamed tissues with normal gingival fibroblasts. We also analyzed the effect of TGF-beta 1 on proteoglycan mRNA levels and macromolecule production by these cells. One granulation-tissue fibroblast strain that was composed exclusively of alpha-smooth-muscle actin-positive cells (myofibroblasts) expressed strongly elevated basal levels of biglycan, fibromodulin, and versican (the large chondroitin sulphate proteoglycan), as well as type I and III procollagen mRNA. TGF-beta 1 enhanced more potently the expression of types I and III procollagen, biglycan, and versican mRNA by these cells as compared with normal fibroblasts. Other granulation-tissue fibroblast strains, in which about half of the cells expressed alpha-smooth-muscle actin, also showed enhanced proteoglycan and types I and III procollagen expression as compared with normal fibroblasts. These results suggest that alterations in matrix composition during inflammation and wound healing are regulated partly by altered phenotypes of the cells that produce the matrix, and partly by altered responses of these cells to TGF-beta 1.
Collapse
Affiliation(s)
- L Häkkinen
- Department of Periodontology, University of Turku, Finland
| | | | | | | |
Collapse
|
41
|
Yokosaki Y, Monis H, Chen J, Sheppard D. Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains. J Biol Chem 1996; 271:24144-50. [PMID: 8798654 DOI: 10.1074/jbc.271.39.24144] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the integrin family manifest considerable overlap in ligand specificity, and many cells have the capacity to express multiple integrin receptors for the same ligand. For example, at least 5 different integrins recognize tenascin as a ligand, and 4 of these bind to the same region of the protein, the third fibronectin type III repeat (TNfn3). We utilized colon carcinoma cells (SW480) that do not normally attach to TNfn3 to examine the possibility that ligation of different integrin receptors for this ligand would induce different effects on cell behavior and intracellular signaling. Heterologous expression of the tenascin receptors alphavbeta3 and alpha9beta1 produced comparable effects on cell adhesion and spreading on TNfn3, but alphavbeta3-transfectants proliferated considerably better on each concentration examined. alphavbeta6-transfectants attached (although less avidly), but completely failed to spread or proliferate. Expression of a chimeric beta subunit composed of the beta3 extracellular domain fused to the beta6 transmembrane and cytoplasmic domains resulted in adhesion and spreading similar to that seen with beta3-transfectants, but considerably less proliferation. When the same cell lines were plated on fibronectin, alphavbeta6-transfectants spread and proliferated as well as cells transfected with the chimeric beta3/beta6 subunit, but, again, neither cell line proliferated as well as cells expressing alphavbeta3. Cell proliferation was always associated with spreading and with phosphorylation of the focal adhesion kinase, paxillin, and the mitogen-activated kinase, Erk2, but cell attachment in the absence of spreading or proliferation was not associated with phosphorylation of any of these proteins. These data suggest that different integrin receptors for a single ligand can produce markedly different effects on cell proliferation, and that both the extracellular and cytoplasmic domains of integrin beta subunits contribute to these differences.
Collapse
Affiliation(s)
- Y Yokosaki
- Lung Biology Center, Center for Occupational and Environmental Health, Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
42
|
Giese A, Loo MA, Norman SA, Treasurywala S, Berens ME. Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. J Cell Sci 1996; 109 ( Pt 8):2161-8. [PMID: 8856512 DOI: 10.1242/jcs.109.8.2161] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tenascin, an extracellular matrix protein, is expressed in human gliomas in vitro and in vivo. The distribution of tenascin at the invasive edge of these tumors, even surrounding solitary invading cells, suggests a role for this protein as a regulator of glioma cell migration. We tested whether purified tenascin, passively deposited on surfaces, influenced the adhesion or migration of a human gliomaderived cell line, SF-767. Adhesion of glioma cells to tenascin increased in a dose-dependent fashion up to a coating concentration of 10 micrograms/ml. Higher coating concentrations resulted in progressively fewer cells attaching. Cell adhesion could be blocked to basal levels using anti-beta 1 integrin antibodies. In contrast, when anti-alpha v antibodies were added to the medium of cells on tenascin, cell adhesion was enhanced slightly. Using a microliter scale migration assay, we found that cell motility on tenascin was dose dependently stimulated at coating concentrations of 1 and 3 micrograms/ml, but migration was inhibited below levels of non-specific motility when tested at coating concentrations of 30 and 100 micrograms/ml. Migration on permissive concentrations of tenascin could be reversibly inhibited with anti-beta 1, while treatment with anti-alpha v antibodies increased migration rates. We conclude that SF-767 glioma cells express two separate integrin receptors that mediate contrasting adhesive and migratory responses to tenascin.
Collapse
Affiliation(s)
- A Giese
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
The extracellular matrix protein tenascin is secreted by osteoblasts but absent from mineralized bone matrix. The current study was undertaken to test the hypothesis that tenascin regulates osteoblast behaviour. Three osteoblast-like cell lines UMR-106, ROS-17/2.8 (rat) and SAOS-2 (human) were used to investigate the role of tenascin in osteoblast morphology, differentiation and proliferation. Two of three cell lines adhered specifically to tenascin, remaining round and failing to spread. Tenascin as a substratum stimulated alkaline phosphatase activity (a marker of osteoblast differentiation) in two of three cell lines. Moreover, anti-tenascin in the medium caused a reduction in alkaline phosphatase levels in all three cell lines. Anti-tenascin also inhibited collagen synthesis, an important osteoblast function. Since it seemed possible that tenascin may exert its effects on cell function through its ability to cause cell rounding, the ability of cell shape change alone to influence alkaline phosphatase levels was investigated. Cells were incubated in the presence of cytochalasin D and alkaline phosphatase levels assayed. Alkaline phosphatase activity was not elevated by cytochalasin D treatment, indicating that cell rounding alone is insufficient to mimic the effect of tenascin. Anti-tenascin caused a slight increase in proliferation of SAOS-2 cells, indicating that tenascin is itself inhibitory. In ROS 17/2.8 and UMR-106 cells, in contrast, proliferation was inhibited by anti-tenascin. The results presented here indicate that tenascin is able to stimulate osteoblastic differentiation and that endogenous tenascin helps to maintain the functional state of cultured osteoblast-like cells.
Collapse
Affiliation(s)
- E J Mackie
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
44
|
Chung CY, Murphy-Ullrich JE, Erickson HP. Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 1996; 7:883-92. [PMID: 8816995 PMCID: PMC275940 DOI: 10.1091/mbc.7.6.883] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In a previous study we demonstrated that the alternatively spliced region of tenascin-C, TNfnA-D, bound with high affinity to a cell surface receptor, annexin II. In the present study we demonstrate three changes in cellular activity that are produced by adding intact tenascin-C or TNfnA-D to cells, and we show that all three activities are blocked by antibodies against annexin II. 1) TNfnA-D added to confluent endothelial cells induced loss of focal adhesions. 2) TNfnA-D produced a mitogenic response of confluent, growth-arrested endothelial cells in 1% serum. TNfnA-D stimulated mitogenesis only when it was added to cells before or during exposure to other mitogens, such as basic fibroblast growth factor or serum. Thus the effect of TNfnA-D seems to be to facilitate the subsequent response to growth factors. 3) TNfnA-D enhanced cell migration in a cell culture wound assay. Antibodies to annexin II blocked all three cellular responses to TNfnA-D. These data show that annexin II receptors on endothelial cells mediate several cell regulatory functions attributed to tenascin-C, potentially through modulation of intracellular signalling pathways.
Collapse
Affiliation(s)
- C Y Chung
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
45
|
Shrestha P, Sumitomo S, Lee CH, Nagahara K, Kamegai A, Yamanaka T, Takeuchi H, Kusakabe M, Mori M. Tenascin: growth and adhesion modulation--extracellular matrix degrading function: an in vitro study. EUROPEAN JOURNAL OF CANCER. PART B, ORAL ONCOLOGY 1996; 32B:106-13. [PMID: 8736172 DOI: 10.1016/0964-1955(95)00074-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tenascin (TN), a recently characterised extracellular matrix protein, largely confined to the process with the development of embryo in areas of epithelial-mesenchymal interactions and in areas where there are morphogenetic movements and tissue patterning, has a highly restricted expression in adult tissues. The expression of TN is enhanced in a variety of human neoplastic lesions. However, function(s) and molecular mechanisms of enhanced expression in neoplastic lesions remain unclear. We employed human tongue carcinoma cells (SCCKN), human salivary gland adenocarcinoma cells (SGT-1), normal mouse embryonic fibroblasts (NIH3T3-3) and K-ras-2 transformed fibroblasts (Cle-H3) in an in vitro study to elucidate the biological roles of TN. In in vitro studies, all the cell lines examined had enhanced secretion of TN in the presence of transforming growth factor-beta in a dose-dependent manner and TN itself was found to possess a growth-enhancing activity. Moreover, studies on adhesion of the cell lines on coated substrates of fibronectin (FN), laminin (LN), tenascin (TN), TN/FN and TN/LN showed that all the cells adhere and spread well on FN and LN. However, on TN they attach poorly and remain rounded. The relative concentrations of TN and FN affected the cellular adhesion and morphology. In SCCKN and SGT-1, but not in NIH3T3 and Cle-He3 fibroblasts, a higher concentration of TN inhibited cellular adhesion on fibronectin, suggesting that cells attach poorly on TN, it may interfere with the action of fibronectin, and the relative concentrations of TN, FN or LN may affect cellular adhesion and morphology which may differ in different cell types. When TN was added in the growth medium of exponentially growing cells, the cells lost their cell to cell contact and were seen to be separating. The presence of these extracellular matrix proteins were further tested to determine whether they could modulate the secretion of proteolytic enzymes responsible for extracellular matrix degradation by tumour cells, when the neoplastic cells but not the non-neoplastic cells grown on FN/TN substrate showed positive immunofluorescence for collagenase. FN, LN or TN alone did not induce collagenase in the tumour cells. If the same is true in vivo, although a number of factors and interactions may implicate the ultimate outcome, the enhanced expression of TN in neoplastic lesions may have potential implications for tumour growth, differentiation, cellular adhesion, invasion and metastasis.
Collapse
Affiliation(s)
- P Shrestha
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Tsukuba City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Liakka A, Karjalainen H, Virtanen I, Autio-Harmainen H. Immuno-electron-microscopic localization of types III pN-collagen and IV collagen, laminin and tenascin in developing and adult human spleen. Cell Tissue Res 1995; 282:117-27. [PMID: 8581914 DOI: 10.1007/bf00319138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution of the extracellular matrix proteins types III pN-collagen and IV collagen, laminin and tenascin was investigated in fetal, infant, and adult human spleens by using immuno-electron microscopy. The presence of type III pN-collagen was assessed by using an antibody against the aminoterminal propeptide of type III procollagen. All the proteins other than type III pN-collagen were found in reticular fibers throughout development. In the white pulp of the fetus aged 16 gestational weeks, only an occasional type III pN-collagen-containing fibril was present, although type III pN-collagen was abundant in the reticular fibers of the red pulp. Conversely, in adults, most of the reticular fibers of the white pulp, but not of the red pulp, were immunoreactive for type III pN-collagen. Ring fibers, the basement membranes of venous sinuses, were well developed in both infant and adult spleens. The first signs of their formation could be seen as a discontinuous basement membrane, which was immunoreactive for type IV collagen, laminin, and tenascin in the fetus aged 20 gestational weeks. Intracytoplasmic immunoreactivity for all the proteins studied was visible in the mesenchymal cells of the fetus aged 16 gestational weeks and in the reticular cells of the older fetuses, which also showed labeling for type IV collagen and laminin in the endothelial cells. The results suggest that proteins of the extracellular matrix are produced by these stationary cells.
Collapse
Affiliation(s)
- A Liakka
- Department of Pathology, University of Oulu, Kajaanintie 52 D, SF-90220 Oulu, Finland
| | | | | | | |
Collapse
|
48
|
Abstract
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.
Collapse
Affiliation(s)
- G Klein
- University Medical Clinic, Department of Internal Medicine II, Tübingen, Germany
| |
Collapse
|
49
|
Geffrotin C, Garrido JJ, Tremet L, Vaiman M. Distinct Tissue Distribution in Pigs of Tenascin-X and Tenascin-C Transcripts. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0083f.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
Tenascin expression was determined by an immunohistochemical technique in 120 surgical specimens of gastric carcinoma to investigate its relationship with clinicopathological factors. Tenascin expression was more prominent in the neoplastic area than in the adjacent non-neoplastic mucosa. Tenascin was frequently observed in gastric mucosa with diffuse chronic gastritis, glandular atrophy and intestinal metaplasia. In the neoplastic area, tenascin expression was positive in 72 cases (60 per cent). Tumours with a high frequency of tenascin expression included: Borrmann type II (19 of 20), well or moderately differentiated tumours (52 of 63), tumours with expansive growth and with an intermediate growth pattern (40 of 42), and those with a medullary or intermediate-type stroma (55 of 73). There was no significant relationship between tenascin expression and age, sex, depth of tumour invasion, lymph node metastasis, invasion to lymphatic vessel, venous invasion and the 4-year survival rate.
Collapse
Affiliation(s)
- K Ilunga
- Department of Pathology, Mie University School of Medicine, Tsu, Japan
| | | |
Collapse
|