1
|
Takahashi S, Kudoh A, Okawa Y, Shibata N. Significant differences in the cell-wall mannans from three Candida glabrata strains correlate with antifungal drug sensitivity. FEBS J 2012; 279:1844-56. [PMID: 22404982 DOI: 10.1111/j.1742-4658.2012.08564.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida glabrata is often the second or third most common cause of candidiasis after Candida albicans. C. glabrata infections are difficult to treat, often resistant to many azole antifungal agents and are associated with a high mortality rate in compromised patients. We determined the antigenic structure of the cell-wall mannoproteins from three C. glabrata strains, NBRC 0005, NBRC 0622 and NBRC 103857. (1)H NMR and methylation analyses of the acetolysis products of these mannoproteins showed a significant difference in the amount of the β-1,2-linked mannose residue and side-chain structure. The C. glabrata NBRC 103857 strain contained up to the triose side chains and the nonreducing terminal of the triose was predominantly the β-1,2-linked mannose residue. By contrast, the mannans of the two former strains possessed up to the tetraose side chains and the amount of the β-1,2-linked mannose residue was very low. Larger oligosaccharides than tetraose in the acetolysis products of these mannans were identified as incomplete cleavage fragments by analyzing methylation, (1)H NMR spectra and the α1-2,3 mannosidase degradation reaction. Resistance to the antifungal drugs itraconazole and micafungin was significantly different in these strains. Interestingly, the NBRC 103857 strain, which involved a large amount of the β-1,2-linked mannose residues, exhibited significant sensitivity to these antifungal drugs.
Collapse
Affiliation(s)
- Shizuka Takahashi
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
2
|
Oyamada H, Ogawa Y, Shibata N, Okawa Y, Suzuki S, Kobayashi H. Structural analysis of cell wall mannan of Candida sojae, a new yeast species isolated from defatted soybean flakes. Arch Microbiol 2008; 189:483-90. [PMID: 18084740 DOI: 10.1007/s00203-007-0339-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/26/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
We investigated the structural and immunochemical characteristics of cell wall mannan obtained from Candida sojae JCM 1644, which is a new yeast species isolated from defatted soybean flakes. The results of a slide-agglutination test and of an enzyme-linked immunosorbent assay using anti-factor sera to the pathogenic Candida species indicated that the cells and the C. sojae mannan were cross-reactive to the specific anti-factor sera against Candida albicans serotype A (FAb 6) and Candida guilliermondii (FAb 9). Two-dimensional homonuclear Hartmann-Hahn analysis indicated that the mannan consisted of various linked oligomannosyl side chains containing alpha-1,2-, alpha-1,3-, alpha-1,6- and beta-1,2-linked mannose residues. However, although the determinants of antigenic factors 6 and 9 could be not found in this mannan, branched side chains, Manbeta1-2Manalpha1-3[Manalpha1-6]Manalpha1-(2Manalpha1-)n2Man and a linear alpha-1,6-linked polymannosyl backbone, which are cross-reacted by FAbs 6 and 9, respectively, were identified. The mannan was subjected to acetolysis in order to determine the polymerization length of the alpha-1,2-linked oligomannosyl residue in the side chains. The result of (1)H-nuclear magnetic resonance analysis of the released oligosaccharides showed that the remarkable regularity in the length of alpha-1,2-linked oligomannosyl side chains, which were previously found in mannans of other Candida species, is not observed in this mannan.
Collapse
Affiliation(s)
- Hiroko Oyamada
- Department of Microbiology, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Human pathogen Candida dubliniensis: A cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Kobayashi H, Tanaka S, Suzuki J, Kiuchi Y, Shibata N, Suzuki S, Okawa Y. Amended structure of side chains in a cell wall mannan from Candida albicans serotype A strain grown in yeast extract-Sabouraud liquid medium under acidic conditions: detection of the branched side chains corresponding to antigenic factor 4. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10433.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Shibata N, Kobayashi H, Okawa Y, Suzuki S. Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2565-75. [PMID: 12787022 DOI: 10.1046/j.1432-1033.2003.03622.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenicity of Candida lusitaniae cells was found to be the same as that of Candida albicans serotype A cells, i.e. both cell wall mannans react with factors 1, 4, 5, and 6 sera of Candida Check. However, the structure of the mannan of C. lusitaniae was significantly different from that of C. albicans serotype A, and we found novel beta-1,2 linkages among the side-chain oligosaccharides, Manbeta1-->2Manbeta1--> 2Manalpha1-->2Manalpha1-->2Man (LM5), and Manbeta1-->2Man-beta1-->2Manbeta1-->2Manalpha1-->2Manalpha1-->2Man (LM6). The assignment of these oligosaccharides suggests that the mannoheptaose containing three beta-1,2 linkages obtained from the mannan of C. albicans in a preceding study consisted of isomers. The molar ratio of the side chains of C. lusitaniae mannan was determined from the complete assignment of its H-1 and H-2 signals and these signal dimensions. More than 80% of the oligomannosyl side chains contained beta-1,2-linked mannose units; no alpha-1,3 linkages or alpha-1,6-linked branching points were found in the side chains. An enzyme-linked immunosorbent inhibition assay using oligosaccharides indicated that LM5 behaves as factor 6, which is the serotype A-specific epitope of C. albicans. Unexpectedly, however, LM6 did not act as factor 6.
Collapse
Affiliation(s)
- Nobuyuki Shibata
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
6
|
Thomson LM, Bates S, Yamazaki S, Arisawa M, Aoki Y, Gow NA. Functional characterization of the Candida albicans MNT1 mannosyltransferase expressed heterologously in Pichia pastoris. J Biol Chem 2000; 275:18933-8. [PMID: 10766761 DOI: 10.1074/jbc.m909699199] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha1,2-mannosyltransferase gene MNT1 of the human fungal pathogen Candida albicans has been shown to be important for its adherence to various human surfaces and for virulence (Buurman, E. T. , Westwater, C., Hube, B., Brown, A. P. J., Odds, F. C., and Gow, N. A. R. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7670-7675). The CaMnt1p is a type II membrane protein, which is part of a family of proteins that are important for both O- and N-linked mannosylation in fungi and which represent a distinct subclass of glycosyltransferase enzymes. Here we use heterologous expression of CaMNT1 in the methylotrophic yeast Pichia pastoris to characterize the properties of the CaMnt1p enzyme as an example of this family of enzymes and to identify key amino acid residues required for coordination of the metal co-factor and for the retaining nucleophilic mechanism of the transferase reaction. We show that the enzyme can use both Mn(2+) and Zn(2+) as metal ion co-factors and that the reaction catalyzed is specific for alpha-methyl mannoside and alpha1,2-mannobiose acceptors. The N-terminal cytoplasmic tail, transmembrane domains, and stem regions were shown to be dispensable for activity, whereas truncations to the C-terminal catalytic domain destroyed activity without markedly affecting transcription of the truncated gene.
Collapse
Affiliation(s)
- L M Thomson
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Hashimoto M, Imamura Y, Yasuoka J, Kotani S, Kusumoto S, Suda Y. A novel cytokine-inducing glycolipid isolated from the lipoteichoic acid fraction of Enterococcus hirae ATCC 9790: a fundamental structure of the hydrophilic part. Glycoconj J 1999; 16:213-21. [PMID: 10596896 DOI: 10.1023/a:1007076304254] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we showed that quantitatively minor several glycolipids totaling only less than 5% of the lipoteichoic acid (LTA) fraction from Enterococcus hirae ATCC 9790 possessed cytokine-inducing activity, whereas the major component (over 90%) did not [Suda et al. (1995) FEMS Immun Med Microbiol 12:97-112]. The major inactive component was shown to have the chemical structure as was proposed for the LTA by Fischer [Hashimoto et al. (1997) J Biochem 121:779-86], suggesting that so-called LTA is not a cytokine-inducing component in the Gram-positive bacteria. In the present paper, the structure of the hydrophilic part of one of the cytokine-inducing glycolipid tentatively named GL4 is elucidated. GL4 was first subjected to hydrolysis with aqueous HF to give a polysaccharide and a mixture of low molecular weight products. The polysaccharide was composed mainly of highly branching mannan as concluded from NMR and MS analyses of its acetolysis products. The low molecular weight products consisted of phosphate and glycerol, suggesting the presence of a poly(glycerophosphate) structure in the original GL4. From these observations, the hydrophilic part of GL4 was shown to consist of mannose-rich polysaccharide and poly(glycerophosphate), the latter being bound to the former by a phosphodiester linkage.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:227-37. [PMID: 9878752 DOI: 10.1016/s0304-4165(98)00126-3] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Yeast and most higher eukaryotes utilize an evolutionarily conserved N-linked oligosaccharide biosynthetic pathway that involves the formation of a Glc3Man9GlcNAc2-PP-dolichol lipid-linked precursor, the glycan portion of which is co-translationally transferred in the endoplasmic reticulum (ER) to suitable Asn residues on nascent polypeptides. Subsequently, ER processing glycohydrolases remove the three glucoses and, with the exception of Schizosaccharomyces pombe, a single, specific mannose residue. Processing sugar transferases in the Golgi lead to the formation of core-sized structures (Hex<15GlcNac2) as well as cores with an extended poly-alpha1,6-Man 'backbone' that is derivatized with various carbohydrate side chains in a species-specific manner (Hex50-200GlnNAc2). In some cases these are short alpha1,2-linked Man chains with (Saccharomyces cerevisiae) or without (Pichia pastoris) alpha1,3-Man caps, while in other yeast (S. pombe), the side chains are alpha1,2-linked Gal, some of which are capped with beta-1,3-linked pyruvylated Gal residues. Charged groups are also found in S. cerevisiae and P. pastoris N-glycans in the form of mannose phosphate diesters. Some pathogenic yeast (Candida albicans) add poly-beta1,2-Man extension through a phosphate diester to their N-glycans, which appears involved in virulence. O-Linked glycan synthesis in yeast, unlike in animal cells where it is initiated in the Golgi using nucleotide sugars, begins in the ER by addition of a single mannose from Man-P-dolichol to selected Ser/Thr residues in newly made proteins. Once transported to the Golgi, sugar transferases add one (C. albicans) or more (P. pastoris) alpha1,2-linked mannose that may be capped with one or two alpha1,3-linked mannoses (S. cerevisiae). S. pombe is somewhat unique in that it synthesizes a family of mixed O-glycans with additional alpha1,2-linked Man and alpha1,2- and 1, 3-linked Gal residues.
Collapse
Affiliation(s)
- T R Gemmill
- Wadsworth Center C-547, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509, USA
| | | |
Collapse
|
9
|
Trinel PA, Lepage G, Jouault T, Strecker G, Poulain D. Definitive chemical evidence for the constitutive ability of Candida albicans serotype A strains to synthesize beta-1,2 linked oligomannosides containing up to 14 mannose residues. FEBS Lett 1997; 416:203-6. [PMID: 9369215 DOI: 10.1016/s0014-5793(97)01205-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported the presence of phosphate bound beta-1,2 linked oligomannosides with unusually high degrees of polymerization (DP > 7) in the mannan of Candida albicans strain VW32. To confirm this observation, we have prepared these oligomannosides from the mannan of C. albicans strain NIH A 207. Gel filtration chromatography and TLC analysis revealed DP up to 14. For both strains, NMR analysis confirmed the exclusive presence of beta-1,2 linkages in the pools of oligomannosides with a DP higher than 6 which presented an average DP of 10.6 (VW32) and 10.4 (NIH A 207). These results are important to consider in relation with the ability of these C. albicans derived oligomannosides to trigger TNFalpha synthesis according to their DP.
Collapse
Affiliation(s)
- P A Trinel
- Unité 42, Institut National de la Santé et de la Recherche Médicale, Domaine du CERTIA, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
10
|
Ikuta K, Shibata N, Kanehiko H, Kobayashi H, Suzuki S, Okawa Y. NMR assignment of the galactomannan of Candida lipolytica. FEBS Lett 1997; 414:338-42. [PMID: 9315714 DOI: 10.1016/s0014-5793(97)01028-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemical structure of the cell wall galactomannan of Candida lipolytica was analyzed using two-dimensional NMR techniques without chemical fragmentation. The H-1-H-2-correlated cross-peaks of the galactomannan indicated that it consists of an alpha-1,6-linked mannan backbone moiety with side chains. A sequential NMR assignment of the side chains through nuclear Overhauser effect (NOE) cross-peaks indicated that the triose side chain contains an alpha-1,2-linked galactopyranose unit at the non-reducing terminal. The structure was significantly different from the galactomannan of Trichophyton. The molar ratio of the side chains calculated from the H-1 signal dimensions indicated that ca. 45% of the backbone alpha-1,6-linked mannose units are not substituted with side chains and are responsible for the reactivity of the galactomannan with factor 9 serum.
Collapse
Affiliation(s)
- K Ikuta
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E. Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. J Biol Chem 1997; 272:17762-75. [PMID: 9211929 DOI: 10.1074/jbc.272.28.17762] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous study (Kollár, R., Petráková, E., Ashwell, G., Robbins, P. W., and Cabib, E. (1995) J. Biol. Chem. 270, 1170-1178), the linkage region between chitin and beta(1-->3)-glucan was solubilized and isolated in the form of oligosaccharides, after digestion of yeast cell walls with beta(1-->3)-glucanase, reduction with borotritide, and subsequent incubation with chitinase. In addition to the oligosaccharides, the solubilized fraction contained tritium-labeled high molecular weight material. We have now investigated the nature of this material and found that it represents areas in which all four structural components of the cell wall, beta(1-->3)-glucan, beta(1-->6)-glucan, chitin, and mannoprotein are linked together. Mannoprotein, with a protein moiety about 100 kDa in apparent size, is attached to beta(1-->6)-glucan through a remnant of a glycosylphosphatidylinositol anchor containing five alpha-linked mannosyl residues. The beta(1-->6)-glucan has some beta(1-->3)-linked branches, and it is to these branches that the reducing terminus of chitin chains appears to be attached in a beta(1-->4) or beta(1-->2) linkage. Finally, the reducing end of beta(1-->6)-glucan is connected to the nonreducing terminal glucose of beta(1-->3)-glucan through a linkage that remains to be established. A fraction of the isolated material has three of the main components but lacks mannoprotein. From these results and previous findings on the linkage between mannoproteins and beta(1-->6)-glucan, it is concluded that the latter polysaccharide has a central role in the organization of the yeast cell wall. The possible mechanism of synthesis and physiological significance of the cross-links is discussed.
Collapse
Affiliation(s)
- R Kollár
- Laboratory of Biochemistry and Metabolism, NIDDK, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suzuki A, Shibata N, Suzuki M, Saitoh F, Oyamada H, Kobayashi H, Suzuki S, Okawa Y. Characterization of beta-1,2-mannosyltransferase in Candida guilliermondii and its utilization in the synthesis of novel oligosaccharides. J Biol Chem 1997; 272:16822-8. [PMID: 9201988 DOI: 10.1074/jbc.272.27.16822] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A particulate insoluble enzyme fraction containing mannosyltransferases from Candida guilliermondii IFO 10279 strain cells was obtained as the residue after extracting a 105,000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Manalpha1-->3(Manalpha1-->6)Manalpha1-->2Manalpha1+ ++-->2Man, in the presence of GDP-mannose and Mn2+ ion at pH 6.0 gave a third type of beta-1,2 linkage-containing mannohexaose, Manbeta1-->2Manalpha1-->3(Manalpha1-->6)Manalpha1++ +-->2Manalpha1-->2Man , the structure of which was identified by means of a sequential NMR assignment. The results of a substrate specificity study indicated that the beta-1,2-mannosyltransferase requires a mannobiosyl unit, Manalpha1--> 3Manalpha1-->, at the nonreducing terminal site. We synthesized novel oligosaccharides using substrates possessing a nonreducing terminal alpha-1,3-linked mannose unit prepared from various yeast mannans. Further incubation of the enzymatically synthesized oligosaccharide with the enzyme fraction gave the following structure, Manbeta1-->2Manbeta1-->2Manalpha1-->3(Manalpha1- ->6)Manalpha1--> 2Manalpha1-->2Man, which has been found to correspond to antigenic factor 9. Incubation of Candida albicans serotype B mannan with the enzyme fraction gave significantly transformed mannan, which contains the third type of beta-1,2-linked mannose units.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shibata N, Senbongi N, Hosoya T, Kawahara K, Akagi R, Suzuki A, Kobayashi H, Suzuki S, Okawa Y. Demonstration of the presence of alpha-1,6-branched side chains in the mannan of Candida stellatoidea. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:477-85. [PMID: 9208941 DOI: 10.1111/j.1432-1033.1997.00477.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mild acetolysis of the mannans of Candida stellatoidea was performed after acetylation to yielded an alpha-1,6-branched mannohexaose, the presence of which had been predicted from the appearance of a specific H1-H2-correlated cross-peak in two-dimensional homonuclear Hartmann-Hahn spectroscopy. In this study, we found that the de-O-acetylation of a 4-O-acetyl group at the branching point, the 3,6-di-O-substituted mannose unit, of an acetylated oligosaccharide by sodium methoxide is significantly slower than that of other acetyl groups. We could separate the 4-O-acetylated branching oligosaccharide from linear isomer using high-performance liquid chromatography. Before and after the de-O-acetylation of the purified branching oligosaccharide, their 1H-NMR signals were sequentially assigned by means of the nuclear Overhauser effect. In the sequential NMR assignment study, we showed that the alpha-1,6-linked mannose unit is attached to the 3-O-substituted unit based on the presence of NOE cross-peak between H1 of the branching mannose unit and H6 of the 3-O-substituted mannose unit. An enzyme-linked immunosorbent inhibition assay of the reactivity of factor 4 serum to C. stellatoidea mannan by several oligosaccharides indicated that the alpha-1,6-branched oligosaccharide and the beta-1,2 linkage-containing oligosaccharides showed inhibitory activity. This result indicates that factor 4 serum, as well as factor 5 and 6 sera, contains antibodies against beta-1,2-linked mannose units which have been reported to participate in pathogenicity via cytokine production and/or adherence. From the assignment results of H1-H2-correlated cross-peaks of oligosaccharides and mannans, the molar ratio of the mannan side chains was proposed. In this study, we demonstrated that the epitope structure of the C. stellatoidea type I strains was the same as that of the C. albicans NIH B-792 (serotype B) strain.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kolarova N, Matulová M, Capek P. Structure of Glucomannan-Protein from the YeastCryptococcus Laurentii. J Carbohydr Chem 1997. [DOI: 10.1080/07328309708007339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Kobayashi H, Suzuki J, Tanaka S, Kiuchi Y, Oyamada H, Iwadate N, Suzuki H, Shibata N, Suzuki S, Okawa Y. Structure of a cell wall mannan from the pathogenic yeast, Candida catenulata: assignment of 1H nuclear magnetic resonance chemical shifts of the inner alpha-1,6-linked mannose residues substituted by a side chain. Arch Biochem Biophys 1997; 341:70-4. [PMID: 9143354 DOI: 10.1006/abbi.1997.9939] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We performed an enzyme-linked immunosorbent assay of the cell wall mannan purified from the pathogenic yeast, Candida catenulata, using antisera to factors of the genus Candida. The results suggest that mannan possesses a linear backbone consisting of alpha-1, 6-linked mannose residues and side chains possessing nonreducing terminal alpha-1,2- and alpha-1,3-linked mannose residues. The chemical structure of the mannan was analyzed by two-dimensional homonuclear Hartmann-Hahn and two-dimensional nuclear Overhauser enhancement and exchange spectroscopy. The sequential assignments of the cross-peaks caused by J-coupling and the nuclear Overhauser effect from these terminal mannose residues demonstrate that the H1 signal of an inner alpha-1,6-linked mannose residue substituted by an alpha-oligomannosyl side chain or a single mannose through the C-2 position in an alpha-anomer configuration undergoes a significant downfield shift (delta delta = 0.16 or 0.19 ppm, respectively) compared with that of unsubstituted residues. We therefore propose the exact overall structure of the antigenic mannan obtained from C. catenulata. The assignment data in the present study are useful for the determination of the exact overall structure of various yeast mannans using the two-dimensional nuclear magnetic resonance analysis without the need for harsh procedures.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ikuta K, Shibata N, Blake JS, Dahl MV, Nelson RD, Hisamichi K, Kobayashi H, Suzuki S, Okawa Y. NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem J 1997; 323 ( Pt 1):297-305. [PMID: 9173896 PMCID: PMC1218309 DOI: 10.1042/bj3230297] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Around 90% of chronic dermatophyte infections are caused by the fungi Trichophyton mentagrophytes and Trichophyton rubrum. One of the causes of the chronic infection resides in the immunosuppressive effects of the cell-wall components of these organisms. Therefore we have attempted to identify the chemical structure of galactomannan, one of the major cell-wall components. The cell-wall polysaccharides secreted by T. mentagrophytes and T. rubrum were isolated from the culture medium and fractionated into three subfractions by DEAE-Sephadex chromatography. Analysis of each subfraction by NMR indicated that there are two kinds of polysaccharides present, i.e. mannan and galactomannan. The mannan has a linear backbone consisting of alpha1,6-linked mannose units, with alpha1,2-linked mannose units as side chains. The core mannan moiety of the galactomannan was analysed by a sequential NMR assignment method after removing the galactofuranose units by acid treatment. The result indicates that the mannan moiety has a linear repeating structure of alpha1,2-linked mannotetraose units connected by an alpha1,6 linkage. The H-1 signals of the two intermediary alpha1, 2-linked mannoses of the tetraose unit showed a significant upfield shift (Deltadelta=0.05-0.08 p.p.m.), due to the steric effect of an alpha1,6-linked mannose unit. The attachment point of the galactofuranose units was determined at C-3 of the core mannan by the assignment of the downfield-shifted 13C signals of the galactomannan compared with those of the acid-modified product. In these galactomannans there were no polygalactofuranosyl chains which have been found in Penicillium charlesii and Aspergillus fumigatus.
Collapse
Affiliation(s)
- K Ikuta
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kido N, Morooka N, Paeng N, Ohtani T, Kobayashi H, Shibata N, Okawa Y, Suzuki S, Sugiyama T, Yokochi T. Production of monoclonal antibody discriminating serological difference in Escherichia coli O9 and O9a polysaccharides. Microbiol Immunol 1997; 41:519-25. [PMID: 9272697 DOI: 10.1111/j.1348-0421.1997.tb01887.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A monoclonal antibody (mAb) with a unique antigenic specificity against Escherichia coli O9 was produced. The O9a mAb was reactive with a part of the strains in E. coli O9. The O9a mAb did not react with LPS from the E. coli O9 test strain Bi316-42. The distribution of the antigen defined by the O9a mAb in E. coli O9 was consistent with that of E. coli O9a present in E. coli O9 strains. The chemical structure of the repeating unit of the O-specific polysaccharide detected by the mAb was demonstrated to be a mannotetraose by two-dimensional nuclear magnetic resonance spectroscopy. It was confirmed that the mAb recognized E. coli O9a serotype in E. coli O9 serotype strains, suggesting that E. coli O9a serotype might be a dominant strain in E. coli O9.
Collapse
Affiliation(s)
- N Kido
- Biosystems, School of Informatics and Sciences, Nagoya University, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki A, Shibata N, Suzuki M, Saitoh F, Takata Y, Oshie A, Oyamada H, Kobayashi H, Suzuki S, Okawa Y. Characterization of alpha-1,6-mannosyltransferase responsible for the synthesis of branched side chains in Candida albicans mannan. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:37-44. [PMID: 8797833 DOI: 10.1111/j.1432-1033.1996.0037h.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A particulate insoluble fraction from Candida albicans NIH B-792 (serotype B) strain cells was obtained as the residue after extracting a 105000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Man alpha 1-->3Man alpha 1-->2Man alpha 1-->Man alpha 1-->2Man, in the presence of GDP-mannose and Mn2+ at pH 6.0 gave a branched mannohexaose, [sequence: see text] 6 the structure of which was identified by means of sequential off assignment. However, the enzyme fraction obtained from Candida parapsilosis gave Man alpha 1-->2Man alpha 1-->3Man alpha 1-->2Man alpha 1-->2 Man alpha 1-->2Man under the same conditions. These results demonstrate the finding that the structural difference in the mannans of these two species is due to the presence of alpha-1.6-linked branching mannose units in the C. albicans mannan [Shibata, N., Ikuta, K., Imai, T., Satoh, Y., Satoh, R., Suzuki, A., Kojima, C., Kobayashi, H., Hisamichi, K. & Suzuki, S. (1995) J. Biol. Chem. 270, 1113-1122]. The substrate-specificity study of the enzyme indicated that the structural requirement of the alpha-1,6-mannosyltransferase is Man alpha 1-->3Man alpha 1-->. The alpha-1,6-mannosyltransferase also transferred the alpha-1,6-linked branching mannose unit to the mannan of Saccharomyces cerevisiae. The transformation of the mannan was detected by the appearance of antigenic factor 4 using an enzyme-linked immunosorbent assay and two-dimensional homonuclear Hartmann-Hahn spectroscopy.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bentlage HA, Wendel U, Schägger H, ter Laak HJ, Janssen AJ, Trijbels JM. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology 1996; 47:243-8. [PMID: 8710086 DOI: 10.1212/wnl.47.1.243] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A 2-month-old boy died of a lethal infantile mitochondrial disease with severe lactic acidosis and involvement of the CNS. Histochemical analysis of skeletal muscle showed that cytochrome c oxidase staining was lacking in all muscle fibers but was present in arterioles. Ragged red fibers were not seen, but some fibers showed excessive staining for succinate dehydrogenase. Biochemical analysis revealed a combined complex I and IV deficiency in skeletal muscle but only a complex I deficiency in his fibroblasts. Two-dimensional native SDS electrophoresis confirmed these enzymatic findings at the protein level. Analysis of mitochondrial translation products in fibroblasts revealed no abnormalities, and analysis of mitochondrial DNA in muscle showed no depletion, large-scale deletions, or frequently occurring point mutations. We conclude that this disease must have been the result of either a nuclear DNA mutation in a gene controlling the expression or assembly of both complex I and the muscle-specific isoform of complex IV or, alternatively, a heteroplasmic point mutation in a mitochondrial tRNA, which codon is used more often by mtDNA encoded subunits of complex I than by mtDNA encoded subunits of complex IV. A different degree of heteroplasmy in skeletal muscle and fibroblasts would then explain the curious heterogeneous tissue expression of defects in this patient.
Collapse
Affiliation(s)
- H A Bentlage
- Department of Pediatrics, University Hospital Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Okawa Y, Goto K, Nemoto S, Akashi M, Sugawara C, Hanzawa M, Kawamata M, Takahata T, Shibata N, Kobayashi H, Suzuki S. Antigenicity of cell wall mannans of Candida albicans NIH B-792 (serotype B) strain cells cultured at high temperature in yeast extract-containing sabouraud liquid medium. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1996; 3:331-6. [PMID: 8705679 PMCID: PMC170342 DOI: 10.1128/cdli.3.3.331-336.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cultivation of Candida albicans NIH B-792 (serotype B) at high temperature (37 degrees C) for 48 h in yeast extract-containing Sabouraud liquid medium (YSLM) provided the following findings in comparison with the findings obtained after incubation at 27 degrees C. Growth of the blastoconidia of this strain was decreased, with a dry weight of 9%, and the cells were deficient in cytokinesis. The cells did not undergo agglutination with serum factor 5 from a commercially available serum factor kit (Candida Check). Mannan (B-37-M) obtained from the cells cultured at 37 degrees C had partially lost its reactivity against serum factor 4 and lost most of its reactivity against serum factor 5 in an enzyme-linked immunosorbent assay (ELISA) in contrast to that (B-27-M) at 27 degrees C. Both cells and mannan prepared by cultivation first at 37 degrees C and then at 27 degrees C entirely recovered their reactivities with serum factors 4 and 5. 1H-nuclear magnetic resonance analysis also revealed that B-37-M had lost a beta-1,2-linked mannopyranose unit and retained a phosphate group. Similar changes were observed in the three other serotype B strains used in the study. The beta-1,2-linked mannooligosaccharides longer than mannotetraose were not included among the products released from B-37-M by mild acid treatment. The results of the inhibition ELISA with a series of beta-1,2-linked mannooligosaccharides from biose to octaose (M2 to M8, respectively) showed that the reactivity against serum factor 4 was inhibited most strongly by the oligosaccharides M4 to M8 and that the reactivity against serum factor 5 was inhibited completely by relatively longer oligosaccharides, M5 to M8, indicating their participation as the antigenic factor 5 epitopes.
Collapse
Affiliation(s)
- Y Okawa
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shibata N, Akagi R, Hosoya T, Kawahara K, Suzuki A, Ikuta K, Kobayashi H, Hisamichi K, Okawa Y, Suzuki S. Existence of novel branched side chains containing beta-1,2 and alpha-1,6 linkages corresponding to antigenic factor 9 in the mannan of Candida guilliermondii. J Biol Chem 1996; 271:9259-66. [PMID: 8621586 DOI: 10.1074/jbc.271.16.9259] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Isolation of beta-linkage-containing side chain oligosaccharides from the mannan of Candida guilliermondii IFO 10279 strain has been conducted by acetolysis under mild conditions. A structural study of these oligosaccharides by one- and two-dimensional NMR and methylation analyses indicated the presence of extended oligosaccharide side chains with two consecutive beta-1,2-linked mannose units at the nonreducing terminal of alpha-linked oligosaccharides. The linkage sequence present in this mannan, Man beta 1-->2Man alpha 1-->3Man alpha-->, has also been found in the mannan of Saccharomyces kluyveri but not in the mannan of Candida species. Furthermore, these oligosaccharides are branched at position 6 of the 3-O-substituted mannose units as follows. (Carbohydrate sequence in text) Structure 1 and (Carbohydrate sequence in text) Structure 2 The H-1 signals of the mannose units substituted by a 3,6-di-O-substituted unit showed a significant upfield shift (delta delta = 0.04-0.08 ppm) due to a steric effect. The inhibition of an enzyme-linked immunosorbent assay between the mannan of C. guilliermondii and factor 9 serum with oligosaccharides obtained from several mannans indicated that only the oligosaccharides with the above structure were active, suggesting that these correspond to the epitope of antigenic factor 9.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Suzuki A, Takata Y, Oshie A, Tezuka A, Shibata N, Kobayashi H, Okawa Y, Suzuki S. Detection of beta-1,2-mannosyltransferase in Candida albicans cells. FEBS Lett 1995; 373:275-9. [PMID: 7589482 DOI: 10.1016/0014-5793(95)01061-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A particulate insoluble fraction from Candida albicans J-1012 (serotype A) strain cells was obtained as the residue after extracting a 105,000 x g pellet of cell homogenate with 1% Triton X-100. Incubation of this fraction with a mannopentaose, Man beta 1-->2Man alpha 1-->(2Man alpha 1-->)(2)2Man (alpha beta Man5), in the presence of GDP-mannose followed by high performance liquid chromatography showed the formation of a mannohexaose. Analysis of the product by 1H NMR indicates that alpha beta Man5 was changed to Man beta 1-->2Man beta 1-->2Man alpha 1-->(2Man alpha 1-->)2 2Man (alpha beta Man6). This beta-1,2-mannosyltransferase (ManTase) II activity was completely inhibited by Zn2+ and was not restored by the addition of EDTA. The corresponding enzyme fraction from C. albicans NIH B-792 (serotype B) strain cells, the mannan of which does not possess both the alpha beta Man5 and alpha beta Man6 side chains, also exhibited the same beta-1,2-ManTase II activity.
Collapse
Affiliation(s)
- A Suzuki
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kobayashi H, Watanabe M, Komido M, Matsuda K, Ikeda-Hasebe T, Suzuki M, Shibata N, Hisamichi K, Suzuki S. Assignment of 1H and 13C NMR chemical shifts of a d-mannan composed of α-(1 → 2) and α-(1 → 6) linkages obtained from Candida kefyr IFO 0586 strain. Carbohydr Res 1995. [DOI: 10.1016/0008-6215(94)00299-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Shibata N, Ikuta K, Imai T, Satoh Y, Satoh R, Suzuki A, Kojima C, Kobayashi H, Hisamichi K, Suzuki S. Existence of branched side chains in the cell wall mannan of pathogenic yeast, Candida albicans. Structure-antigenicity relationship between the cell wall mannans of Candida albicans and Candida parapsilosis. J Biol Chem 1995; 270:1113-22. [PMID: 7836369 DOI: 10.1074/jbc.270.3.1113] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Isolation of side chain oligosaccharides from mannans of Candida albicans NIH B-792 (serotype B) and Candida parapsilosis IFO 1396 strains has been conducted by acetolysis under mild conditions. Structural study of these oligosaccharides by 1H and 13C NMR and methylation analyses indicated the presence of novel branched side chains with the following structures in C. albicans mannan. [sequence: see text] It was observed that the H-1 proton chemical shifts of the second and the third mannose units from the reducing terminus in each oligosaccharide are shifted upfield by substitution with an alpha-linked mannose unit at position 6 of the 3-O-substituted mannose unit. An agglutination inhibition assay between factor 4 serum and cells of Candida stellatoidea IFO 1397 lacking the beta-1,2-linked mannose unit, with oligosaccharides obtained from these mannans, indicated that only the branched oligosaccharides were active. This finding suggests that the branched oligosaccharides correspond to the epitope of antigenic factor 4. The presence of the branched structure in other mannans was detected by the characteristic H-1-H-2-correlated cross-peak of the alpha-1,2-linked mannose unit connected with the 3,6-di-O-substituted one by two-dimensional homonuclear Hartmann-Hahn spectroscopy.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kobayashi H, Komido M, Watanabe M, Matsuda K, Suzuki M, Ikeda T, Oyamada H, Shibata N, Suzuki S. Structure of cell wall mannan of Candida kefyr IFO 0586. Infect Immun 1994; 62:4425-31. [PMID: 7927705 PMCID: PMC303126 DOI: 10.1128/iai.62.10.4425-4431.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We conducted a structural analysis of the antigenic cell wall mannoprotein (mannan) isolated from Candida kefyr (formerly Candida pseudotropicalis) IFO 0586. The result of two-dimensional homonuclear Hartmann-Hahn analysis of this mannan indicates that the molecule is constructed from alpha-1,2- and alpha-1,6-linked mannopyranose residues. Upon alkali treatment (beta-elimination reaction), this mannan released two alpha-1,2-linked mannooligosaccharides, biose and triose. The structure of the alkali-stable mannan (outer chain) moiety was investigated by acetolysis. The structures of the resultant oligosaccharides, biose and triose, from the outer chain moiety were found to be the same as those of the alkali-released ones. Further, the treatment of the parent mannan with an Arthrobacter GJM-1 exo-alpha-mannosidase gave a linear mannan consisting solely of alpha-1,6-linked mannopyranose residues. These results indicate that the mannan forms the long backbone of the alpha-1,6 linkage, with a large number of short alpha-1,2-linked oligomannosyl side chains forming a comblike structure. Moreover, we investigated the serological properties of this mannan by performing an inhibition assay of a slide agglutination reaction with mannooligosaccharides and polyclonal factor sera (Candida Check; Iatron). The result indicates that the factor 1 serum preferentially recognizes the alpha-1,2-linked oligomannosyl side chains in this mannan. On the other hand, the fact that the mannan does not contain an antigenic determinant(s) corresponding to factor 8 suggests that the epitope(s) of this factor resides in other molecules on the cell surface of this strain.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okawa Y, Takahata T, Kawamata M, Miyauchi M, Shibata N, Suzuki A, Kobayashi H, Suzuki S. Temperature-dependent change of serological specificity of Candida albicans NIH A-207 cells cultured in yeast extract-added Sabouraud liquid medium: disappearance of surface antigenic factors 4, 5, and 6 at high temperature. FEBS Lett 1994; 345:167-71. [PMID: 8200451 DOI: 10.1016/0014-5793(94)00434-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cells of Candida albicans NIH A-207 strain (A-strain) cultivated in YSLM at high temperatures (37 and 40 degrees C) did not undergo agglutination with the factor sera 4, 5, and 6 in a commercially available factor serum kit, 'Candida Check', and formed a grape-like shape. The mannans isolated from the cells had lost their reactivity against the factor sera in ELISA. It was also revealed by 1H NMR analysis that the mannans contained neither a phosphate group nor a beta-1,2-linked mannopyranose unit, although these mannans increased the non-reducing terminal alpha-1,3-linked mannopyranose unit. The cells and the mannans prepared by cultivation at such high temperatures followed by 27 degrees C in the same medium entirely recovered the reactivity with the factor sera.
Collapse
Affiliation(s)
- Y Okawa
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kobayashi H, Shibata N, Suzuki A, Takahashi S, Suzuki M, Matsuda K, Hisamichi K, Suzuki S. Expression of alpha-1,3 linkage-containing oligomannosyl residues in a cell-wall mannan of Candida tropicalis grown in yeast extract-Sabouraud liquid medium under acidic conditions. FEBS Lett 1994; 342:19-22. [PMID: 8143843 DOI: 10.1016/0014-5793(94)80576-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the cell-wall mannan obtained from Candida tropicalis IFO 1647 strain cells grown in yeast extract-Sabouraud medium at pH 3.0 by two-dimensional homonuclear Hartmann-Hahn spectroscopy. The results indicate that the phosphate group and the side chains containing a beta-1,2-linked mannopyranose unit decreased compared to those of mannan from cells grown under conventional conditions (pH 5.9) with concomitant expression of alpha-1,3 linkage-containing oligomannosyl side chains. The results of acetolysis of these mannans indicated that the presence of alpha-1,3-linked mannopyranose unit existed in side chains corresponding to pentaose and hexaose, Manp alpha 1-3 Manp alpha 1-2Manp alpha 1-2 Manp alpha 1-2Man, and Manp alpha 1-2Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Manp alpha 1-2Man, in the mannan from cells grown at pH 3.0.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi H, Matsuda K, Ikeda T, Suzuki M, Takahashi S, Suzuki A, Shibata N, Suzuki S. Structures of cell wall mannans of pathogenic Candida tropicalis IFO 0199 and IFO 1647 yeast strains. Infect Immun 1994; 62:615-22. [PMID: 7507898 PMCID: PMC186148 DOI: 10.1128/iai.62.2.615-622.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We conducted a structural analysis of the cell wall mannans isolated from two Candida tropicalis strains, IFO 0199 and IFO 1647, exhibiting strong agglutinabilities against anti-Candida factor sera 5 and 6. The products released from these mannans by acid treatment were identified as the oligosaccharides, from biose to pentaose, consisting solely of beta-1,2-linked mannopyranose units corresponding to common epitopes of Candida albicans serotypes A and B (factor 5). Mild acetolysis of acid- and alkali-treated mannans produced large amounts of hexaose and heptaose, Man rho beta 1-2Man rho beta 1-2Man rho alpha 1-2Man rho alpha 1-2Man rho alpha 1-2Man and Man rho beta 1-2Man rho beta 1-2Man rho beta 1-2Man rho alpha 1-2 Man rho alpha 1-2Man, corresponding to the C. albicans serotype A-specific epitopes (factor 6). However, the homologous pentaose, Man rho beta 1-2Man rho alpha 1-2 Man, was not generated by this procedure. The oligosaccharides (biose to hexaose) obtained from the mannans by conventional acetolysis were composed exclusively of alpha-1,2-linked mannopyranose units. Therefore, the mannans of C. tropicalis IFO 0199 and IFO 1647 do not have the alpha-1,3-linked mannopyranose units previously observed in the mannans of C. albicans and Candida stellatoidea. The results of this study and previous findings indicate that the similarity of the antigenicities of three Candida species, C. albicans serotype A, C. stellatoidea type II, and C. tropicalis, reside in the beta-1,2 and alpha-1,2 linkages containing oligomannosyl side chain (factor 6) in the cell wall mannan.
Collapse
Affiliation(s)
- H Kobayashi
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
San-Blas G, Suzuki S, Hearn V, Pinel C, Kobayashi H, Mendez C, Niño G, Nishikawa A, San-Blas F, Shibata N. Fungal polysaccharides. JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY : BI-MONTHLY PUBLICATION OF THE INTERNATIONAL SOCIETY FOR HUMAN AND ANIMAL MYCOLOGY 1994; 32 Suppl 1:321-8. [PMID: 7536840 DOI: 10.1080/02681219480000941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fungal polysaccharides are cell wall components which may act as antigens or as structural substrates. As antigens, the role of mannans in Saccharomyces cerevisiae and Candida albicans, and of glycoproteins in Aspergillus fumigatus are discussed. Analyses on beta-glucan synthetase in Paracoccidioides brasiliensis and the inhibitory effect of Hansenula mrakii killer toxin on beta-glucan biosynthesis are also considered.
Collapse
Affiliation(s)
- G San-Blas
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas
| | | | | | | | | | | | | | | | | | | |
Collapse
|