1
|
Conformational Dynamics of Phytoglobin BvPgb1.2 from Beta vulgaris ssp. vulgaris. Int J Mol Sci 2023; 24:ijms24043973. [PMID: 36835381 PMCID: PMC9961634 DOI: 10.3390/ijms24043973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Plant hemoglobins, often referred to as phytoglobins, play important roles in abiotic stress tolerance. Several essential small physiological metabolites can be bound to these heme proteins. In addition, phytoglobins can catalyze a range of different oxidative reactions in vivo. These proteins are often oligomeric, but the degree and relevance of subunit interactions are largely unknown. In this study, we delineate which residues are involved in dimer formation of a sugar beet phytoglobin type 1.2 (BvPgb1.2) using NMR relaxation experiments. E. coli cells harboring a phytoglobin expression vector were cultivated in isotope-labeled (2H, 13C and 15N) M9 medium. The triple-labeled protein was purified to homogeneity using two chromatographic steps. Two forms of BvPgb1.2 were examined, the oxy-form and the more stable cyanide-form. Using three-dimensional triple-resonance NMR experiments, sequence-specific assignments for CN-bound BvPgb1.2 were achieved for 137 backbone amide cross-peaks in the 1H-15N TROSY spectrum, which amounts to 83% of the total number of 165 expected cross-peaks. A large proportion of the non-assigned residues are located in α-helixes G and H, which are proposed to be involved in protein dimerization. Such knowledge around dimer formation will be instrumental for developing a better understanding of phytoglobins' roles in planta.
Collapse
|
2
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
4
|
|
5
|
Keizers PHJ, Ubbink M. Paramagnetic tagging for protein structure and dynamics analysis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:88-96. [PMID: 21241885 DOI: 10.1016/j.pnmrs.2010.08.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/05/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Peter H J Keizers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
6
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
7
|
Simonneaux G, Bondon A. Mechanism of Electron Transfer in Heme Proteins and Models: The NMR Approach. Chem Rev 2005; 105:2627-46. [PMID: 15941224 DOI: 10.1021/cr030731s] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gérard Simonneaux
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Institut de Chimie, Université de Rennes 1, France.
| | | |
Collapse
|
8
|
Ma D, Musto R, Smith KM, La Mar GN. Solution NMR characterization of the electronic structure and magnetic properties of high-spin ferrous heme in deoxy myoglobin from Aplysia limacina. J Am Chem Soc 2003; 125:8494-504. [PMID: 12848555 DOI: 10.1021/ja035256u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solution (1)H NMR has been used to elucidate the magnetic properties and electronic structure of the prosthetic group in high-spin, ferrous deoxy myoglobin from the sea hare Aplysia limacina. A sufficient number of dipolar shifted residue signals were assigned to allow the robust determination of the orientation and anisotropy of the paramagnetic susceptibility tensor, chi. The resulting quantitative description of dipolar shifts allows a determination of the contact shifts for the heme. Chi was found to be axial, with Deltachi(ax) = -2.07 x 10(-8) m(3)/mol, with the major axis tilted (approximately 76 degrees) almost into the heme plane and in the general direction of the orientation of the axial HisF8 imidazole plane which coincides approximately with the beta-,delta-meso axis. The factored contact shifts for the heme are shown to be consistent with the transfer of positive pi spin density into one of the two components of the highest filled pi molecular orbital, 3e(pi), and the transfer of negative pi-spin density, via spin-spin correlation, into the orthogonal excited-state component of the 3e(pi) molecular orbital. The thermal population of the excited state leads to strong deviation from the Curie law for the heme substituents experiencing primarily the negative pi-spin density. The much larger transfer of negative spin density via the spin-paired dpi orbital into the excited state 3e(pi) in high-spin iron(II) than in low-spin iron(III) hemoproteins is attributed to the much stronger correlation exerted by the four unpaired spin on the iron in the former, as compared to the single unpaired spins on iron in the latter.
Collapse
Affiliation(s)
- Dejian Ma
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
9
|
Mouro C, Bondon A, Jung C, De Certaines JD, Simonneaux G. Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome p450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:216-21. [PMID: 10601869 DOI: 10.1046/j.1432-1327.2000.00995.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand.
Collapse
Affiliation(s)
- C Mouro
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Université de Rennes 1, Campus de Beaulieu, France
| | | | | | | | | |
Collapse
|
10
|
Bertini I, Dikiy A, Luchinat C, Macinai R, Viezzoli MS. 1H NMR Study of the Reduced Cytochrome c' from Rhodopseudomonas palustris Containing a High-Spin Iron(II) Heme Moiety. Inorg Chem 1998; 37:4814-4821. [PMID: 11670644 DOI: 10.1021/ic980531c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assignment of the hyperfine shifted signals of the reduced cytochrome c' from Rhodopseudomonas palustris has been obtained through saturation transfer experiments with assigned signals of the high-spin oxidized protein and through tailored experiments to reveal proton-proton dipolar connectivities in paramagnetic molecules. The peculiar shift pattern consisting of the 1-, 8-, and 5-methyl signals shifted upfield and the 3-methyl signal downfield, which is shared by all cytochromes c' so far described, has been semiquantitatively related to the orientation of the histidine plane with respect to the iron-heme nitrogen axes. The research is meaningful with respect to the use of paramagnetic NMR as a tool to obtain direct structural information on all high spin iron(II) heme containing systems, including deoxyglobins.
Collapse
Affiliation(s)
- Ivano Bertini
- Department of Chemistry, University of Florence, Via Gino Capponi 7, 50121 Florence, Italy, and Department of Soil Science and Plant Nutrition, University of Florence, P. le delle Cascine 28, 50144 Florence, Italy
| | | | | | | | | |
Collapse
|
11
|
Bougault CM, Dou Y, Ikeda-Saito M, Langry KC, Smith KM, La Mar GN. Solution 1H NMR Study of the Electronic Structure and Magnetic Properties of High-Spin Ferrous or Deoxy Myoglobins. J Am Chem Soc 1998. [DOI: 10.1021/ja973197c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catherine M. Bougault
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Yi Dou
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Masao Ikeda-Saito
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Kevin C. Langry
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Kevin M. Smith
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Gerd N. La Mar
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| |
Collapse
|
12
|
Mouro C, Bondon A, Simonneaux G, Jung C. 1H-NMR study of diamagnetic cytochrome P450cam: assignment of heme resonances and substrate dependance of one cysteinate beta proton. FEBS Lett 1997; 414:203-8. [PMID: 9315686 DOI: 10.1016/s0014-5793(97)00995-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 1H-NMR study of diamagnetic cytochrome P450cam FeII-CO has been performed for the first time. Chemical shifts of the cysteinate fifth ligand protons and of several heme protons have been assigned through 1- and 2-dimensional spectra at 500 MHz. A substrate dependance has been observed for the resonance of the cysteinate proton detected in the high-field region.
Collapse
Affiliation(s)
- C Mouro
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Université de Rennes 1, Campus de Beaulieu, France
| | | | | | | |
Collapse
|
13
|
1H NMR investigation of distal mutant deoxy myoglobins. Interpretation of proximal His contact shifts in terms of a localized distal water molecule. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43927-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Abstract
Traditionally, assigning the heme protein resonances has relied heavily on the comparison of spectra arising from protein reconstituted with specifically deuterated hemes and the native form. Such an approach can identify tentatively the broad, overlapping signals in the Fe(II) high-spin heme protein spectra. Although 2D NMR studies have reported alternative approaches to detect and assign paramagnetic signals, their effectiveness is limited primarily to Fe(III) low-spin systems and still depends upon isotopic labeling results to be definitive. For deoxymyoglobin, the reported 2D techniques have not produced any spin correlation maps. Nevertheless, our study demonstrates that the deoxymyoglobin spin correlations are indeed detectable and that a complete heme assignment, except for the meso protons, is achievable with only 2D NMR and saturation-transfer techniques. The 2D maps improve the spectral resolution dramatically and permit a comprehensive analysis of the deoxymyoglobin signals' temperature dependence, which supports the hypothesis that the electronic orbital ground state has contributions from both 5E and 5B2. The results also indicate a structural perturbation in the vicinity of the 2 vinyl group as the protein undergoes the transition from oxy- to deoxymyoglobin state and a significant contribution from zero field splitting. Moreover, saturation-transfer experiments show that NMR can observe directly oxygen binding kinetics.
Collapse
Affiliation(s)
- S C Busse
- Department of Biological Chemistry, University of California-Davis 95616-8635
| | | |
Collapse
|