1
|
Structures of the human cholecystokinin receptors bound to agonists and antagonists. Nat Chem Biol 2021; 17:1230-1237. [PMID: 34556863 DOI: 10.1038/s41589-021-00866-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR-gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.
Collapse
|
2
|
PONNUSAMY SURIYAN, LATTMANN ERIC, LATTMANN PORNTHIP, THIYAGARAJAN THIRUMAGAL, PADINJARETHALAKAL BALARAMN, NARAYANAN RAMESH. Novel, isoform-selective, cholecystokinin A receptor antagonist inhibits colon and pancreatic cancers in preclinical models through novel mechanism of action. Oncol Rep 2016; 35:2097-106. [DOI: 10.3892/or.2016.4588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/12/2015] [Indexed: 11/06/2022] Open
|
3
|
Ringhieri P, Diaferia C, Galdiero S, Palumbo R, Morelli G, Accardo A. Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci 2015; 21:415-25. [PMID: 25754969 DOI: 10.1002/psc.2759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
A new dual-ligand liposomal doxorubicin delivery system, which couples targeting to enhanced cellular uptake and may lead to a more efficient drug delivery system, is here designed and synthetized. Liposomes based on the composition 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-Peg2000-R8/(C18)2-L5-SS-CCK8 (87/8/5 mol/mol/mol) were prepared and loaded with doxorubicin. Presence of the two peptides on the external surface is demonstrated by fluorescence resonance energy transfer assay. The combination of the R8 cell-penetrating peptide and of the CCK8 targeting peptide (homing peptide) on the liposome surface is obtained by combining pre-modification and post-modification methods. In the dual-ligand system, the CCK8 peptide is anchored to the liposome surface by using a disulfide bond. This chemical function is inserted in order to promote the selective cleavage of the homing peptide under the reductive conditions expected in proximity of the tumor site, thus allowing targeting and internalization of the liposomal drug.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and CIRPeB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi - University of Naples 'Federico II', Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Furutani T, Masumoto T, Fukada H. Molecular cloning and tissue distribution of cholecystokinin-1 receptor (CCK-1R) in yellowtail Seriola quinqueradiata and its response to feeding and in vitro CCK treatment. Gen Comp Endocrinol 2013; 186:1-8. [PMID: 23467070 DOI: 10.1016/j.ygcen.2013.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
In vertebrates, the peptide cholecystokinin (CCK) is one of the most important neuroregulatory digestive hormones. CCK acts via CCK receptors that are classified into two subtypes, CCK-1 receptor (CCK-1R; formally CCK-A) and CCK-2 receptor (formally CCK-B). In particular, the CCK-1R is involved in digestion and is regulated by CCK. However, very little information is known about CCK-1R in fish. Therefore, we performed molecular cloning of CCK-1R cDNA from the digestive tract of yellowtail Seriola quinqueradiata. Phylogenetic tree analysis showed a high sequence identity between the cloned yellowtail CCK receptor cDNA and CCK-1R, which belongs to the CCK-1R cluster. Furthermore, the expression of yellowtail CCK receptor mRNA was observed in gallbladder, pyloric caeca, and intestines, similarly to CCK-1R mRNA expression in mammals, suggesting that the cloned cDNA is of CCK-1R from yellowtail. In in vivo experiments, the CCK-1R mRNA levels increased in the gallbladder and pyloric caeca after feeding, whereas in vitro, mRNA levels of CCK-1R and digestive enzymes in cultured pyloric caeca increased by the addition of CCK. These results suggest that CCK-1R plays an important role in digestion stimulated by CCK in yellowtail.
Collapse
Affiliation(s)
- Takahiro Furutani
- Bioresource Production Science, The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | | | | |
Collapse
|
5
|
Seow KM, Lee JL, Doong ML, Huang SW, Hwang JL, Huang WJ, Chang FY, Ho LT, Juan CC. Human chorionic gonadotropin regulates gastric emptying in ovariectomized rats. J Endocrinol 2013. [PMID: 23197744 DOI: 10.1530/joe-12-0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prolongation of gastrointestinal transit resulting in nausea and vomiting in pregnancy (NVP) is the most common phenomenon during the first trimester of pregnancy. Increased human chorionic gonadotropin (hCG) concentration during the first trimester is the most likely cause of NVP. The aim of this study was to investigate the effect of hCG on gastrointestinal transit and plasma concentrations of cholecystokinin (CCK) in ovariectomized (Ovx) rats. I.p. injection of hCG was used to evaluate the dose effect of hCG on gastrointestinal transit in Ovx rats. The CCK antagonist lorglumide was used to clarify the role of CCK in regulating gastrointestinal transit. Gastrointestinal transit was assessed 15 min after intragastric gavage of a mixture of 10% charcoal and Na(2)(51)CrO(4) (0.5 μCi/ml). After i.p. administration of hCG, gastric emptying was inhibited in Ovx rats, but intestinal transit was not affected. Plasma CCK concentrations were increased in a dose-dependent manner after hCG treatment, and gastric emptying showed a significant negative correlation with CCK concentrations (P=0.01, r(2)=-0.5104). Peripheral administration (i.p.) of lorglumide, a selective CCK(1) receptor antagonist, attenuated the hCG-induced inhibition of gastric emptying in Ovx rats, whereas central administration via the i.c.v. route did not. hCG treatment of Ovx rats inhibits gastric emptying in a dose-dependent manner via a peripheral mechanism of CCK hypersecretion and activation of CCK(1) receptors.
Collapse
Affiliation(s)
- Kok-Min Seow
- Department of Obstetrics and Gynecology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Guilloteau P, Vitari F, Metzinger-Le Meuth V, Le Normand L, Romé V, Savary G, Delaby L, Domeneghini C, Morisset J. Is there adaptation of the exocrine pancreas in wild animal? The case of the Roe deer. BMC Vet Res 2012; 8:70. [PMID: 22640469 PMCID: PMC3439256 DOI: 10.1186/1746-6148-8-70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/28/2012] [Indexed: 11/17/2022] Open
Abstract
Background Physiology of the exocrine pancreas has been well studied in domestic and in laboratory animals as well as in humans. However, it remains quite unknown in wildlife mammals. Roe deer and cattle (including calf) belong to different families but have a common ancestor. This work aimed to evaluate in the Roe deer, the adaptation to diet of the exocrine pancreatic functions and regulations related to animal evolution and domestication. Results Forty bovine were distributed into 2 groups of animals either fed exclusively with a milk formula (monogastric) or fed a dry feed which allowed for rumen function to develop, they were slaughtered at 150 days of age. The 35 Roe deer were wild animals living in the temperate broadleaf and mixed forests, shot during the hunting season and classified in two groups adult and young. Immediately after death, the pancreas was removed for tissue sample collection and then analyzed. When expressed in relation to body weight, pancreas, pancreatic protein weights and enzyme activities measured were higher in Roe deer than in calf. The 1st original feature is that in Roe deer, the very high content in pancreatic enzymes seems to be related to specific digestive products observed (proline-rich proteins largely secreted in saliva) which bind tannins, reducing their deleterious effects on protein digestion. The high chymotrypsin and elastase II quantities could allow recycling of proline-rich proteins. In contrast, domestication and rearing cattle resulted in simplified diet with well digestible components. The 2nd feature is that in wild animal, both receptor subtypes of the CCK/gastrin family peptides were present in the pancreas as in calf, although CCK-2 receptor subtype was previously identified in higher mammals. Conclusions Bovine species could have lost some digestive capabilities (no ingestion of great amounts of tannin-rich plants, capabilities to secrete high amounts of proline-rich proteins) compared with Roe deer species. CCK and gastrin could play an important role in the regulation of pancreatic secretion in Roe deer as in calf. This work, to the best of our knowledge is the first study which compared the Roe deer adaptation to diet with a domesticated animal largely studied.
Collapse
Affiliation(s)
- Paul Guilloteau
- INRA, U1341, Nutrition et Adaptations Digestives, Nerveuses et Comportementales, Domaine de la Prise, 35590 Saint Gilles, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gupta AK, Varshney K, Saxena AK. Toward the identification of a reliable 3D QSAR pharmacophore model for the CCK2 receptor antagonism. J Chem Inf Model 2012; 52:1376-90. [PMID: 22530718 DOI: 10.1021/ci300094e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study describes application of computational approaches to identify a validated and reliable 3D QSAR pharmacophore model for the CCK-2R antagonism through integrated ligand and structure based studies using anthranilic sulfonamide and 1,3,4-benzotriazepine based CCK-2R antagonists. The best hypothesis consisted five features viz. two aliphatic hydrophobic, one aromatic hydrophobic, one H-bond acceptor, and one ring aromatic feature with an excellent correlation for 34 training set (r²(training) = 0.83) and 58 test set compounds (r²(test) = 0.74). This model was validated through F-test and docking studies at the active site of the plausible CCK-2R where the 99% significance and well corroboration with the pharmacophore model respectively describes the model's reliability. The model also predicts well to other known clinically effective CCK-2R antagonists. Therefore, the developed model may useful in finding new scaffolds that may aid in design and develop new chemical entities (NCEs) as potent CCK-2R antagonists before their synthesis.
Collapse
Affiliation(s)
- Amit K Gupta
- Medicinal and Process Chemistry Division, C.S.I.R.-Central Drug Research Institute, Lucknow 226001, India
| | | | | |
Collapse
|
8
|
Naposomes: a new class of peptide-derivatized, target-selective multimodal nanoparticles for imaging and therapeutic applications. Ther Deliv 2011; 2:235-57. [DOI: 10.4155/tde.10.86] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modified supramolecular aggregates for selective delivery of contrast agents and/or drugs are examined with a focus on a new class of peptide-derivatized nanoparticles: naposomes. These nanoparticles are based on the co-aggregation of two different amphiphilic monomers that give aggregates of different shapes and sizes (micelles, vesicles and liposomes) with diameters ranging between 10 and 300 nm. Structural properties and in vitro and in vivo behaviors are discussed. For the high relaxitivity values (12–19 mM-1s-1) and to detect for the presence of a surface-exposed peptide, the new peptide-derived supramolecular aggregates are very promising candidates as target-selective MRI contrast agents. The efficiency of surface-exposed peptides in homing these nanovectors to a specific target introduces promising new opportunities for the development of diagnostic and therapeutic agents with high specificity toward the biological target and reduced toxic side effects on nontarget organs.
Collapse
|
9
|
Morisco A, Accardo A, Tesauro D, Palumbo R, Benedetti E, Morelli G. Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells. Biopolymers 2011; 96:88-96. [DOI: 10.1002/bip.21491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Abstract
The aim of the present review is to synthesise and summarise our recent knowledge on the involvement of cholecystokinin (CCK) and gastrin peptides and their receptors in the control of digestive functions and more generally their role in the field of nutrition in mammals. First, we examined the release of these peptides from the gut, focusing on their molecular forms, the factors regulating their release and the signalling pathways mediating their effects. Second, general physiological effects of CCK and gastrin peptides are described with regard to their specific receptors and the role of CCK on vagal mucosal afferent nerve activities. Local effects of CCK and gastrin in the gut are also reported, including gut development, gastrointestinal motility and control of pancreatic functions through vagal afferent pathways, including NO. Third, some examples of the intervention of the CCK and gastrin peptides are exposed in diseases, taking into account intervention of the classical receptor subtypes (CCK1 and CCK2 receptors) and their heterodimerisation as well as CCK-C receptor subtype. Finally, applications and future challenges are suggested in the nutritional field (performances) and in therapy with regards to the molecular forms or in relation with the type of receptor as well as new techniques to be utilised in detection or in therapy of disease. In conclusion, the present review underlines recent developments in this field: CCK and gastrin peptides and their receptors are the key factor of nutritional aspects; a better understanding of the mechanisms involved may increase the efficiency of the nutritional functions and the treatment of abnormalities under pathological conditions.
Collapse
|
11
|
3D QSAR studies of 1,3,4-benzotriazepine derivatives as CCK2 receptor antagonists. J Mol Graph Model 2008; 27:409-20. [DOI: 10.1016/j.jmgm.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 01/18/2023]
|
12
|
Janssen T, Meelkop E, Lindemans M, Verstraelen K, Husson SJ, Temmerman L, Nachman RJ, Schoofs L. Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 2008; 149:2826-39. [PMID: 18339709 DOI: 10.1210/en.2007-1772] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the cholecystokinin (CCK)/gastrin family of peptides, including the arthropod sulfakinins, and their cognate receptors, play an important role in the regulation of feeding behavior and energy homeostasis. Despite many efforts after the discovery of CCK/gastrin immunoreactivity in nematodes 23 yr ago, the identity of these nematode CCK/gastrin-related peptides has remained a mystery ever since. The Caenorhabditis elegans genome contains two genes with high identity to the mammalian CCK receptors and their invertebrate counterparts, the sulfakinin receptors. By using the potential C. elegans CCK receptors as a fishing hook, we have isolated and identified two CCK-like neuropeptides encoded by neuropeptide-like protein-12 (nlp-12) as the endogenous ligands of these receptors. The neuropeptide-like protein-12 peptides have a very limited neuronal expression pattern, seem to occur in vivo in the unsulfated form, and react specifically with a human CCK-8 antibody. Both receptors and ligands share a high degree of structural similarity with their vertebrate and arthropod counterparts, and also display similar biological activities with respect to digestive enzyme secretion and fat storage. Our data indicate that the gastrin-CCK signaling system was already well established before the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Tom Janssen
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim SK, Bae H, Lee G, Jeong H, Woo HS, Han JB, Kim Y, Lee H, Shin MK, Hong MC, Jin YH, Min BI. The endogenous CCK mediation of electroacupuncture stimulation-induced satiety in rats. Peptides 2008; 29:564-70. [PMID: 18289731 DOI: 10.1016/j.peptides.2008.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/26/2007] [Accepted: 01/04/2008] [Indexed: 01/22/2023]
Abstract
A major satiety hormone, cholecystokinin (CCK) is well known to be released by electroacupuncture (EA) stimulation at certain body sites which elicits profound psychophysiological responses. Previous clinical and animal studies have shown that EA stimulation reduces food intake and body weight in both normal and obese subjects. The aim of the present study was to elucidate the satiety effect of EA stimulation and its mechanism related to CCK in rats. Here we show that EA stimulation at "Zusanli" (ST36) acupoint significantly reduced 30-min and 60-min food intake in 48-h fasted Sprague-Dawley rats, and such effect was reversed by a lorglumide (CCK-1 receptor antagonist, 10mg/kg, i.p.) pretreatment. The ST36 EA stimulation-induced satiety was not observed in CCK-1 receptor knockout, Otsuka Long-Evans Tokushima Fatty rats, but in their controls, Long-Evans Tokushima Otsuka rats. Subdiaphragmatic vagotomy also blocked the satiety effect of ST36 EA stimulation in Sprague-Dawley rats. These results suggest that ST36 EA stimulation elicits satiety in rats and this is mediated by the endogenous CCK signaling pathway.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu CL, Doong ML, Wang PS. Involvement of cholecystokinin receptor in the inhibition of gastrointestinal motility by oxytocin in ovariectomized rats. Eur J Pharmacol 2007; 580:407-15. [PMID: 18078924 DOI: 10.1016/j.ejphar.2007.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/29/2007] [Accepted: 11/10/2007] [Indexed: 01/04/2023]
Abstract
The effects of oxytocin on gastric emptying, gastrointestinal transit, and plasma levels of cholecystokinin (CCK) were studied in ovariectomized rats. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na2 51CrO4. Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Blood samples were collected for CCK radioimmunoassay. After administration of oxytocin (0.2-0.8 mg/kg), gastric emptying and gastrointestinal transit were inhibited, whereas plasma concentration of CCK was increased in a dose-dependent manner. Atosiban, an oxytocin receptor antagonist, effectively attenuated the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. However, administration of atosiban alone had no effect on gastric emptying and gastrointestinal transit. The selective CCK1 receptor antagonists, devazepide and lorglumide, effectively attenuated the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. L-365, 260, a selective CCK2 receptor antagonist, did not alter the oxytocin-induced inhibition of gastric emptying and gastrointestinal transit. These results suggest that oxytocin inhibits gastric emptying and gastrointestinal transit in ovariectomized rats via a mechanism involving the stimulation of CCK release and CCK1 receptor activation.
Collapse
Affiliation(s)
- Chiu-Lung Wu
- Department of Basic Medical Science, Hung-Kuang University, Taiwan, ROC.
| | | | | |
Collapse
|
15
|
Seretis EC, Gavriil AN, Golematis VC, Voloudakis-Baltatzis IE. Immunoelectron study of pancreatic carcinomas using antibodies to gastrointestinal hormones. Ultrastruct Pathol 2007; 31:303-14. [PMID: 17786831 DOI: 10.1080/01913120701456279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the ultrastructural appearance of pancreatic adenocarcinoma combined with glucagon and gastrin/cholecystokinin (CCK) expression. The authors investigated the ultrastructure and the immunocytochemistry of 12 human pancreatic cancer specimens and used 3 chronic pancreatitis samples and 6 adjacent histological normal pancreatic tissues (away from the tumor) as controls. The ultrastructural study revealed that chronic pancreatitis tissues were characterized by alterations of the secretory cells. The enzymic and secretory changes were confirmed by electron immunogold results. Glucagon appeared to be located not only in islet alpha cells but also in intermediate alpha acinar cells. The changes were more significant in adenocarcinoma cases. Abnormality in the immunoreaction of the peptides was indicated not only in the tumor area but also in the islets near the cancer. Cells immunoreactive with antibodies were found in all 12 adenocarcinoma cases. Abnormal co-location of both hormones in the same type of endocrine cell was also found. Moderately to poorly differentiated adenocarcinomas were poorly granulated compared with differentiated tumors. Increased and ectopic gastrin/CCK expression was correlated with pancreatic adenocarcinomas exhibiting poor histological grade and neoplastic endocrine cells, providing a potential marker for pancreatic adenocarcinomas with aggressive behavior.
Collapse
Affiliation(s)
- E C Seretis
- Department of Electron Microscopy-Cell Biology, G. Papanicolaou Research Center of Oncology and Experimental Surgery, Saint Savas Anticancer Hospital of Athens, Athens, Greece
| | | | | | | |
Collapse
|
16
|
Vaccaro M, Accardo A, D'Errico G, Schillén K, Radulescu A, Tesauro D, Morelli G, Paduano L. Peptides and Gd complexes containing colloidal assemblies as tumor-specific contrast agents in MRI: physicochemical characterization. Biophys J 2007; 93:1736-46. [PMID: 17483181 PMCID: PMC1948055 DOI: 10.1529/biophysj.107.107417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022] Open
Abstract
The aggregation behavior of an amphiphilic supramolecular system, with potential application as a tumor-specific magnetic resonance imaging contrast agent, has been studied in detail by dynamic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. The system was constituted of mixed aggregates formed by an anionic unimer containing the DTPAGlu, a chelating agent for the paramagnetic Gd(3+) ion, and an uncharged unimer containing the bioactive peptide CCK8, capable of directing the assembly toward tumor cells. Mixed aggregates formed by both unimers, and in the case of the DTPAGlu unimer with the chelating agent as free base or as Gd(3+) complex, have been investigated. A number of interesting features of the aggregation behavior were revealed: at physiological pH, micelles and bilayer structures were present, whereas upon decreasing solution pH or increasing ionic strength, the formation of bilayer structures was favored. On the basis of the above observations, the aggregating mechanism has been elucidated by considering the screening effect on intra- and interaggregate electrostatic repulsions.
Collapse
Affiliation(s)
- Mauro Vaccaro
- Department of Chemistry, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sankararamakrishnan R. Recognition of GPCRs by Peptide Ligands and Membrane Compartments theory: Structural Studies of Endogenous Peptide Hormones in Membrane Environment. Biosci Rep 2006; 26:131-58. [PMID: 16773462 DOI: 10.1007/s10540-006-9014-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor–ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to “Membrane Compartments Theory”, the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.
Collapse
|
18
|
Tikhonova IG, Boulègue C, Langer I, Fourmy D. Modeled structure of the whole regulator G-protein signaling-2. Biochem Biophys Res Commun 2006; 341:715-20. [PMID: 16434022 DOI: 10.1016/j.bbrc.2005.12.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules.
Collapse
Affiliation(s)
- Irina G Tikhonova
- INSERM, Institut National de la Santé et de la Recherche Médicale, Unit 531, Institut Fédératif de recherche, Toulouse, France
| | | | | | | |
Collapse
|
19
|
Foucaud M, Tikhonova IG, Langer I, Escrieut C, Dufresne M, Seva C, Maigret B, Fourmy D. Partial Agonism, Neutral Antagonism, and Inverse Agonism at the Human Wild-Type and Constitutively Active Cholecystokinin-2 Receptors. Mol Pharmacol 2005; 69:680-90. [PMID: 16293711 DOI: 10.1124/mol.105.019992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin receptor-2 (CCK2R) is a G protein receptor that regulates a number of physiological functions. Activation of CCK2R and/or expression of a constitutively active CCK2R variant may contribute to human diseases, including digestive cancers. Search for antagonists of the CCK2R has been an important challenge during the last few years, leading to discovery of a set of chemically distinct compounds. However, several early-discovered antagonists turned out to be partial agonists. In this context, we carried out pharmacological characterization of six CCK2R antagonists using COS-7 cells expressing the human CCK2R or a CCK2R mutant having a robust constitutive activity on inositol phosphates production, and we investigated the molecular mechanisms which, at a CCK2R binding site, account for these features. Results indicated that three compounds, 3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-N'-(3-methylphenyl)urea (L365,260), 4-{[2-[[3-(lH-indol-3-yl)-2-methyl-1-oxo-2-[[[1.7.7-trimethyl-bicyclo[2.2.1]hept-2-yl)-oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino-4-oxo-[lS-la.2[S*(S*)]4a]}-butanoate N-methyl-D-glucamine (PD135,158), and (R)-1-naphthalenepropanoic acid, b-[2-[[2-(8-azaspiro-[4.5]dec-8-ylcarbonyl)-4,6-dimethylphenyl]amino]-2-oxoethyl] (CR2945), were partial agonists; one molecule, 1-[(R)-2,3-dihydro-1-(2,3-dihydro-1-(2-methylphenacyl)-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl]-3-(3-methylphenyl)urea (YM022), was a neutral antagonist; and two compounds, N-(+)-[1-(adamant-1-ylmethyl)-2,4-dioxo-5-phenyl2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-3-yl]-N'-phenylurea (GV150,013X) and ([(N-[methoxy-3 phenyl] N-[N-methyl N-phenyl carbamoylmethyl], carbomoyl-methyl)-3 ureido]-3-phenyl)2-propionic acid (RPR101,048), were inverse agonists. Furthermore, target- and pharmacophore-based docking of ligands followed by molecular dynamic simulation experiments resulted in consistent motion of aromatic residues belonging to a network presumably important for activation, thus providing the first structural explanations for the different pharmacological profiles of tested compounds. This study confirms that several referenced so-called antagonists are in fact partial agonists, and because of this undesired activity, we suggest that newly generated molecules should be preferred to efficiently block CCK2R-related physiological effects. Furthermore, data on the structural basis for the different pharmacological features of CCK2R ligands will serve to further clarify CCK2R mechanism of activation.
Collapse
Affiliation(s)
- Magali Foucaud
- Institut National de la Santé et de la Recherche Médicale, Unit 531, Institut Fédératif de Recherche, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hur K, Kwak MK, Lee HJ, Park DJ, Lee HK, Lee HS, Kim WH, Michaeli D, Yang HK. Expression of gastrin and its receptor in human gastric cancer tissues. J Cancer Res Clin Oncol 2005; 132:85-91. [PMID: 16228228 DOI: 10.1007/s00432-005-0043-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/12/2005] [Indexed: 01/28/2023]
Abstract
PURPOSE Gastrin is a growth factor of cancerous and normal cells of the gastrointestinal tract, and its effect is known to be mediated by gastrin/cholecystokinin B (CCKB) receptor. This study was performed to investigate the prognostic significance and the expression profiles of gastrin and gastrin receptor in human gastric carcinoma tissues. METHODS We analyzed the expressions of gastrin and gastrin receptor by immunohistochemical staining using anti-gastrin Ab (Sigma, St. Louis, MO, USA) and anti-gastrin receptor Ab (Aphton Corp., Woodland, CA, USA) in 279 gastric adenocarcinoma patients. Patients' clinicopathologic features and prognoses were analyzed. RESULTS The gastrin expression rate in these patients was 47.7% (133/279) and the gastrin receptor expression rate was 56.5% (158/279). Gastrin expression was significantly higher in men than in women (54.3% vs. 34.1%), and higher in differentiated gastric adenocarcinoma than in the undifferentiated type (55.1% vs. 43.0%). The gastrin receptor expression rate was also significantly higher in men than in women (61.2% vs. 47.3%), and was higher in the differentiated type than in the undifferentiated type (72.9% vs. 46.5%), and significantly higher in the intestinal type than in the diffuse type (75.2% vs. 42.9%). Gastrin and gastrin/CCKB receptor expressions were not found to be significant prognostic factors in themselves. When focused on correlation between the co-expression of gastrin and gastrin/CCKB receptor and the survival, the prognosis of patients positive for both gastrin and gastrin receptor was significantly poorer than for those negative for gastrin and gastrin receptor in diffuse-type gastric cancer patients. However, multivariate analysis showed that only TNM stage was an independent prognostic factor of survival in diffuse-type gastric cancer patients. CONCLUSIONS This study shows that the expression rates of gastrin and gastrin receptor are high (about a half) in gastric carcinoma tissues, and that there is an association between gastrin and gastrin receptor expression. We also found that patients with diffuse-type gastric carcinoma tissues expressing both gastrin and gastrin receptor have a poorer prognosis than those negative for both, which suggests that gastrin acts as an autocrine growth factor in a subgroup of gastric carcinomas.
Collapse
Affiliation(s)
- Keun Hur
- Cancer Research Institute, Seoul National University College of Medicine, Chongno-gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
D'Amato M, Rovati LC. Cholecystokinin-A receptor antagonists: therapies for gastrointestinal disorders. Expert Opin Investig Drugs 2005; 6:819-36. [PMID: 15989644 DOI: 10.1517/13543784.6.7.819] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cholecystokinin (CCK) is a peptide that exerts several regulatory functions in the periphery, as well as in the brain. The biological functions attributed to CCK are mediated by two receptor subtypes, termed CCKA and CCKB, located predominantly in the gastrointestinal (GI) tract and in the brain, respectively. Several selective and potent non-petide CCKA receptor antagonists have been synthesised and fully characterised in preclinical studies. A few of them have been, and continue to be tested in humans. This paper focuses on the data available on the effect of CCKA receptor antagonist administration in humans, and shows how, in addition to allowing a more exact definition of the role of CCK in the regulation of some GI functions, these drugs may also possess therapeutic potential in GI disorders.
Collapse
Affiliation(s)
- M D'Amato
- Dept. of Clinical Pharmacology, Rotta Research Laboratorium SpA, Via Valosa di Sopra, 7-9, 20052 Monza, MI, Italy
| | | |
Collapse
|
22
|
Langer I, Tikhonova IG, Travers MA, Archer-Lahlou E, Escrieut C, Maigret B, Fourmy D. Evidence That Interspecies Polymorphism in the Human and Rat Cholecystokinin Receptor-2 Affects Structure of the Binding Site for the Endogenous Agonist Cholecystokinin. J Biol Chem 2005; 280:22198-204. [PMID: 15817487 DOI: 10.1074/jbc.m501786200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Louis Bugnard, CHU Rangueil, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Archer-Lahlou E, Escrieut C, Clerc P, Martinez J, Moroder L, Logsdon C, Kopin A, Seva C, Dufresne M, Pradayrol L, Maigret B, Fourmy D. Molecular mechanism underlying partial and full agonism mediated by the human cholecystokinin-1 receptor. J Biol Chem 2005; 280:10664-74. [PMID: 15632187 DOI: 10.1074/jbc.m409451200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholecystokinin-1 receptor (CCK1R) is a G protein-coupled receptor (GPCR) that regulates important physiological functions. As for other GPCRs, the molecular basis of full and partial agonism is still far from clearly understood. In the present report, using both laboratory experiments and molecular modeling approaches, we have investigated the partial agonism mechanism of JMV 180, on the human CCK1R. We first showed that efficacy of the CCK1R to activate phospholipase C is dependent on the correct orientation of the C-terminal end of peptidic ligands toward residue Phe(330) of helix VI. We have previously reported that a single mutation of Met(121) (helix III) markedly reduced the receptor-mediated inositol phosphate production upon stimulation by CCK. Computational simulations predicted that residue 121 affected orientation of the C-terminal end of CCK, thus suggesting that the molecular complex with a reduced inositol phosphate production observed with the mutated CCK1R resembles that resulting from binding of JMV 180 to the WT-CCK1R. Pharmacological, biochemical, and functional characterizations of the two receptor.ligand complexes with decreased abilities to signal were carried out in different cell types. We found that they presented the same features, such as total dependence of inositol phosphate production to Galpha(q) expression, single affinity of binding sites, insensitivity of binding to non-hydrolyzable GTP, absence of GTPgamma[S(35)] binding following agonist stimulation, similarity of dose-response curves for amylase secretion, and incapacity to induce acute pancreatitis in pancreatic acini. We concluded that helices VI and III of the CCK1R are functionally linked through the CCK1R agonist binding site and that positioning of the C-terminal ends of peptidic agonists toward Phe(330) of helix VI is responsible for extent of phospholipase C activation through Galpha(q) coupling. Given the potential therapeutic interest of partial agonists such as JMV 180, our structural data will serve for target structure-based design of new CCK1R ligands.
Collapse
Affiliation(s)
- Elodie Archer-Lahlou
- INSERM U 531, Centre Hospitalier Universitaire Rangueil, Bat. L3, TSA 50032, 31059 Toulouse cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mathieu A, Clerc P, Portolan G, Bierkamp C, Lulka H, Pradayrol L, Seva C, Fourmy D, Dufresne M. Transgenic expression of CCK2 receptors sensitizes murine pancreatic acinar cells to carcinogen-induced preneoplastic lesions formation. Int J Cancer 2005; 115:46-54. [PMID: 15688412 DOI: 10.1002/ijc.20861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In humans, initial events of pancreatic carcinogenesis remain unknown, and the question of whether this cancer, which has a ductal phenotype, exclusively arises from duct cells has been raised. Previous studies have demonstrated that transgenic expression of the CCK2 receptor in acinar cells of ElasCCK2 mice plays a role in the development of pancreatic neoplasia. The aim of our study was to examine initial steps of carcinogenesis in ElasCCK2 mice, adding a supplementary defect by using a chemical carcinogen, azaserine. Results of posttreatment sequential immunohistochemical examinations and quantifications demonstrate that mice responded to azaserine. Transition of acinar cells into duct-like cells expressing Pdx1 and gastrin, as well as proliferation of acinar cells, were transiently observed in both transgenic and control mice. The carcinogen also induced formation of preneoplastic lesions, adenomas, exhibiting properties of autonomous growth. Importantly, expression of the CCK2 receptor increased the susceptibility of pancreas to azaserine. Indeed, treated ElasCCK2 mice exhibited larger areas of pancreatic acinar-ductal transition, increased cellular proliferation as well as larger adenomas areas vs. control mice. These amplified responses may be related to auto/paracrine stimulation of CCK2 receptor by gastrin expressed in newly formed duct-like cells. Our results demonstrate that activation of CCK2 receptor and azaserine result in cumulative effects to favor the emergence of a risk situation that is a potential site for initiation of carcinogenesis.
Collapse
Affiliation(s)
- Anne Mathieu
- INSERM U531, IFR31, Hospital Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leung-Theung-Long S, Roulet E, Clerc P, Escrieut C, Marchal-Victorion S, Ritz-Laser B, Philippe J, Pradayrol L, Seva C, Fourmy D, Dufresne M. Essential interaction of Egr-1 at an islet-specific response element for basal and gastrin-dependent glucagon gene transactivation in pancreatic alpha-cells. J Biol Chem 2004; 280:7976-84. [PMID: 15611055 DOI: 10.1074/jbc.m407485200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide hormone gastrin is secreted from G cells of the gastric antrum and is the main inducer of gastric acid secretion via activation of its receptor the cholecystokinin 2 (CCK2) receptor. Both gastrin and CCK2 receptors are also transiently detected in the fetal pancreas and believed to exert growth/differentiation effects during endocrine pancreatic development. We demonstrated previously that whereas gastrin expression is extinguished in adult pancreas, CCK2 receptors are present in human glucagon-producing cells where their activation stimulates glucagon secretion. Based on these findings, we investigate in the present study whether gastrin regulates glucagon gene expression. To this aim, the CCK2 receptor was stably expressed into a glucagon-producing pancreatic islet cell line, and a glucagon-reporter fusion gene was transiently transfected in this new cellular model. We report that gastrin stimulates glucagon gene expression in glucagon-producing pancreatic cells. By using progressively 5'-increased sequences of the glucagon gene, gastrin responsiveness was located within the minimal promoter. Moreover, we clearly identified early growth response protein 1 (Egr-1) as an essential transcription factor interacting with the islet cell-specific G4 element. Egr-1 was shown to be essential for basal and gastrin-dependent glucagon gene transactivation. Furthermore, our results demonstrate that the MEK1/ERK1/2 pathway couples the CCK2 receptor to nuclearization and DNA binding of Egr-1. In conclusion, our data provide new information concerning the transcriptional regulation of the glucagon gene. Moreover they open new working hypothesis with reference to a potential role of gastrin in glucagon-producing pancreatic cells.
Collapse
|
26
|
Accardo A, Tesauro D, Roscigno P, Gianolio E, Paduano L, D'Errico G, Pedone C, Morelli G. Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI. J Am Chem Soc 2004; 126:3097-107. [PMID: 15012139 DOI: 10.1021/ja039195b] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New amphiphilic molecules containing a bioactive peptide or a claw moiety have been prepared in order to obtain mixed micelles as target-specific contrast agents in magnetic resonance imaging. The first molecule, C(18)H(37)CONH(AdOO)(2)-G-CCK8 (C18CCK8), contains a C18 hydrophobic moiety bound to the C-terminal cholecystokinin octapeptide amide (CCK 26-33 or CCK8). The second amphiphilic compound, C(18)H(37)CONHLys(DTPAGlu)CONH(2) (C18DTPAGlu) or its gadolinium complex, (C18DTPAGlu(Gd)), contains the same C18 hydrophobic moiety bound, through a lysine residue, to the DTPAGlu chelating agent. The mixed aggregates as well as the pure C18DTPAGlu aggregate, in the presence and absence of Gd, have been fully characterized by surface tension measurements, FT-PGSE-NMR, fluorescence quenching, and small-angle neutron scattering measurements. The structural characterization of the mixed aggregates C18DTPAGlu(Gd)-C18CCK8 indicates a spherical arrangement of the micelles with an external shell of approximately 21 A and an inner core of approximately 20 A. Both the DTPAGlu(Gd) complexes and the CCK8 peptides point toward the external surface. The measured values for relaxivity in saline medium at 20 MHz proton Larmor frequency and 25 degrees C are 18.7 mM(-)(1) s(-)(1). These values show a large enhancement in comparison with the isolated DTPAGlu(Gd) complex.
Collapse
Affiliation(s)
- Antonella Accardo
- Interuniversitario per la Ricerca sui Peptidi Bioattivi (CIRPeB) & Department of Biological Chemistry, University of Naples Federico II Via Mezzocannone, 6 Naples, I-80134, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mercer LD, Beart PM. Immunolocalization of CCK1R in rat brain using a new anti-peptide antibody. Neurosci Lett 2004; 359:109-13. [PMID: 15050723 DOI: 10.1016/j.neulet.2004.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 01/05/2004] [Accepted: 01/20/2004] [Indexed: 11/15/2022]
Abstract
An antibody directed at the carboxy tail of the cholecystokinin-1 receptor (CCK1R) was characterized by ELISA and Western blotting. Immunohistochemistry established that CCK1R-like immunoreactivity (CCK1R-LI) was widely and topographically distributed through the neuroaxis, appearing relatively higher in rhi- and diencephalon, and intense in both neuronal somata (cytoplasmic) and processes. CCK1R-LI was found in new loci, but also in areas previously identified by receptor autoradiography, electrophysiology and in situ hybridization of CCK1R mRNA. The widespread distribution of CCK1R has implications for the functional roles of these receptors in brain. The high titre and low background seen with this new antiserum makes it of great value for cell and tissue research.
Collapse
Affiliation(s)
- Linda D Mercer
- Department of Pharmacology, Monash University, Clayton, Vic. 3800, Australia
| | | |
Collapse
|
28
|
Giragossian C, Mierke DF. Determination of ligand-receptor interactions of cholecystokinin by nuclear magnetic resonance. Life Sci 2003; 73:705-13. [PMID: 12801592 DOI: 10.1016/s0024-3205(03)00391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To date high resolution structural studies of G protein coupled receptors, with the exception of rhodopsin, have not been feasible using conventional spectroscopic techniques. To overcome these difficulties, the structural features of partial or intact domains of GPCRs have been studied by nuclear magnetic resonance spectroscopy and X-ray crystallography. Here, we describe the structural characterization of receptor domains from the cholecystokinin 1 and 2 receptors and the elucidation of intermolecular interactions between the extracellular receptor domains and CCK-8 by solution state nmr.
Collapse
Affiliation(s)
- Craig Giragossian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
29
|
Galés C, Poirot M, Taillefer J, Maigret B, Martinez J, Moroder L, Escrieut C, Pradayrol L, Fourmy D, Silvente-Poirot S. Identification of tyrosine 189 and asparagine 358 of the cholecystokinin 2 receptor in direct interaction with the crucial C-terminal amide of cholecystokinin by molecular modeling, site-directed mutagenesis, and structure/affinity studies. Mol Pharmacol 2003; 63:973-82. [PMID: 12695525 DOI: 10.1124/mol.63.5.973] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cholecystokinin (CCK) receptors CCK1R and CCK2R exert important central and peripheral functions by binding the neuropeptide cholecystokinin. Because these receptors are potential therapeutic targets, great interest has been devoted to the identification of efficient ligands that selectively activate or inhibit these receptors. A complete mapping of the CCK binding site in these receptors would help to design new CCK ligands and to optimize their properties. In this view, a molecular model of the CCK2R occupied by CCK was built to identify CCK2R residues that interact with CCK functional groups. No such study has yet been reported for the CCK2R. Docking of CCK in the receptor was performed by taking into account our previous mutagenesis data and by using, as constraint, the direct interaction that we demonstrated between His207 in the CCK2R and Asp8 of CCK (Mol Pharmacol 54:364-371, 1998; J Biol Chem 274:23191-23197, 1999). Two residues that had not been revealed in our previous mutagenesis studies, Tyr189 (Y4.60) and Asn358 (N6.55), were identified in interaction via hydrogen bonds with the C-terminal amide of CCK, a crucial functional group of the peptide. Mutagenesis of Tyr189 (Y4.60) and Asn358 (N6.55) as well as structure-affinity studies with modified CCK analogs validated these interactions and the involvement of both residues in the CCK binding site. These results indicate that the present molecular model is an important tool to identify direct contact points between CCK and the CCK2R and to rapidly progress in mapping of the CCK2R binding site. Moreover, comparison of the present CCK2R.CCK molecular model with that of CCK1R.CCK, which we have previously published and validated, clearly argues that the positioning of CCK in these receptors is different.
Collapse
Affiliation(s)
- Céline Galés
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 531, Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu CL, Hung CR, Chang FY, Lin LC, Pau KYF, Wang PS. Effects of evodiamine on gastrointestinal motility in male rats. Eur J Pharmacol 2002; 457:169-76. [PMID: 12464363 DOI: 10.1016/s0014-2999(02)02687-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of evodiamine on gastric emptying, gastrointestinal transit, and plasma levels of cholecystokinin (CCK) were studied in male rats. Evodiamine, isolated from the dry unripened fruit of Evodia rutaecarpa Bentham (a Chinese medicine named Wu-chu-yu), has been recommended for abdominal pain, acid regurgitation, nausea, diarrhea, and dysmenorrhea. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na(2)51CrO(4). Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Blood samples were collected for CCK radioimmunoassay (RIA). After administration of evodiamine (0.67-6.00 mg/kg), both gastric emptying and gastrointestinal transit were inhibited, whereas the plasma concentration of CCK was increased in a dose-dependent manner. The selective CCK(1) receptor antagonists, devazepide and lorglumide, effectively attenuated the evodiamine-induced inhibition of gastric emptying and gastrointestinal transit. L-365,260 (3R-(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-yl)-N'-(3-methylphenyl)-urea), a selective CCK(2) receptor antagonist, did not alter the evodiamine-induced inhibition of gastric emptying and gastrointestinal transit. These results suggest that evodiamine inhibits both gastric emptying and gastrointestinal transit in male rats via a mechanism involving CCK release and CCK(1) receptor activation.
Collapse
Affiliation(s)
- Chiu-Lung Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
31
|
Fourmy D, Escrieut C, Archer E, Galès C, Gigoux V, Maigret B, Moroder L, Silvente-Poirot S, Martinez J, Fehrentz JA, Pradayrol L. Structure of cholecystokinin receptor binding sites and mechanism of activation/inactivation by agonists/antagonists. PHARMACOLOGY & TOXICOLOGY 2002; 91:313-20. [PMID: 12688374 DOI: 10.1034/j.1600-0773.2002.910608.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Delineation of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for ligand recognition, partial agonism, ligand-induced traffiking of receptor signalling. In the current paper, we illustrate how, in the past 5 years, studies from our laboratory and others have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. Available data on CCK1 and CCK2R binding sites indicate that 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs; 2) binding sites of non-peptide agonists/antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK and 3) residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.
Collapse
Affiliation(s)
- Daniel Fourmy
- INSERM U 531, Louis Bugnard Institute, CHU Rangueil, Bat. L3, 31403 Toulouse Cedex 4, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clerc P, Saillan-Barreau C, Desbois C, Pradayrol L, Fourmy D, Dufresne M. Transgenic mice expressing cholecystokinin 2 receptors in the pancreas. PHARMACOLOGY & TOXICOLOGY 2002; 91:321-6. [PMID: 12688375 DOI: 10.1034/j.1600-0773.2002.910609.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies argue for the presence of CCK2 receptors in the human pancreas but their physiological role in normal exocrine pancreas and their contribution to pancreatic pathologies is unknown. In order to allow an easy investigation of their pancreatic function, we created the ElasCCK2 transgenic mice expressing the human receptor in pancreatic exocrine cells. In this model, the CCK2 receptor is specifically expressed in the exocrine pancreas and has typical molecular and binding features. It is functional and mediates enzyme release but stimulating concentrations of agonists are not physiological. Results of phenotypic and long-term studies show that activation of CCK2 receptors stimulates growth of the pancreas in correlation with an increase of acinar tissue. This finding is also consistent with the demonstration of an efficient coupling of the transgenic receptor to protein synthesis. Alterations in pancreatic histology and development of preneoplastic lesions are apparent from postnatal day 50. Moreover, expression of this G-protein-coupled receptor leads to the development of tumours in older animals with an incidence of 15%. Although tumours have distinct phenotypes they all exhibit ductular structures. Immunohistochemical analysis of these structures shows their acinar origin. These data, linking for the first time the development of pancreatic carcinogenesis in vivo to the expression of the CCK2 receptor, support a key role of the CCK2 receptor in the initiation of pancreatic cancer. Moreover, ElasCCK2 mice provide a model for carcinogenesis by transformation and dedifferentiation of acinar cells.
Collapse
Affiliation(s)
- Pascal Clerc
- INSERM U531, Louis Bugnard Institute, CHU Rangueil, Bat L3, 31403 Toulouse cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The sulfonation of endogenous molecules is a pervasive biological phenomenon that is not always easily understood, and although it is increasingly recognized as a function of fundamental importance, there remain areas in which significant cognizance is still lacking or at most minimal. This is particularly true in the field of endocrinology, in which the sulfoconjugation of hormones is a widespread occurrence that is only partially, if at all, appreciated. In the realm of steroid/sterol sulfoconjugation, the discovery of a novel gene that utilizes an alternative exon 1 to encode for two sulfotransferase isoforms, one of which sulfonates cholesterol and the other pregnenolone, has been an important advance. This is significant because cholesterol sulfate plays a crucial role in physiological systems such as keratinocyte differentiation and development of the skin barrier, and pregnenolone sulfate is now acknowledged as an important neurosteroid. The sulfonation of thyroglobulin and thyroid hormones has been extensively investigated and, although this transformation is better understood, there remain areas of incomplete comprehension. The sulfonation of catecholamines is a prevalent modification that has been extensively studied but, unfortunately, remains poorly understood. The sulfonation of pituitary glycoprotein hormones, especially LH and TSH, does not affect binding to their cognate receptors; however, sulfonation does play an important role in their plasma clearance, which indirectly has a significant effect on biological activity. On the other hand, the sulfonation of distinct neuroendocrine peptides does have a profound influence on receptor binding and, thus, a direct effect on biological activity. The sulfonation of specific extracellular structures plays an essential role in the binding and signaling of a large family of extracellular growth factors. In summary, sulfonation is a ubiquitous posttranslational modification of hormones and extracellular components that can lead to dramatic structural changes in affected molecules, the biological significance of which is now beginning to be appreciated.
Collapse
Affiliation(s)
- Charles A Strott
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| |
Collapse
|
34
|
Miyasaka K, Shinozaki H, Jimi A, Funakoshi A. Amylase secretion from dispersed human pancreatic acini: neither cholecystokinin a nor cholecystokinin B receptors mediate amylase secretion in vitro. Pancreas 2002; 25:161-5. [PMID: 12142739 DOI: 10.1097/00006676-200208000-00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION In humans, cholecystokinin (CCK) stimulates pancreatic secretion, and CCK-A receptor antagonists prevent it in vivo. However, the human pancreas has been reported to express mainly CCK-B receptors. AIM To elucidate this discrepancy. METHODOLOGY We prepared dispersed acini from human pancreas and examined whether various doses of CCK stimulated the release of amylase, in comparison with the effects of neuromedin C, carbamylcholine, and secretin. RESULTS Human pancreatic acini did not respond to any dose of CCK or secretin. Amylase release was stimulated by carbamylcholine and neuromedin C dose-dependently and was inhibited by respective antagonists. The localizations of CCK receptors in the human duodenum were determined. High concentrations of CCK-A receptors were detected in the mucosa as well as in smooth muscle of the duodenum by microautoradiography. CONCLUSION In conclusion, human pancreatic acinar cells are responsible for carbamylcholine and neuromedin C but not for secretin. Neither CCK-A nor CCK-B receptor mediates amylase release from human pancreatic acini in vitro. Pancreatic secretion in humans in vivo may be regulated indirectly by CCK (via CCK-A receptors).
Collapse
Affiliation(s)
- Kyoko Miyasaka
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | |
Collapse
|
35
|
Giragossian C, Pellegrini M, Mierke DF. NMR studies of CCK-8/CCK1 complex support membrane-associated pathway for ligand-receptor interaction. Can J Physiol Pharmacol 2002; 80:383-7. [PMID: 12056543 DOI: 10.1139/y02-031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of peptide ligands with their associated G-protein-coupled receptors has been examined by a number of different experimental approaches over the years. We have been developing an approach utilizing high-resolution NMR to determine the structural features of the peptide ligand, well-designed fragments of the receptor, and the ligand-receptor complexes formed upon titration of the peptide hormone. The results from these investigations provide evidence for a membrane-associated pathway for the initial interaction of peptide ligands with the receptor. Here, our results from the investigation of the interaction of CCK-8 with the CCK1 receptor are described. Our spectroscopic results clearly show that both CCK-8 and the regions of CCK1 with which it interacts are closely associated with the zwitterionic interface of the lipids utilized in our solution spectroscopic studies.
Collapse
Affiliation(s)
- Craig Giragossian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
36
|
Giragossian C, Mierke DF. Intermolecular interactions between cholecystokinin-8 and the third extracellular loop of the cholecystokinin-2 receptor. Biochemistry 2002; 41:4560-6. [PMID: 11926817 DOI: 10.1021/bi0160009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the third extracellular loop of the human cholecystokinin-2 receptor, CCK2-R(352-379), and its interactions with the C-terminal octapeptide of cholecystokinin (CCK-8) have been determined by high-resolution NMR and computer simulations. In the presence of dodecylphosphocholine micelles, the structure of the receptor fragment consisted of three helices, with the first and third corresponding to residues of the extracellular ends of transmembrane helices (TM) 6 and 7, respectively. The central, extracellular helix, consisting of residues 363-368, was found to be closely associated with the membrane mimetic used during the spectroscopic studies and molecular dynamics (MD) simulations. Upon titration of CCK-8 to the receptor domain, chemical shift perturbation and intermolecular NOEs (Trp30, Met31 of CCK-8 and P371, F374 of CCK2-R) indicated the formation of a stable complex and specific ligand/receptor interactions. Using the NOE-generated intermolecular contact points, extensive MD simulations of CCK-8 bound to the CCK2 receptor were carried out. The results, with CCK-8 in close proximity to TM7, differ from previous structural studies of CCK-8 association with CCK1-R, in which the ligand formed a number of interactions with TM6. These differences may play a role in the ligand specificity displayed by the CCK1 and CCK2 receptor subtypes.
Collapse
Affiliation(s)
- Craig Giragossian
- Department of Chemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
37
|
Escrieut C, Gigoux V, Archer E, Verrier S, Maigret B, Behrendt R, Moroder L, Bignon E, Silvente-Poirot S, Pradayrol L, Fourmy D. The biologically crucial C terminus of cholecystokinin and the non-peptide agonist SR-146,131 share a common binding site in the human CCK1 receptor. Evidence for a crucial role of Met-121 in the activation process. J Biol Chem 2002; 277:7546-55. [PMID: 11724786 DOI: 10.1074/jbc.m108563200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholecystokinin (CCK) receptor-1 (CCK1R) is a G protein-coupled receptor, which mediates important central and peripheral cholecystokinin actions. Our aim was to progress in mapping of the CCK1R binding site by identifying residues that interact with the methionine and phenylalanine residues of the C-terminal moiety of CCK because these are crucial for its binding and biological activity, and to determine whether CCK and the selective non-peptide agonist, SR-146,131, share a common binding site. Identification of putative amino acids of the CCK1R binding site was achieved by dynamics-based docking of the ligand CCK in a refined three-dimensional model of the CCK1R using, as constraints, previous results that identified contact points between residues of CCK and CCK1R (Kennedy, K., Gigoux, V., Escrieut, C., Maigret, B., Martinez, J., Moroder, L., Frehel, D., Gully, D., Vaysse, N., and Fourmy, D. (1997) J. Biol. Chem. 272, 2920-2926 and Gigoux, V., Escrieut, C., Fehrentz, J. A., Poirot, S., Maigret, B., Moroder, L., Gully, D., Martinez, J., Vaysse, N., and Fourmy, D. (1999) J. Biol. Chem. 274, 20457-20464). By this approach, a series of residues forming connected hydrophobic clusters were identified. Pharmacological and functional analysis of mutated receptors indicated that a network of hydrophobic residues including Cys-94, Met-121, Val-125, Phe-218, Ile-329, Phe-330, Trp-326, Ile-352, Leu-356, and Tyr-360, is involved in the binding site for CCK and in the activation process of the CCK1R. Within this hydrophobic network, the physico-chemical nature of residue 121 seems to be essential for CCK1R functioning. Finally, the biological properties of mutants together with dynamic docking of SR-146,131 in the CCK1R binding site demonstrated that SR-146,131 occupies a region of CCK1R binding site which interacts with the C-terminal amidated tripeptide of CCK, i.e. Met-Asp-Phe-NH(2). These new and important insights will serve to better understand the activation process of CCK1R and to design or optimize ligands.
Collapse
Affiliation(s)
- Chantal Escrieut
- INSERM Unite 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, Bat. L3, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Massoubre C, Rattner A, Pellet J, Frey J, Chamson A. La cholécystokinine : mise au point. NUTR CLIN METAB 2002. [DOI: 10.1016/s0985-0562(01)00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Kubiak TM, Larsen MJ, Burton KJ, Bannow CA, Martin RA, Zantello MR, Lowery DE. Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Biochem Biophys Res Commun 2002; 291:313-20. [PMID: 11846406 DOI: 10.1006/bbrc.2002.6459] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Described in this report is a successful cloning and characterization of a functionally active Drosophila sulfakinin receptor designated DSK-R1. When expressed in mammalian cells, DSK-R1 was activated by a sulfated, Met(7-->Leu(7)-substituted analog of drosulfakinin-1, FDDY(SO(3)H)GHLRF-NH(2) ([Leu(7)]-DSK-1S). The interaction of [Leu(7)]-DSK-1S with DSK-R1 led to a dose-dependent intracellular calcium increase with an EC(50) in the low nanomolar range. The observed Ca(2+) signal predominantly resulted from activation of pertussis toxin (PTX)-insensitive signaling pathways pointing most likely to G(q/11) involvement in coupling to the activated receptor. The unsulfated [Leu(7)]-DSK-1 was ca. 3000-fold less potent than its sulfated counterpart which stresses the importance of the sulfate moiety for the biological activity of drosulfakinin. The DSK-R1 was specific for the insect sulfakinin since two related vertebrate sulfated peptides, human CCK-8 and gastrin-II, were found inactive when tested at concentrations up to 10(-5) M. To our knowledge, the cloned DSK-R1 receptor is the first functionally active Drosophila sulfakinin receptor reported to date.
Collapse
Affiliation(s)
- Teresa M Kubiak
- Animal Health Discovery Research, Kalamazoo, Michigan 49001, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Escherich A, Lutz J, Escrieut C, Fourmy D, van Neuren AS, Müller G, Schafferhans A, Klebe G, Moroder L. Peptide/benzodiazepine hybrids as ligands of CCK(A) and CCK(B) receptors. Biopolymers 2002; 56:55-76. [PMID: 11592053 DOI: 10.1002/1097-0282(2000)56:2<55::aid-bip1052>3.0.co;2-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The (neuro)hormones gastrin and cholecystokinin (CCK) share a common C-terminal tetrapeptide amide sequence that has been recognized as the message portion while the N-terminal extensions are responsible for the CCK(A) and CCK(B) receptor subtype selectivity and avidity. 1,4-Benzodiazepine derivatives are potent and selective antagonists of these receptors, and according to comparative molecular field analysis, the structures of these nonpeptidic compounds could well mimic the message sequence of the peptide agonists at least in terms of spatial array of the aromatic residues. Docking of a larger series of low molecular weight nonpeptide antagonists to a homology modeling derived CCK(B) receptor structure revealed a consensus binding mode that is further validated by data from site-directed mutagenesis studies of the receptors. Whether this putative binding pocket of the nonpeptide antagonists is identical to that of the message portion of the peptide agonists, or whether it is distinct and spatially separated, or overlapping, but with distinct interaction sites, is still object of debate. Using a 1,4-benzodiazepine core amino-functionalized at the C3 position, related tryptophanyl derivatives were synthesized as mimics of the tetrapeptide and subsequently extended N-terminally with gastrin and CCK address sequences. All hybrid constructs were recognized as antagonists by the CCK(A) and CCK(B) receptors, but their address portions were incapable of enhancing in significant manner selectivity and avidity. Consequently, the binding of the peptide/benzodiazepine hybrids has to be dictated mainly by the benzodiazepine moiety, which apparently prevents optimal interactions of the address peptides with extracellular receptor subdomains. These findings would strongly support the view of distinct binding sites for the message portion of the peptide agonists and the benzodiazepine-based nonpeptide antagonists.
Collapse
Affiliation(s)
- A Escherich
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cholecystokinin (CCK) is deeply involved in the control of learning and emotional behaviors. The authors characterize the behavioral properties of Otsuka Long Evans Tokushima Fatty (OLETF) rats, which lack the CCK-A receptor because of a genetic abnormality. In the Morris water-maze task, the OLETF rats showed an impaired spatial memory. In the inhibitory avoidance test, they showed facilitating response 24 h after training. Hypoalgesia was observed in a hot-plate test. In the elevated plus-maze and food neophobia test, OLETF rats showed an anxiety-like response. In addition, OLETF rats were hypoactive in the Morris water-maze and the elevated plus-maze. The results suggest that the OLETF rats showed a spatial memory deficit, hypoactivity and anxiety due, at least in part, to the lack of CCK-A receptors.
Collapse
Affiliation(s)
- Xue Liang Li
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University 60, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
42
|
Clerc P, Leung-Theung-Long S, Wang TC, Dockray GJ, Bouisson M, Delisle MB, Vaysse N, Pradayrol L, Fourmy D, Dufresne M. Expression of CCK2 receptors in the murine pancreas: proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology 2002; 122:428-37. [PMID: 11832457 DOI: 10.1053/gast.2002.30984] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS To explore the pancreatic function of CCK2/gastrin receptor, we created ElasCCK2 transgenic mice expressing the human receptor in pancreatic exocrine cells. In previous studies, the transgenic CCK2/gastrin receptor was demonstrated to mediate enzyme release and protein synthesis. We now report results of phenotypic and long-term studies. METHODS Pancreas was characterized using morphometry and immunohistochemistry. ElasCCK2 mice were crossed with INS-GAS mice expressing gastrin in pancreatic beta cells to achieve continuous stimulation of the CCK2/gastrin receptor. RESULTS The pancreatic weight of ElasCCK2 mice was increased by 40% and correlated with an increase in the area of exocrine tissue. Alterations in pancreatic histology were apparent from postnatal day 50. Crossing the ElasCCK2 mice with INS-GAS mice resulted in development of morphologic changes in younger animals. Malignant transformation occurred in 3 of 20 homozygous ElasCCK2 mice. Although tumors had different phenotypes, they all developed through an acinar-ductal carcinoma sequence. CONCLUSIONS Our data show that transgenic expression of a G protein-coupled receptor can lead to cancer. This study also supports a key role of the CCK2/gastrin receptor in the development of pre- and neoplastic lesions of the pancreas. ElasCCK2 mice provide a model for carcinogenesis by transformation and dedifferentiation of acinar cells.
Collapse
Affiliation(s)
- Pascal Clerc
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marchal-Victorion S, Vionnet N, Escrieut C, Dematos F, Dina C, Dufresne M, Vaysse N, Pradayrol L, Froguel P, Fourmy D. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. PHARMACOGENETICS 2002; 12:23-30. [PMID: 11773861 DOI: 10.1097/00008571-200201000-00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholecystokinin (CCK) and gastrin (G) and their receptors (CCK1 and CCK2) are involved in multiple physiological functions. Notably, CCK1R plays a role in the regulation of food intake whereas both CCK1R and CCK2R play a role in the regulation of pancreatic endocrine function. CCK1R and CCK2R may therefore serve as pharmacological targets in diabetes and obesity and genes encoding these receptors may be candidate genes in the pathogenesis of the diseases. In this study, we used single nucleotide polymorphism analysis and allele specific amplification for mutation screening of the CCK2 receptor gene and family linkage study. Mutated receptors were constructed, expressed in COS-7 cells for analysis of their binding and functional properties. V125I-CCK2 receptor variant was found in 2 out of 18 type 2 diabetes mellitus families tested. V125I mutation co-segregated in those 2 initial families, but further association studies showed that this mutation was not associated with diabetes or early age at diagnosis of the disease. V125I-CCK2 receptor high affinity sites exhibited a 2-fold enhanced binding affinity for CCK which was correlated to a slightly increased potency in coupling to inositol phosphate production. Since CCK2 receptor is expressed in pancreatic glucagon-producing cells in humans and is involved in secretion of glucagon, an increase of binding affinity of the mutated CCK2 receptor could enhance glucagon secretion in patients bearing V125I mutation. We also characterized a mutant of the CCK1 receptor which was previously identified in an obese patient. This mutant, V365I-CCK1, demonstrated a decreased level of expression (26%) and efficacy (25%) to stimulate inositol phosphates. It can therefore be expected that in humans bearing V365I mutation, decreases in CCK1 receptor expression and coupling efficiency may affect CCK-induced regulation of satiety. Polymorphism or mutations in the CCK receptors may be involved in type 2 diabetes mellitus and obesity. However, further studies are necessary to precisely evaluate this role in humans.
Collapse
|
44
|
Lhoste EF, Fiszlewicz M, Corring T. Administration of two antagonists of the cholecystokinin(B)/gastrin receptor does not totally inhibit the pancreatic response to a meal in the pig. Pancreas 2002; 24:47-52. [PMID: 11741182 DOI: 10.1097/00006676-200201000-00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION AND AIMS The role of the cholecystokinin B (CCK(B))/gastrin receptor in the pancreatic response to a standard meal was investigated in the pig. METHODOLOGY Twenty-four pigs were prepared surgically for the collection of the pancreatic juice and an intravenous perfusion. On experimental days, the pigs were perfused with one of two CCK(B)antagonists (L-365,260 or PD 135156) or the vehicle for 2 hours. We offered them a standard meal 30 minutes after the beginning of the perfusion. The pancreatic secretion was collected for 4 hours starting 30 minutes before the perfusion. Its volume was recorded, and the protein concentrations were assayed. RESULTS Neither antagonist totally abolished the postprandial peak of the pancreatic protein. CONCLUSIONS We suggest that the stimulation of pancreatic protein secretion by a meal is not mediated by CCK(B)/gastrin receptors. Because we previously showed that the CCK(A)receptor antagonist MK329 was no more able to abolish this response, CCK is probably not responsible for this response.
Collapse
Affiliation(s)
- Evelyne F Lhoste
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Argonomique Domaine de Vilvert, Jouy-en-Josas, France.
| | | | | |
Collapse
|
45
|
Rooman I, Lardon J, Flamez D, Schuit F, Bouwens L. Mitogenic effect of gastrin and expression of gastrin receptors in duct-like cells of rat pancreas. Gastroenterology 2001; 121:940-9. [PMID: 11606507 DOI: 10.1053/gast.2001.27998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Ductular metaplastic cells are observed during pancreas injury. Growth control by gastrin and expression of gastrin/cholecystokinin (CCK) B receptors were evaluated in these cells. METHODS Acinoductal transdifferentiation was induced in vitro by culturing of acinar cells, and ductular metaplasia was obtained in vivo by ligation of the pancreatic ducts. Mitogenic effects of gastrin I on ductal complexes in vivo and of tetragastrin, pentagastrin, and gastrin I and II, with or without the CCK-B receptor antagonist L-365,260, on duct-like cells in vitro were analyzed by 5-bromo-2'-deoxyuridine labeling. Immunocytochemistry, Western blotting, and reverse-transcription polymerase chain reaction were applied for detection of the CCK-B receptor. RESULTS Gastrin analogues induced a mitogenic stimulus in the duct-like cells in vitro and in ductal complexes in duct-ligated rat pancreas. Immunocytochemistry showed expression of CCK-B receptors in these models and in fetal but not normal adult exocrine pancreas. Additionally, up-regulation of CCK-B receptors during ductular metaplasia was shown by Western blotting and reverse-transcription polymerase chain reaction. CONCLUSIONS Duct-like pancreatic epithelial cells in vitro and ductal complexes in vivo express gastrin/CCK-B receptors and proliferate in response to gastrin.
Collapse
Affiliation(s)
- I Rooman
- Cell Differentiation Unit, Diabetes Research Center, Free University Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
46
|
Mierke DF, Giragossian C. Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev 2001; 21:450-71. [PMID: 11579442 DOI: 10.1002/med.1018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) allow cells to respond to calcium, hormones, and neurotransmitters. Not surprisingly, they currently make up the largest family of validated drug targets. Rational drug design for molecular regulators targeting GPCRs has been limited to theoretical-based computational approaches. X-ray crystallography of intact GPCRs has provided the topological orientation of the seven transmembrane helices, but limited structural information of the extracellular and intracellular loops and protein termini. In this review we detail an NMR-based approach which provides the high-resolution structural features on the extracellular domains of GPCRs and the ligand/receptor complexes formed upon titration of the peptide hormone. The results provide important contact points and a high-resolution description of the ligand/receptor interactions, which may be useful for the rational design of therapeutic agents targeting GPCRs. Recent results from our investigation of the cholecystokinin peptide hormone system are used to highlight this approach.
Collapse
Affiliation(s)
- D F Mierke
- Department of Molecular Pharmacology, Division of Biology & Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
47
|
Giragossian C, Mierke DF. Intermolecular interactions between cholecystokinin-8 and the third extracellular loop of the cholecystokinin A receptor. Biochemistry 2001; 40:3804-9. [PMID: 11300760 DOI: 10.1021/bi002659n] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of the C-terminal octapeptide of cholecystokinin, CCK-8, with the third extracellular loop of human cholecystokinin-A receptor, CCK(A)-R(329-357), has been probed by high-resolution NMR and extensive computer simulations. The structure of CCK(A)-R(329-357) in the presence of dodecylphosphocholine micelles consists of three alpha-helices, with the first and third corresponding to the extracellular ends of transmembrane (TM) helices 6 and 7. The central helix, residues W335-R345, is found to lie on the zwitterionic surface. Titration with CCK-8 produces a stable complex with a number of intermolecular NOEs between the C-terminus of the ligand (Trp(30), Met(31), Asp(32)) and the interface of TM6 and the third extracellular loop (N333, A334, Y338) of the receptor fragment. The mode of ligand binding based on these intermolecular NOEs is in agreement with a number of published findings from receptor mutagenesis and photoaffinity cross-linking. Utilizing these ligand/receptor points of interaction, the structural features of CCK(A)-R(329-357), and also the structures of CCK-8 and CCK(A)-R(1-47) previously determined, extensive molecular dynamics simulations of the CCK-8/CCK(A)-R complex were carried out. The results provide unique insight into the molecular interactions and forces important for the binding of CCK-8 to CCK(A)-R.
Collapse
Affiliation(s)
- C Giragossian
- Department of Chemistry and Department of Molecular Pharmacology, Division of Biology & Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
48
|
Abstract
BACKGROUND AND AIMS Gastrin17gly acts as a growth factor for the colonic mucosa. Studies on the binding properties of the receptor involved in transducing the proliferative effects have generally been confined to colorectal carcinoma cell lines, and no investigation of gastrin17gly receptors on normal colonocytes has yet been reported. The aim of this study was to investigate the binding of 125I-[Met15]-gastrin17gly to normal colonic crypts. METHODS Crypts were released from normal rat and rabbit colonic mucosa by treatment with EDTA and isolated by centrifugation. The binding of 125I-[Met15]-gastrin17gly was measured in displacement experiments with increasing concentrations of either gastrin17gly, gastrin17 or gastrin receptor antagonists. The concentrations required for 50% inhibition were determined by the use of curve fitting. RESULTS 125I-[Met15]-Gastrin17gly bound to both rat and rabbit crypts, and displacement experiments with unlabeled gastrin17gly revealed that the IC50 values were 1.0 +/- 0.6 and 0.6 +/- 0.2 micromol/L, respectively. Binding was also competed by gastrin17, with IC50 values of 2.4 +/- 1.7 and 2.4 +/- 0.7 micromol/L, respectively. Binding was inhibited by the non-selective gastrin/CCK receptor antagonists proglumide and benzotript, but not by the cholecystokinin (CCK)-A receptor antagonist L364 718, or the gastrin/CCK-B receptor antagonist L365 260. CONCLUSION We conclude that the gastrin17gly binding site on normal colonic crypts has properties consistent with the gastrin/CCK-C receptor.
Collapse
Affiliation(s)
- Y Karelina
- University Department of Surgery, Austin Hospital, Austin and Repatriation Medical Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
49
|
Schweiger M, Erhard MH, Amselgruber WM. Cell-specific localization of the cholecystokininA receptor in the porcine pancreas. Anat Histol Embryol 2000; 29:357-61. [PMID: 11199480 DOI: 10.1046/j.1439-0264.2000.00286.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholecystokinin (CCK) produced in the mucosa of the upper small intestine exerts several biological functions. Its secretion in physiological amounts is modulated by the interaction of extracellular regulators and by binding to intracellular receptors of the target cells. The relative affinity of CCK to its receptor has been characterized in various biological and pharmacological studies and it is now well established that CCK has a higher affinity to the CCKA than to the CCKB receptor. Furthermore CCK influences the secretion of pancreatic enzymes in several species but very little is known about the relationship between CCK and the islet hormone-producing cells in the pig pancreas. The localization of this receptor at the cellular level showed conflicting results in animal studies and has not been described in pigs. The aim of the present study was to characterize the precise cellular location of the CCKA receptor in the porcine pancreas. Polyclonal antiserum was raised against the N-terminal epitope of the CCKA receptor molecule and used for localization studies. Using immunohistochemistry on methanol/acetic acid-fixed, paraffin-embedded pancreas, the CCKA receptor could successfully be localized in islet cells. Parallel staining of serial sections with antibodies directed against insulin and glucagon revealed colocalization with glucagon in alpha cells. No immunoreaction was found in the exocrine pancreas. Our results support the concept that in the porcine species the stimulation of the exocrine pancreas is mediated by the CCKB rather than the CCKA receptor, as it is known for the rat species.
Collapse
Affiliation(s)
- M Schweiger
- Institute of Anatomy and Physiology, University of Hohenheim, Fruwirthstr. 35, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
50
|
Crespi F, Corsi M, Reggiani A, Ratti E, Gaviraghi G. Involvement of cholecystokinin within craving for cocaine: role of cholecystokinin receptor ligands. Expert Opin Investig Drugs 2000; 9:2249-58. [PMID: 11060804 DOI: 10.1517/13543784.9.10.2249] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the brain, cholecystokinin (CCK) has been described to act as a central neurotransmitter or neuromodulator involved in functions such as food consumption, stress and anxiety. Recently, the CCK system has been involved in drug dependence phenomena and proposed to be correlated to a putative state of 'drug preferring' phenotype within free choice tests. CCK exerts its action in the CNS through at least two different G-protein coupled high affinity receptors, CCK1 and CCK2. Various selective CCK receptor agonists and antagonists have been synthesised. In particular, L-364,718 has been demonstrated to be a potent and selective CCK1 receptor antagonist, whereas L-365,260 is a potent and selective CCK2 receptor antagonist. More recently, GV150013 has been reported to be a highly selective CCK2 receptor antagonist. This paper reviews the putative role of the CCK system within drug dependence phenomena. In particular, it analyses the relationship between central CCK activity and the exhibition of spontaneous preference for drugs of abuse, such as cocaine or alcohol. The potential therapeutic role for CCK receptor antagonists is also discussed.
Collapse
Affiliation(s)
- F Crespi
- Department of Biology, Glaxo Wellcome SpA, Medicines Research Centre, via Fleming 4, 37100 Verona, Italy.
| | | | | | | | | |
Collapse
|