1
|
Vanthienen W, Fernández-García J, Baietti MF, Claeys E, Van Leemputte F, Nguyen L, Goossens V, Deparis Q, Broekaert D, Vlayen S, Audenaert D, Delforge M, D'Amuri A, Van Zeebroeck G, Leucci E, Fendt SM, Thevelein JM. The novel family of Warbicin ® compounds inhibits glucose uptake both in yeast and human cells and restrains cancer cell proliferation. Front Oncol 2024; 14:1411983. [PMID: 39239276 PMCID: PMC11374660 DOI: 10.3389/fonc.2024.1411983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast tps1Δ mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast tps1Δ strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism. This is based on the assumption that the overactive glucose catabolism of the tps1Δ strain might have a similar molecular cause as the Warburg effect in cancer cells. We have isolated Warbicin ® A as a compound restoring growth on glucose of the yeast tps1Δ mutant, showed that it inhibits the proliferation of cancer cells and isolated structural analogs by screening directly for cancer cell inhibition. The Warbicin ® compounds are the first drugs that inhibit glucose uptake by both yeast Hxt and mammalian GLUT carriers. Specific concentrations did not evoke any major toxicity in mice but increase the amount of adipose tissue likely due to reduced systemic glucose uptake. Surprisingly, Warbicin ® A inhibition of yeast sugar uptake depends on sugar phosphorylation, suggesting transport-associated phosphorylation as a target. In vivo and in vitro evidence confirms physical interaction between yeast Hxt7 and hexokinase. We suggest that reversible transport-associated phosphorylation by hexokinase controls the rate of glucose uptake through hydrolysis of the inhibitory ATP molecule in the cytosolic domain of glucose carriers and that in yeast tps1Δ cells and cancer cells reversibility is compromised, causing constitutively hyperactive glucose uptake and phosphorylation. Based on their chemical structure and properties, we suggest that Warbicin ® compounds replace the inhibitory ATP molecule in the cytosolic domain of the glucose carriers, preventing hexokinase to cause hyperactive glucose uptake and catabolism.
Collapse
Affiliation(s)
- Ward Vanthienen
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Juan Fernández-García
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Maria Francesca Baietti
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Elisa Claeys
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Frederik Van Leemputte
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Long Nguyen
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Quinten Deparis
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Dorien Broekaert
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sophie Vlayen
- LKI Leuven Cancer Institute Leuven, KU Leuven, Leuven, Belgium
| | - Dominique Audenaert
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Michel Delforge
- LKI Leuven Cancer Institute Leuven, KU Leuven, Leuven, Belgium
| | | | - Griet Van Zeebroeck
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Eleonora Leucci
- TRACE PDX Platform, Laboratory of RNA Cancer Biology, LKI Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Johan M Thevelein
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- NovelYeast bv, Bio-Incubator, BIO4, Leuven-Heverlee, Belgium
| |
Collapse
|
2
|
Sokolov SS, Smirnova EA, Rokitskaya TI, Severin FF. The Imidazolium Ionic Liquids Toxicity is Due to Their Effect on the Plasma Membrane. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:451-461. [PMID: 38648765 DOI: 10.1134/s0006297924030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 04/25/2024]
Abstract
Ionic liquids (ILs) are organic salts with a low melting point. This is due to the fact that their alkyl side chains, which are covalently connected to the ion, hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs do have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of toxicity of imidazolium ILs is not in the cytoplasm. Thus, it can be assumed that the disruption of the barrier properties of the plasma membrane is the main reason for the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Apparently, a slight disruption of the plasma membrane caused by ILs can, in some cases, be beneficial for the cell.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Shi H, Ruan L, Chen Z, Liao Y, Wu W, Liu L, Xu X. Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi. BMC Genomics 2023; 24:175. [PMID: 37020304 PMCID: PMC10077716 DOI: 10.1186/s12864-023-09267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Lamellibrachia luymesi dominates cold sulfide-hydrocarbon seeps and is known for its ability to consume bacteria for energy. The symbiotic relationship between tubeworms and bacteria with particular adaptations to chemosynthetic environments has received attention. However, metabolic studies have primarily focused on the mechanisms and pathways of the bacterial symbionts, while studies on the animal hosts are limited. RESULTS Here, we sequenced the transcriptome of L. luymesi and generated a transcriptomic database containing 79,464 transcript sequences. Based on GO and KEGG annotations, we identified transcripts related to sulfur metabolism, sterol biosynthesis, trehalose synthesis, and hydrolysis. Our in-depth analysis identified sulfation pathways in L. luymesi, and sulfate activation might be an important detoxification pathway for promoting sulfur cycling, reducing byproducts of sulfide metabolism, and converting sulfur compounds to sulfur-containing organics, which are essential for symbiotic survival. Moreover, sulfide can serve directly as a sulfur source for cysteine synthesis in L. luymesi. The existence of two pathways for cysteine synthesis might ensure its participation in the formation of proteins, heavy metal detoxification, and the sulfide-binding function of haemoglobin. Furthermore, our data suggested that cold-seep tubeworm is capable of de novo sterol biosynthesis, as well as incorporation and transformation of cycloartenol and lanosterol into unconventional sterols, and the critical enzyme involved in this process might have properties similar to those in the enzymes from plants or fungi. Finally, trehalose synthesis in L. luymesi occurs via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. The TPP gene has not been identified, whereas the TPS gene encodes a protein harbouring conserved TPS/OtsA and TPP/OtsB domains. The presence of multiple trehalases that catalyse trehalose hydrolysis could indicate the different roles of trehalase in cold-seep tubeworms. CONCLUSIONS We elucidated several molecular pathways of sulfate activation, cysteine and cholesterol synthesis, and trehalose metabolism. Contrary to the previous analysis, two pathways for cysteine synthesis and the cycloartenol-C-24-methyltransferase gene were identified in animals for the first time. The present study provides new insights into particular adaptations to chemosynthetic environments in L. luymesi and can serve as the basis for future molecular studies on host-symbiont interactions and biological evolution.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
- College of Marine Biology, Xiamen ocean vocational college, 361100, Xiamen, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China.
| | - Zimeng Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Yifei Liao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 362200, People's Republic of China
| | - Wenhao Wu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| |
Collapse
|
4
|
Chen BC, Lin HY. Deletion of NTH1 and HSP12 increases the freeze–thaw resistance of baker’s yeast in bread dough. Microb Cell Fact 2022; 21:149. [PMID: 35879798 PMCID: PMC9310457 DOI: 10.1186/s12934-022-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background The intracellular molecule trehalose in Saccharomyces cerevisiae may have a major protective function under extreme environmental conditions. NTH1 is one gene which expresses trehalase to degrade trehalose. Small heat shock protein 12 (HSP12 expressed) plays a role in protecting membranes and enhancing freezing stress tolerance. Results An optimized S. cerevisiae CRISPR-Cpf1 genome-editing system was constructed. Multiplex genome editing using a single crRNA array was shown to be functional. NTH1 or/and HSP12 knockout in S. cerevisiae enhanced the freezing stress tolerance and improved the leavening ability after freezing and thawing. Conclusions Deleting NTH1 in the combination with deleting HSP12 would strengthen the freezing tolerance and protect the cell viability from high rates of death in longer-term freezing. It provides valuable insights for breeding novel S. cerevisiae strains for the baking industry through a more precise, speedy, and economic genome-editing system.
Collapse
|
5
|
Chen A, Smith JR, Tapia H, Gibney PA. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac196. [PMID: 35929793 PMCID: PMC9635654 DOI: 10.1093/g3journal/jkac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the yeast Saccharomyces cerevisiae, trehalose-6-phospahte synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2) are the main proteins catalyzing intracellular trehalose production. In addition to Tps1 and Tps2, 2 putative regulatory proteins with less clearly defined roles also appear to be involved with trehalose production, Tps3 and Tsl1. While this pathway has been extensively studied in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. Here we deleted the TPS1, TPS2, TPS3, and TSL1 genes in 4 wild strains and 1 laboratory strain for comparison. Although some tested phenotypes were not shared between all strains, deletion of TPS1 abolished intracellular trehalose, caused inability to grow on fermentable carbon sources and resulted in severe sporulation deficiency for all 5 strains. After examining tps1 mutant strains expressing catalytically inactive variants of Tps1, our results indicate that Tps1, independent of trehalose production, is a key component for yeast survival in response to heat stress, for regulating sporulation, and growth on fermentable sugars. All tps2Δ mutants exhibited growth impairment on nonfermentable carbon sources, whereas variations were observed in trehalose synthesis, thermosensitivity and sporulation efficiency. tps3Δ and tsl1Δ mutants exhibited mild or no phenotypic disparity from their isogenic wild type although double mutants tps3Δ tsl1Δ decreased the amount of intracellular trehalose production in all 5 strains by 17-45%. Altogether, we evaluated, confirmed, and expanded the phenotypic characteristics associated trehalose biosynthesis mutants. We also identified natural phenotypic variants in multiple strains that could be used to genetically dissect the basis of these traits and then develop mechanistic models connecting trehalose metabolism to diverse cellular processes.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy R Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Hugo Tapia
- Biology Program, California State University—Channel Islands, Camarillo, CA 93012, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
The Different Metabolic Responses of Resistant and Susceptible Wheats to Fusarium graminearum Inoculation. Metabolites 2022; 12:metabo12080727. [PMID: 36005599 PMCID: PMC9413380 DOI: 10.3390/metabo12080727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum (Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins produced by Fg are harmful to the environment and humans. In our previous study, we obtained two mutants TPS1− and TPS2−. Neither of these mutants could synthesize trehalose, and they produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O, the TPS− mutants and wild type (WT) using NMR combined with multivariate analysis. More than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids, choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear metabolic differences between inoculation with mutants (TPS1−/TPS2−) and with ddH2O/WT. For the susceptible wheat, there were obvious metabolic differences between inoculation with mutant (TPS1−/TPS2−) and inoculation with ddH2O; however, there were no significant metabolic differences between inoculation with TPS− mutants and with WT. Specifically, compared with ddH2O, resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid in response to TPS− mutants; however, susceptible wheat did not. Shikimate-mediated secondary metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat remains to be further studied.
Collapse
|
7
|
Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast tps1Δ Mutant. mBio 2020; 11:mBio.02199-20. [PMID: 33109759 PMCID: PMC7593968 DOI: 10.1128/mbio.02199-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose catabolism is the backbone of metabolism in most organisms. In spite of numerous studies and extensive knowledge, major controls on glycolysis and its connections to the other metabolic pathways remain to be discovered. A striking example is provided by the extreme glucose sensitivity of the yeast tps1Δ mutant, which undergoes apoptosis in the presence of just a few millimolar glucose. Previous work has shown that the conspicuous glucose-induced hyperaccumulation of the glycolytic metabolite fructose-1,6-bisphosphate (Fru1,6bisP) in tps1Δ cells triggers apoptosis through activation of the Ras-cAMP-protein kinase A (PKA) signaling pathway. However, the molecular cause of this Fru1,6bisP hyperaccumulation has remained unclear. We now provide evidence that the persistent drop in intracellular pH upon glucose addition to tps1Δ cells likely compromises the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a major glycolytic enzyme downstream of Fru1,6bisP, due to its unusually high pH optimum. Our work highlights the potential importance of intracellular pH fluctuations for control of major metabolic pathways. Whereas the yeast Saccharomyces cerevisiae shows great preference for glucose as a carbon source, a deletion mutant in trehalose-6-phosphate synthase, tps1Δ, is highly sensitive to even a few millimolar glucose, which triggers apoptosis and cell death. Glucose addition to tps1Δ cells causes deregulation of glycolysis with hyperaccumulation of metabolites upstream and depletion downstream of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The apparent metabolic barrier at the level of GAPDH has been difficult to explain. We show that GAPDH isozyme deletion, especially Tdh3, further aggravates glucose sensitivity and metabolic deregulation of tps1Δ cells, but overexpression does not rescue glucose sensitivity. GAPDH has an unusually high pH optimum of 8.0 to 8.5, which is not altered by tps1Δ. Whereas glucose causes short, transient intracellular acidification in wild-type cells, in tps1Δ cells, it causes permanent intracellular acidification. The hxk2Δ and snf1Δ suppressors of tps1Δ restore the transient acidification. These results suggest that GAPDH activity in the tps1Δ mutant may be compromised by the persistently low intracellular pH. Addition of NH4Cl together with glucose at high extracellular pH to tps1Δ cells abolishes the pH drop and reduces glucose-6-phosphate (Glu6P) and fructose-1,6-bisphosphate (Fru1,6bisP) hyperaccumulation. It also reduces the glucose uptake rate, but a similar reduction in glucose uptake rate in a tps1Δ hxt2,4,5,6,7Δ strain does not prevent glucose sensitivity and Fru1,6bisP hyperaccumulation. Hence, our results suggest that the glucose-induced intracellular acidification in tps1Δ cells may explain, at least in part, the apparent glycolytic bottleneck at GAPDH but does not appear to fully explain the extreme glucose sensitivity of the tps1Δ mutant.
Collapse
|
8
|
Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow. Biomolecules 2020; 10:biom10091345. [PMID: 32962296 PMCID: PMC7563754 DOI: 10.3390/biom10091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.
Collapse
|
9
|
Gibney PA, Chen A, Schieler A, Chen JC, Xu Y, Hendrickson DG, McIsaac RS, Rabinowitz JD, Botstein D. A tps1Δ persister-like state in Saccharomyces cerevisiae is regulated by MKT1. PLoS One 2020; 15:e0233779. [PMID: 32470059 PMCID: PMC7259636 DOI: 10.1371/journal.pone.0233779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.
Collapse
Affiliation(s)
- Patrick A. Gibney
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Ariel Schieler
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan C. Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Yifan Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David G. Hendrickson
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - R. Scott McIsaac
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| |
Collapse
|
10
|
Liu C, Chen F, Zhang J, Liu L, Lei H, Li H, Wang Y, Liao YC, Tang H. Metabolic Changes of Fusarium graminearum Induced by TPS Gene Deletion. J Proteome Res 2019; 18:3317-3327. [PMID: 31241341 DOI: 10.1021/acs.jproteome.9b00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences , Hubei University , Wuhan 430062 , P. R. China.,Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Jingtao Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Laixing Liu
- School of Management , Wuhan Institute of Technology , Wuhan 430205 , P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Heping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,Singapore Phenome Centre, Lee Kong Chian School of Medicine, School of Biological Sciences , Nanyang Technological University , Nanyang , Singapore
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory in Human Phenome Institute, Collaborative Innovation Center for Genetics and Development , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
11
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
12
|
Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity. mBio 2017; 8:mBio.00056-17. [PMID: 28442603 PMCID: PMC5405227 DOI: 10.1128/mbio.00056-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions. Human fungal infections are increasing globally due to HIV infections and increased use of immunosuppressive therapies for many diseases. Therefore, new antifungal drugs with reduced side effects and increased efficacy are needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic fungi and is absent in humans. Components of the trehalose biosynthesis pathway are important for the virulence of human-pathogenic fungi, including Aspergillus fumigatus. Consequently, it has been proposed that components of this pathway are potential targets for antifungal drug development. However, how trehalose biosynthesis influences the fungus-host interaction remains enigmatic. One phenotype associated with fungal trehalose biosynthesis mutants that remains enigmatic is cell wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall homeostasis through modulation of chitin synthase localization and activity. As the cell wall is a current and promising therapeutic target for fungal infections, understanding the role of trehalose biosynthesis in cell wall homeostasis and virulence is expected to help define new therapeutic opportunities.
Collapse
|
13
|
Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol Mol Biol Rev 2017; 81:81/2/e00053-16. [PMID: 28298477 DOI: 10.1128/mmbr.00053-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target.
Collapse
|
14
|
Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 2017; 10:10/469/eaag2435. [PMID: 28270554 DOI: 10.1126/scisignal.aag2435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Saccharomyces cerevisiae reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the Scerevisiae phosphoproteome. In addition, we analyzed how deletion of RCK2, which encodes a known effector protein kinase target of Hog1, modulated osmotic stress-induced phosphorylation. Our results not only provide an overview of the diversity of cellular functions that are directly and indirectly affected by the activity of the HOG pathway but also enabled an assessment of the Hog1-independent events that occur under osmotic stress conditions. We extended the number of putative Hog1 direct targets by analyzing the modulation of motifs consisting of serine or threonine followed by a proline (S/T-P motif) and subsequently validated these with an in vivo interaction assay. Rck2 appears to act as a central hub for many Hog1-mediated secondary phosphorylation events. This study clarifies many of the direct and indirect effects of HOG signaling and its stress-adaptive functions.
Collapse
Affiliation(s)
- Natalie Romanov
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - David Maria Hollenstein
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marion Janschitz
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Gustav Ammerer
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
15
|
Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:3637-3651. [DOI: 10.1007/s00253-017-8155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
16
|
Yang M, Zhao L, Shen Q, Xie G, Wang S, Tang B. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2017; 73:206-216. [PMID: 27060284 DOI: 10.1002/ps.4287] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/03/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND RNA interference combined with digital gene expression (DGE) analysis can be used to study gene function. Trehalose-6-phosphate synthase (TPS) plays a key role in the synthesis of trehalose and insect development. RESULTS DGE analysis revealed that the expression of nine or four chitinase genes was reduced significantly 48 h after NlTPS1 and NlTPS2 knockdown by RNAi, respectively. Additionally, abnormal phenotypes were noted, and approximately 30% of insects died. HK and G6PI2 expression decreased significantly whereas GFAT, GNPNA and UAP expression increased significantly 72 h after NlTPS1 and NlTPS2 knockdown. PGM1 expression decreased significantly after TPS2 knockdown, whereas PGM2 expression increased significantly and the expression of three CHS genes decreased 48 h after TPS1 knockdown. The mRNA expression of all 12 chitin degradation genes decreased 48 h after NlTPS1 and NlTPS2 treatment, and Cht2, Cht3, Cht6, Cht7, Cht10 and ENGase levels remained significantly decreased up to 72 h after NlTPS1 and NlTPS2 knockdown. CONCLUSIONS These results demonstrate that silencing of TPS genes can lead to increased moulting deformities and mortality rates owing to the misregulation of genes involved in chitin metabolism, and TPS genes are potential pest control targets in the future. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Sun X, Zhang CY, Wu MY, Fan ZH, Liu SN, Zhu WB, Xiao DG. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Microb Cell Fact 2016; 15:54. [PMID: 27039899 PMCID: PMC4819290 DOI: 10.1186/s12934-016-0453-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trehalose is related to several types of stress responses, especially freezing response in baker's yeast (Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better tolerate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry. RESULTS The strain overexpressing MAL62 gene showed increased trehalose content and cell viability after prefermention-freezing and long-term frozen. Deletion of NTH1 in combination of MAL62 overexpression further strengthens freezing tolerance and improves the leavening ability after freezing-thaw stress. CONCLUSIONS The mutants of the industrial baker's yeast with enhanced freezing tolerance and leavening ability in lean dough were developed by genetic engineering. These strains had excellent potential industrial applications.
Collapse
Affiliation(s)
- Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ming-Yue Wu
- Diagreat Biotechnologies., Ltd, Beijing, 101111, People's Republic of China
| | - Zhi-Hua Fan
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Shan-Na Liu
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Wen-Bi Zhu
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
18
|
Kanprasoet W, Jensen LT, Sriprach S, Thitiananpakorn K, Rattanapornsompong K, Jensen AN. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. J Genet Genomics 2015; 42:671-84. [DOI: 10.1016/j.jgg.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
19
|
Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R. Revisiting yeast trehalose metabolism. Curr Genet 2014; 61:263-74. [DOI: 10.1007/s00294-014-0450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
|
20
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
21
|
Song XS, Li HP, Zhang JB, Song B, Huang T, Du XM, Gong AD, Liu YK, Feng YN, Agboola RS, Liao YC. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Fungal Genet Biol 2013; 63:24-41. [PMID: 24291007 DOI: 10.1016/j.fgb.2013.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) are required for trehalose biosynthesis in yeast and filamentous fungi, including Fusarium graminearum. Three null mutants Δtps1, Δtps2 and Δtps1-Δtps2, each carrying either a single deletion of TPS1 or TPS2 or a double deletion of TPS1-TPS2, were generated from a toxigenic F. graminearum strain and were not able to synthesize trehalose. In contrast to its reported function in yeasts and filamentous fungi, TPS1 appeared dispensable for development and virulence. However, deletion of TPS2 abolished sporulation and sexual reproduction; it also altered cell polarity and ultrastructure of the cell wall in association with reduced chitin biosynthesis. The cell polarity alteration was exhibited as reduced apical growth and increased lateral growth and branching with increased hyphal and cell wall widths. Moreover, the TPS2-deficient strain displayed abnormal septum development and nucleus distribution in its conidia and vegetative hyphae. The Δtps2 mutant also had 62% lower mycelial growth on potato dextrose agar and 99% lower virulence on wheat compared with the wild-type. The Δtps1, Δtps2 and Δtps1-Δtps2 mutants synthesized over 3.08-, 7.09- and 2.47-fold less mycotoxins, respectively, on rice culture compared with the wild-type. Comparative transcriptome analysis revealed that the Δtps1, Δtps2 and Δtps1-Δtps2 mutants had 486, 1885 and 146 genotype-specific genes, respectively, with significantly changed expression profiles compared with the wild-type. Further dissection of this pathway will provide new insights into regulation of fungal development, virulence and trichothecene biosynthesis.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bo Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao-Min Du
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - An-Dong Gong
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yi-Ke Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yan-Ni Feng
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rebecca S Agboola
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center of Plant Gene Research (Wuhan), Wuhan 430070, People's Republic of China.
| |
Collapse
|
22
|
The first prokaryotic trehalose synthase complex identified in the hyperthermophilic crenarchaeon Thermoproteus tenax. PLoS One 2013; 8:e61354. [PMID: 23626675 PMCID: PMC3634074 DOI: 10.1371/journal.pone.0061354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 12/29/2022] Open
Abstract
The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins.
Collapse
|
23
|
Boo SY, Wong CMVL, Rodrigues KF, Najimudin N, Murad AMA, Mahadi NM. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 2012. [DOI: 10.1007/s00300-012-1268-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Apweiler E, Sameith K, Margaritis T, Brabers N, van de Pasch L, Bakker LV, van Leenen D, Holstege FC, Kemmeren P. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genomics 2012; 13:239. [PMID: 22697265 PMCID: PMC3472246 DOI: 10.1186/1471-2164-13-239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/14/2012] [Indexed: 01/12/2023] Open
Abstract
Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.
Collapse
Affiliation(s)
- Eva Apweiler
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Levy SF, Ziv N, Siegal ML. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol 2012; 10:e1001325. [PMID: 22589700 PMCID: PMC3348152 DOI: 10.1371/journal.pbio.1001325] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
A new experimental approach reveals a bet-hedging strategy in unstressed, clonal yeast cells, whereby they adopt a range of growth states that correlate with expression of a trehalose-synthesis regulator and predict resistance to future stress. Genetically identical cells grown in the same culture display striking cell-to-cell heterogeneity in gene expression and other traits. A crucial challenge is to understand how much of this heterogeneity reflects the noise tolerance of a robust system and how much serves a biological function. In bacteria, stochastic gene expression results in cell-to-cell heterogeneity that might serve as a bet-hedging mechanism, allowing a few cells to survive through an antimicrobial treatment while others perish. Despite its clinical importance, the molecular mechanisms underlying bet hedging remain unclear. Here, we investigate the mechanisms of bet hedging in Saccharomyces cerevisiae using a new high-throughput microscopy assay that monitors variable protein expression, morphology, growth rate, and survival outcomes of tens of thousands of yeast microcolonies simultaneously. We find that clonal populations display broad distributions of growth rates and that slow growth predicts resistance to heat killing in a probabalistic manner. We identify several gene products that are likely to play a role in bet hedging and confirm that Tsl1, a trehalose-synthesis regulator, is an important component of this resistance. Tsl1 abundance correlates with growth rate and replicative age and predicts survival. Our results suggest that yeast bet hedging results from multiple epigenetic growth states determined by a combination of stochastic and deterministic factors. Genetically identical cells grown in the same environment can display heterogeneity in their morphology, behavior, and composition of their cellular components. In some microorganisms, such cellular heterogeneity can underlie a phenomenon known as bet hedging because it enables some cells to survive in harsh environments, hence increasing the overall population fitness when environmental shifts are unpredictable. Bet hedging is likely to be an important strategy by which microbes infect humans and evade antimicrobial treatments, yet little is known of how cellular heterogeneity contributes to microbial survival. Here, we study the mechanisms underlying bet hedging in yeast. We find that populations of genetically identical yeast contain a broad distribution of growth rates and that slow growth predicts resistance to heat killing in a graded fashion. We identify several gene products that are likely to play a role in this bet-hedging strategy and confirm that Tsl1, a regulator of the production of the disaccharide trehalose, is an important component of acute stress resistance. Finally, we find that old age in cells correlates with a Tsl1-abundant, stress-resistant cell state. Our results suggest that trehalose synthesis is part of a complex and multifactorial mechanism that underlies bet hedging in yeast.
Collapse
Affiliation(s)
- Sasha F. Levy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail: (SFL); (MLS)
| | - Naomi Ziv
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail: (SFL); (MLS)
| |
Collapse
|
26
|
Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H. Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 2012; 11:2397-408. [DOI: 10.1021/pr201134p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thiemo B. Schreiber
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nina Mäusbacher
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joanna Soroka
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Sebastian K. Wandinger
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Henrik Daub
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
27
|
|
28
|
Mitsumasu K, Kanamori Y, Fujita M, Iwata KI, Tanaka D, Kikuta S, Watanabe M, Cornette R, Okuda T, Kikawada T. Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS J 2010; 277:4215-28. [PMID: 20825482 PMCID: PMC3037560 DOI: 10.1111/j.1742-4658.2010.07811.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTpsα/β) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTpsα did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis.
Collapse
Affiliation(s)
- Kanako Mitsumasu
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: Physiological investigation and transcriptome analysis. Biotechnol J 2010; 5:1016-27. [DOI: 10.1002/biot.201000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Wang G, Zhao G, Feng Y, Xuan J, Sun J, Guo B, Jiang G, Weng M, Yao J, Wang B, Duan D, Liu T. Cloning and comparative studies of seaweed trehalose-6-phosphate synthase genes. Mar Drugs 2010; 8:2065-79. [PMID: 20714424 PMCID: PMC2920543 DOI: 10.3390/md8072065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/04/2010] [Accepted: 06/30/2010] [Indexed: 11/25/2022] Open
Abstract
The full-length cDNA sequence (3219 base pairs) of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS) was isolated by RACE-PCR and deposited in GenBank (NCBI) with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5), whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB). Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI). All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94%) and in amino acid composition (>96%). Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes.
Collapse
Affiliation(s)
- Guoliang Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Puttikamonkul S, Willger SD, Grahl N, Perfect JR, Movahed N, Bothner B, Park S, Paderu P, Perlin DS, Cramer RA. Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol Microbiol 2010; 77:891-911. [PMID: 20545865 DOI: 10.1111/j.1365-2958.2010.07254.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose 6-phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature or increase in glucose levels (> 4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose 6-phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence.
Collapse
Affiliation(s)
- Srisombat Puttikamonkul
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Sven D Willger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Nora Grahl
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - John R Perfect
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Navid Movahed
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Brian Bothner
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Steven Park
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Padmaja Paderu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - David S Perlin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Robert A Cramer
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA.Department of Medicine, Duke University Medical Center, Durham, NC 27713, USA.Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA.Public Health Research Institute, International Center for Public Health, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| |
Collapse
|
32
|
Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 2010; 78:3007-18. [PMID: 20439478 DOI: 10.1128/iai.00813-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The DeltatpsAB double mutant had delayed germination at 37 degrees C, suggesting a developmental defect. At 50 degrees C, the majority of DeltatpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. DeltatpsAB spores were also susceptible to oxidative stress. Surprisingly, the DeltatpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.
Collapse
|
33
|
Mahmud SA, Hirasawa T, Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 2009; 109:262-6. [PMID: 20159575 DOI: 10.1016/j.jbiosc.2009.08.500] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Trehalose is believed to play an important role in stress tolerance in the yeast Saccharomyces cerevisiae. In this research, the responses to various environmental stresses, such as high ethanol concentration, heat, oxidative, and freezing stresses, were investigated in a strain with deletion of the NTH1, NTH2, and ATH1 genes encoding trehalases that are involved in trehalose degradation and the triple deletion strains overexpressing TPS1 or TPS2, both of which encode trehalose biosynthesis enzymes in S. cerevisiae. The contents of trehalose constitutively accumulated in the TPS1- and TPS2-overexpressing triple deletion strains were higher than that in the original triple deletion strain. High trehalose accumulation and growth activity were observed in the TPS2-overexpressing triple deletion strain after ethanol stress induction. The same was also observed in the triple deletion and the TPS1- and TPS2-overexpressing triple deletion strains after heat stress induction. In case of freezing stress, all the recombinant strains with high constitutive trehalose content showed high tolerance. However, in case of oxidative stress, trehalose accumulation could not make the yeast cells tolerant. Our results indicated that high trehalose accumulation can make yeast cells resistant to multiple stresses, but the importance of this accumulation before or after stress induction is varied depending on the type of stress.
Collapse
Affiliation(s)
- Siraje Arif Mahmud
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
34
|
Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 2009; 75:6876-85. [PMID: 19734328 DOI: 10.1128/aem.01464-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e., growth limitation by nutrients other than glucose) are often implicated in high-level accumulation of these storage carbohydrates. The present study investigates how the identity of the growth-limiting nutrient affects accumulation of storage carbohydrates in cultures grown at a fixed specific growth rate. In anaerobic chemostat cultures (dilution rate, 0.10 h(-1)) of S. cerevisiae, the identity of the growth-limiting nutrient (glucose, ammonia, sulfate, phosphate, or zinc) strongly affected storage carbohydrate accumulation. The glycogen contents of the biomass from glucose- and ammonia-limited cultures were 10- to 14-fold higher than those of the biomass from cultures grown under the other three glucose-excess regimens. Trehalose levels were specifically higher under nitrogen-limited conditions. These results demonstrate that storage carbohydrate accumulation in nutrient-limited cultures of S. cerevisiae is not a generic response to excess glucose but instead is strongly dependent on the identity of the growth-limiting nutrient. While transcriptome analysis of wild-type and msn2Delta msn4Delta strains confirmed that transcriptional upregulation of glycogen and trehalose biosynthesis genes is mediated by Msn2p/Msn4p, transcriptional regulation could not quantitatively account for the drastic changes in storage carbohydrate accumulation. The results of assays of glycogen synthase and glycogen phosphorylase activities supported involvement of posttranscriptional regulation. Consistent with the high glycogen levels in ammonia-limited cultures, the ratio of glycogen synthase to glycogen phosphorylase in these cultures was up to eightfold higher than the ratio in the other glucose-excess cultures.
Collapse
|
35
|
Noubhani A, Bunoust O, Bonini BM, Thevelein JM, Devin A, Rigoulet M. The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae. J Biol Chem 2009; 284:27229-34. [PMID: 19620241 DOI: 10.1074/jbc.m109.029454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, trehalose is synthesized by a multimeric enzymatic complex: TPS1 encodes trehalose 6-phosphate synthase, which belongs to a complex that is composed of at least three other subunits, including trehalose 6-phosphate phosphatase Tps2 and the redundant regulatory subunits Tps3 and Tsl1. The product of the TPS1 gene plays an essential role in the control of the glycolytic pathway by restricting the influx of glucose into glycolysis. In this paper, we investigated whether the trehalose synthesis pathway could be involved in the control of the other energy-generating pathway: oxidative phosphorylation. We show that the different mutants of the trehalose synthesis pathway (tps1Delta, tps2Delta, and tps1,2Delta) exhibit modulation in the amount of respiratory chains, in terms of cytochrome content and maximal respiratory activity. Furthermore, these variations in mitochondrial enzymatic content are positively linked to the intracellular concentration in cAMP that is modulated by Tps1p through hexokinase2. This is the first time that a pathway involved in sugar storage, i.e. trehalose, is shown to regulate the mitochondrial enzymatic content.
Collapse
Affiliation(s)
- Abdelmajid Noubhani
- CNRS, UMR5095 Institut de Biochimie et Génétique Cellulaire, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, Gao P, Chai Y, Jiang Y. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol 2008; 46:183-9. [PMID: 19049890 DOI: 10.1016/j.fgb.2008.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 01/13/2023]
Abstract
Candida albicans, an opportunistic pathogen, can undergo programmed cell death upon various stimuli, including oxidative stress. In this study, we showed that deletion of CaMCA1, a homologue of Saccharomyces cerevisiae metacaspase YCA1, could both attenuated oxidative stress-induced cell death and caspase activation. Compared to wild-type strain, Camca1Delta mutant showed higher accumulation of trehalose and transcription of the genes related to trehalose biosynthesis (TPS2 and TPS3) under the condition of oxidative stress. Furthermore, lower intracellular ATP concentration and mitochondrial membrane potential, less endogenous reactive oxygen species (ROS) generation were observed in Camca1Delta mutant. Our results suggest that CaMCA1 might mediate the sensitiveness to oxidative stress by affecting energy metabolism in C. albicans.
Collapse
Affiliation(s)
- Yingying Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cao Y, Wang Y, Dai B, Wang B, Zhang H, Zhu Z, Xu Y, Cao Y, Jiang Y, Zhang G. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol Pharm Bull 2008; 31:421-5. [PMID: 18310903 DOI: 10.1248/bpb.31.421] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trehalose, a nonreducing disaccharide which accumulates dramatically during stationary phase or under oxidative stress, is well known as a stress protectant in several organisms. Here we investigated the putative correlation of trehalose with Cap1p, which is a basic region-leucine zipper (bZip) transcription factor participating in oxidative stress tolerance in Candida albicans. HPLC-MS analysis showed that trehalose did not accumulate in the cap1/cap1 mutant during stationary phase. When the mutant was exposed to high concentration of H2O2, trehalose accumulation was still not induced. Under both of the conditions above, the cap1/cap1 mutant showed high sensitivity to H2O2, and the cell viability was rather low. Furthermore, when exogenous trehalose was added to the culture of the cap1/cap1 mutant, the tolerance of this strain to oxidative stress was increased. Real time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcript levels of TPS2 and TPS3 were increased in the wild type strain compared to that in cap1/cap1 mutant when exposed to H2O2. These results indicated that trehalose accumulation is important to the oxidative stress tolerance mediated by Cap1p in C. albicans.
Collapse
Affiliation(s)
- Yingying Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shima J, Ando A, Takagi H. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening ofSaccharomyces cerevisiae deletion strains. Yeast 2008; 25:179-90. [DOI: 10.1002/yea.1577] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
39
|
Chaudhuri P, Basu A, Ghosh AK. Aggregation dependent enhancement of trehalose-6-phosphate synthase activity in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2007; 1780:289-97. [PMID: 18166160 DOI: 10.1016/j.bbagen.2007.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/19/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Trehalose-6-phosphate synthase (TPS) is one of the key subunits of the trehalose synthase complex, responsible for synthesis of trehalose in Saccharomyces cerevisiae. Different laboratories have tried to purify TPS, but have been unable to separate it from the complex. During the present study, active TPS has been isolated from the trehalose synthase complex as a free 59 kDa protein. A 15.8 [corrected] fold purification was achieved with over 84% recovery of active TPS. N-terminal sequence confirmed the 59 kDa protein to be TPS. It was revealed to be a highly hydrophobic protein by amino acid analysis data. Activity of TPS was identified to be governed by association-dissociation of protein components. TPS activity of the isolated enzyme was highly unstable due to dissociation of the protein from the complex. Aggregation of active molecules was also seen to enhance as well as stabilize enzyme activity. This aggregation was concentration dependent and activity was seen to be enhanced by increasing the number of active molecules and fell with dilution. The association of the active complex was also found to be governed by ionic interactions.
Collapse
Affiliation(s)
- Paramita Chaudhuri
- Biotechnology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
40
|
Water structure in vitro and within Saccharomyces cerevisiae yeast cells under conditions of heat shock. Biochim Biophys Acta Gen Subj 2007; 1780:41-50. [PMID: 17961925 DOI: 10.1016/j.bbagen.2007.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/02/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
The OH stretch mode from water and organic hydroxyl groups have strong infrared absorption, the position of the band going to lower frequency with increased H-bonding. This band was used to study water in trehalose and glycerol solutions and in genetically modified yeast cells containing varying amounts of trehalose. Concentration-dependent changes in water structure induced by trehalose and glycerol in solution were detected, consistent with an increase of lower-energy H-bonds and interactions at the expense of higher-energy interactions. This result suggests that these molecules disrupt the water H-bond network in such a way as to strengthen molecule-water interactions while perturbing water-water interactions. The molecule-induced changes in the water H-bond network seen in solution do not translate to observable differences in yeast cells that are trehalose-deficient and trehalose-rich. Although comparison of yeast with low and high trehalose showed no observable effect on intracellular water structure, the structure of water in cells is different from that in bulk water. Cellular water exhibits a larger preference for lower-energy H-bonds or interactions over higher-energy interactions relative to that shown in bulk water. This effect is likely the result of the high concentration of biological molecules present in the cell. The ability of water to interact directly with polar groups on biological molecules may cause the preference seen for lower-energy interactions.
Collapse
|
41
|
Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. PLANT MOLECULAR BIOLOGY 2007; 64:371-86. [PMID: 17453154 DOI: 10.1007/s11103-007-9159-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 02/28/2007] [Indexed: 05/04/2023]
Abstract
Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible Arabidopsis AtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.
Collapse
Affiliation(s)
- Sazzad Karim
- School of Life Sciences, University of Skövde, Box 408, 541 28, Skövde, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ocón A, Hampp R, Requena N. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2007; 174:879-891. [PMID: 17504469 DOI: 10.1111/j.1469-8137.2007.02048.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Trehalose is a common reserve carbohydrate in fungi, whose role has been recently extended to other cellular functions, such as stress tolerance, glycolysis control, sporulation and infectivity of some pathogenic strains. To gain some insight into the role of trehalose during abiotic stress in arbuscular mycorrhizal (AM) fungi, we assessed trehalose content as well as transcriptional regulation and enzyme activity of neutral trehalase and trehalose-6-phosphate phosphatase in Glomus intraradices in response to heat shock, chemical or osmotic stress. Prolonged or intensive exposure to heat or chemical stress, but not osmotic stress, caused an increase of trehalose in the cell. We found this associated with transient up-regulation of the trehalose-6-P phosphatase (GiTPS2) transcript that coincided with moderate increases in enzyme activity. By contrast, there were no changes in neutral trehalase (GiNTH1) RNA accumulation in response to stress treatments, while they promoted, in most cases, an increase in activity. After stress had ceased, trehalose returned to basal concentrations, pointing to a role of neutral trehalase activity in heat shock recovery. A yeast complementation assay confirmed the role of neutral trehalase in thermotolerance. Taken together, these results indicate that trehalose could play a role in AM fungi during the recovery from certain stresses such as heat shock and chemical treatment.
Collapse
Affiliation(s)
- Aurora Ocón
- Physiological Ecology of Plants Department, Botanical Institute, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Rüdiger Hampp
- Physiological Ecology of Plants Department, Botanical Institute, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Natalia Requena
- Physiological Ecology of Plants Department, Botanical Institute, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
- Present address: University of Karlsruhe, Institute for Applied Biosciences, Fungal-Plant Interactions Group, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| |
Collapse
|
43
|
Conlin LK, Nelson HCM. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol 2006; 27:1505-15. [PMID: 17145780 PMCID: PMC1800720 DOI: 10.1128/mcb.01158-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the intracellular concentration of trehalose increases rapidly in response to many environmental stresses, including heat shock. These high trehalose levels have been correlated with tolerance to adverse conditions and led to the model that trehalose functions as a chemical cochaperone. Here, we show that the transcriptional activity of Hsf1 during the heat shock response depends on trehalose. Strains with low levels of trehalose have a diminished transcriptional response to heat shock, while strains with high levels of trehalose have an enhanced transcriptional response to heat shock. The enhanced transcriptional response does not require the other heat-responsive transcription factors Msn2/4 but is dependent upon heat and Hsf1. In addition, the phosphorylation levels of Hsf1 correlate with both transcriptional activity and the presence of trehalose. These in vivo results support a new role for trehalose, where trehalose directly modifies the dynamic range of Hsf1 activity and therefore influences heat shock protein mRNA levels in response to stress.
Collapse
Affiliation(s)
- Laura K Conlin
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, 813A Stellar-Chance, 422 Curie Blvd., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
44
|
Márquez-Escalante JA, Figueroa-Soto CG, Valenzuela-Soto EM. Isolation and partial characterization of trehalose 6-phosphate synthase aggregates from Selaginella lepidophylla plants. Biochimie 2006; 88:1505-10. [PMID: 16828951 DOI: 10.1016/j.biochi.2006.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 06/01/2006] [Indexed: 11/15/2022]
Abstract
Trehalose 6-phosphate synthase was purified from Selaginella lepidophylla plants and three aggregates of the enzyme were found by molecular exclusion chromatography, ion exchange chromatography and electrophoresis. Molecular exclusion chromatography showed four activity peaks with molecular weights of 624, 434, 224 and 115 kDa. Ion exchange chromatography allowed three fractions to be separated with TPS activity which eluted at 0.35, 0.7 and 1 M KCl. Native PAGE of each pool had three protein bands with apparent M(r) 660, 440 and 200 kDa. Western blot results showed that anti-TPS antibody interacted with 115 and 67 kDa polypeptides; these polypeptides share peptide sequences as indicated by internal sequence data. The effects of pH and temperature on enzyme stability and activity were studied. For fractions eluted at 0.35 and 1.0 M KCl, the optimum pH is 5.5, while an optimum pH of 7.5 for 0.7 M fraction was found. The three fractions eluted from ion exchange chromatography were stable in a pH 5-11 range. Optimal temperatures were 25, 45 and 55 degrees C for 0.7, 0.35 and 1.0 M fractions, respectively. The 0.7 M KCl fraction showed highest stability in a temperature range of 25-60 degrees C, whereas the 0.35 M KCl fraction had the lowest in the same temperature range.
Collapse
Affiliation(s)
- Jorge A Márquez-Escalante
- Centro de Investigación en Alimentación y Desarrollo A.C., Cuahutémoc, Apdo. Postal 781, Chihuahua, Mexico
| | | | | |
Collapse
|
45
|
Vilaprinyo E, Alves R, Sorribas A. Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock. BMC Bioinformatics 2006; 7:184. [PMID: 16584550 PMCID: PMC1524994 DOI: 10.1186/1471-2105-7-184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 04/03/2006] [Indexed: 01/26/2023] Open
Abstract
Background Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.
Collapse
Affiliation(s)
- Ester Vilaprinyo
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| |
Collapse
|
46
|
Makihara F, Tsuzuki M, Sato K, Masuda S, Nagashima KVP, Abo M, Okubo A. Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol 2005; 184:56-65. [PMID: 16052332 DOI: 10.1007/s00203-005-0012-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/14/2005] [Accepted: 05/18/2005] [Indexed: 11/30/2022]
Abstract
The photosynthetic bacterium Rhodobacter sphaeroides (R. sphaeroides) f. sp. denitrificans IL106 accumulates trehalose as the major organic osmoprotectant in response to a salt stress. An analysis of the R. sphaeroides 2.4.1 genome sequence revealed the presence of five different genes encoding enzymes belonging to three putative trehalose biosynthesis pathways (OtsA-OtsB, TreY-TreZ, and TreS). The function of the different pathways of trehalose was studied by characterizing strains defective in individual trehalose biosynthetic routes. A phenotypic comparison revealed that trehalose synthesis in R. sphaeroides f. sp. denitrificans IL106 is mediated mainly by the OtsA-OtsB pathway and, to some extent, by the TreY-TreZ pathway. Strains with the simultaneous inactivation of these two pathways were completely unable to synthesize trehalose. On the other hand, treS mutants showed an increase in the trehalose level. These results suggest that treS plays a role in trehalose degradation. In addition, treS was found to be important in reducing trehalose after osmotic stress was removed. In this report, we show that the strains that accumulate the most trehalose adapt to salt stress earlier. This is the first report of an organism using multiple pathways to synthesize trehalose solely for use as a compatible solute against salt stress.
Collapse
Affiliation(s)
- Fumihiro Makihara
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Goyal K, Browne JA, Burnell AM, Tunnacliffe A. Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins. Biochimie 2005; 87:565-74. [PMID: 15935281 DOI: 10.1016/j.biochi.2005.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/21/2022]
Abstract
Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms. We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related trans-spliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent. Trehalose seems likely therefore to play a role in a number of stress responses in nematodes.
Collapse
Affiliation(s)
- K Goyal
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | | | | | |
Collapse
|
48
|
Guillou V, Plourde-Owobi L, Parrou JL, Goma G, François J. Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae. FEMS Yeast Res 2004; 4:773-87. [PMID: 15450184 DOI: 10.1016/j.femsyr.2004.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to explore the role of glycogen and trehalose in the ability of Saccharomyces cerevisiae to respond to a sudden rise of the carbon flux. To this end, aerobic glucose-limited continuous cultures were challenged with a sudden increase of the dilution rate from 0.05 to 0.15 h(-1). Under this condition, a rapid mobilization of glycogen and trehalose was observed which coincided with a transient burst of budding and a decrease of cell biomass. Experiments carried out with mutants defective in storage carbohydrates indicated a predominant role of glycogen in the adaptation to this perturbation. However, the real importance of trehalose in this response was veiled by the unexpected phenotypes harboured by the tps1 mutant, chosen for its inability to synthesize trehalose. First, the biomass yield of this mutant was 25% lower than that of the isogenic wild-type strain at dilution rate of 0.05 h(-1), and this difference was annulled when cultures were run at a higher dilution rate of 0.15 h(-1). Second, the tps1 mutant was more effective to sustain the dilution rate shift-up, apparently because it had a faster glycolytic rate and an apparent higher capacity to consume glucose with oxidative phosphorylation than the wild type. Consequently, a tps1gsy1gsy2 mutant was able to adapt to the dilution rate shift-up after a long delay, likely because the detrimental effects from the absence of glycogen was compensated for by the tps1 mutation. Third, a glg1Deltaglg2Delta strain, defective in glycogen synthesis because of the lack of the glycogen initiation protein, recovered glycogen accumulation upon further deletion of TPS1. This recovery, however, required glycogen synthase. Finally, we demonstrated that the rapid breakdown of reserve carbohydrates triggered by the shift-up is merely due to changes in the concentrations of hexose-6-phosphate and UDPglucose, which are the main metabolic effectors of the rate-limiting enzymes of glycogen and trehalose pathways.
Collapse
Affiliation(s)
- Vincent Guillou
- Centre de Bioingéniérie Gilbert Durand, Laboratoire Biotechnologie et Bioprocédés, UMR-CNRS 5504 & UMR-INRA 792, 31077 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|
49
|
Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 2004; 4:351-9. [PMID: 14734015 DOI: 10.1016/s1567-1356(03)00222-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The view of the role of trehalose in yeast has changed in the last few years. For a long time considered a reserve carbohydrate, it gained new importance when its function in the acquisition of thermotolerance was demonstrated. More recently the cellular processes in which the trehalose biosynthetic pathway has been implicated range from the control of glycolysis to sporulation and infectivity by certain fungal pathogens. There is now enough experimental evidence to conclude that trehalose 6-phosphate, an intermediate of trehalose biosynthesis, is an important metabolic regulator in such different organisms as yeasts or plants. Its inhibition of hexokinase plays a key role in the control of the glycolytic flux in Saccharomyces cerevisiae but other, likely important, sites of action are still unknown. We present examples of the phenotypes produced by mutations in the two steps of the trehalose biosynthetic pathway in different yeasts and fungi, and whenever possible examine the molecular explanations advanced to interpret them.
Collapse
Affiliation(s)
- Carlos Gancedo
- Albert Sols Institute of Biomedical Research, CSIC-UAM, C/ Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
50
|
Valenzuela-Soto EM, Márquez-Escalante JA, Iturriaga G, Figueroa-Soto CG. Trehalose 6-phosphate synthase from Selaginella lepidophylla: purification and properties. Biochem Biophys Res Commun 2004; 313:314-9. [PMID: 14684162 DOI: 10.1016/j.bbrc.2003.11.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein of 440 kDa with trehalose 6-phosphate synthase activity was purified with only one purification step by immobilized metal affinity chromatography, from fully hydrated Selaginella lepidophylla plants. The enzyme was purified 50-fold with a yield of 89% and a specific activity of 7.05 U/mg protein. This complex showed two additional aggregation states of 660 and 230 kDa. The three complexes contained 50, 67, and 115 kDa polypeptides with pI of 4.83, 4.69, and 4.55. The reaction was highly specific for glucose 6-phosphate and UDP-glucose. The optimum pH was 7.0 and the enzyme was stable from pH 5.0 to 10. The enzyme was activated by low concentrations of Ca2+, Mg2+, K+, and Na+ and by fructose 6-phosphate, fructose, and glucose. Proline had an inhibitory effect, while sucrose and trehalose up to 0.4M did not have any effect on the activity. Neither the substrates nor final product had an inhibitory effect.
Collapse
Affiliation(s)
- Elisa M Valenzuela-Soto
- Dirección de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, Mexico.
| | | | | | | |
Collapse
|