1
|
Dinh TA, Allen KD. Toward the Use of Methyl-Coenzyme M Reductase for Methane Bioconversion Applications. Acc Chem Res 2024; 57:2746-2757. [PMID: 39190795 PMCID: PMC11411713 DOI: 10.1021/acs.accounts.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ConspectusAs the main component of natural gas and renewable biogas, methane is an abundant, affordable fuel. Thus, there is interest in converting these methane reserves into liquid fuels and commodity chemicals, which would contribute toward mitigating climate change, as well as provide potentially sustainable routes to chemical production. Unfortunately, specific activation of methane for conversion into other molecules is a difficult process due to the unreactive nature of methane C-H bonds. The use of methane activating enzymes, such as methyl-coenzyme M reductase (MCR), may offer a solution. MCR catalyzes the methane-forming step of methanogenesis in methanogenic archaea (methanogens), as well as the initial methane oxidation step during the anaerobic oxidation of methane (AOM) in anaerobic methanotrophic archaea (ANME). In this Account, we highlight our contributions toward understanding MCR catalysis and structure, focusing on features that may tune the catalytic activity. Additionally, we discuss some key considerations for biomanufacturing approaches to MCR-based production of useful compounds.MCR is a complex enzyme consisting of a dimer of heterotrimers with several post-translational modifications, as well as the nickel-hydrocorphin prosthetic group, known as coenzyme F430. Since MCR is difficult to study in vitro, little information is available regarding which MCRs have ideal catalytic properties. To investigate the role of the MCR active site electronic environment in promoting methane synthesis, we performed electric field calculations based on molecular dynamics simulations with a MCR from Methanosarcina acetivorans and an ANME-1 MCR. Interestingly, the ANME-1 MCR active site better optimizes the electric field with methane formation substrates, indicating that it may have enhanced catalytic efficiency. Our lab has also worked toward understanding the structures and functions of modified F430 coenzymes, some of which we have discovered in methanogens. We found that methanogens produce modified F430s under specific growth conditions, and we hypothesize that these modifications serve to fine-tune the activity of MCR.Due to the complexity of MCR, a methanogen host is likely the best near-term option for biomanufacturing platforms using methane as a C1 feedstock. M. acetivorans has well-established genetic tools and has already been used in pilot methane oxidation studies. To make methane oxidation energetically favorable, extracellular electron acceptors are employed. This electron transfer can be facilitated by carbon-based materials. Interestingly, our analyses of AOM enrichment cultures and pure methanogen cultures revealed the biogenic production of an amorphous carbon material with similar characteristics to activated carbon, thus highlighting the potential use of such materials as conductive elements to enhance extracellular electron transfer.In summary, the possibilities for sustainable MCR-based methane conversions are exciting, but there are still some challenges to tackle toward understanding and utilizing this complex enzyme in efficient methane oxidation biomanufacturing processes. Additionally, further work is necessary to optimize bioengineered MCR-containing host organisms to produce large quantities of desired chemicals.
Collapse
Affiliation(s)
- Thuc-Anh Dinh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Stemple B, Gulliver D, Sarkar P, Tinker K, Bibby K. Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin. Front Microbiol 2024; 15:1376536. [PMID: 38933028 PMCID: PMC11199900 DOI: 10.3389/fmicb.2024.1376536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.
Collapse
Affiliation(s)
- Brooke Stemple
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Preom Sarkar
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
- Leidos Research Support Team, Pittsburgh, PA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
3
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
4
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
5
|
Gropp J, Jin Q, Halevy I. Controls on the isotopic composition of microbial methane. SCIENCE ADVANCES 2022; 8:eabm5713. [PMID: 35385305 PMCID: PMC8985922 DOI: 10.1126/sciadv.abm5713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.
Collapse
Affiliation(s)
- Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Pitta D, Indugu N, Narayan K, Hennessy M. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows. J Dairy Sci 2022; 105:8569-8585. [DOI: 10.3168/jds.2021-21466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
|
7
|
Deconstructing Methanosarcina acetivorans into an acetogenic archaeon. Proc Natl Acad Sci U S A 2022; 119:2113853119. [PMID: 34992140 PMCID: PMC8764690 DOI: 10.1073/pnas.2113853119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
The reductive acetyl-coenzyme A (acetyl-CoA) pathway is the only carbon fixation pathway that can also be used for energy conservation like it is known for acetogenic bacteria. In methanogenic archaea, this pathway is extended with one route toward acetyl-CoA formation for anabolism and another route toward methane formation for catabolism. Which of these traits is ancestral in evolution has not been resolved. By diverging virtually all substrate carbon from methanogenesis to flow through acetyl-CoA, Methanosarcina acetivorans can be converted to an acetogenic organism. Being able to deconstruct methanogenic into the seemingly simpler acetogenic energy metabolism provides compelling evidence that methanogens are not nearly as metabolically limited as previously thought and suggests that methanogenesis might have evolved from the acetyl-CoA pathway. The reductive acetyl-coenzyme A (acetyl-CoA) pathway, whereby carbon dioxide is sequentially reduced to acetyl-CoA via coenzyme-bound C1 intermediates, is the only autotrophic pathway that can at the same time be the means for energy conservation. A conceptually similar metabolism and a key process in the global carbon cycle is methanogenesis, the biogenic formation of methane. All known methanogenic archaea depend on methanogenesis to sustain growth and use the reductive acetyl-CoA pathway for autotrophic carbon fixation. Here, we converted a methanogen into an acetogen and show that Methanosarcina acetivorans can dispense with methanogenesis for energy conservation completely. By targeted disruption of the methanogenic pathway, followed by adaptive evolution, a strain was created that sustained growth via carbon monoxide–dependent acetogenesis. A minute flux (less than 0.2% of the carbon monoxide consumed) through the methane-liberating reaction remained essential, indicating that currently living methanogens utilize metabolites of this reaction also for anabolic purposes. These results suggest that the metabolic flexibility of methanogenic archaea might be much greater than currently known. Also, our ability to deconstruct a methanogen into an acetogen by merely removing cellular functions provides experimental support for the notion that methanogenesis could have evolved from the reductive acetyl-coenzyme A pathway.
Collapse
|
8
|
Ragab A, Shaw DR, Katuri KP, Saikaly PE. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level. Sci Rep 2020; 10:19824. [PMID: 33188217 PMCID: PMC7666199 DOI: 10.1038/s41598-020-76229-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial electrosynthesis exploits the catalytic activity of microorganisms to utilize a cathode as an electron donor for reducing waste CO2 to valuable fuels and chemicals. Electromethanogenesis is the process of CO2 reduction to CH4 catalyzed by methanogens using the cathode directly as a source of electrons or indirectly via H2. Understanding the effects of different set cathode potentials on the functional dynamics of electromethanogenic communities is crucial for the rational design of cathode materials. Replicate enriched electromethanogenic communities were subjected to different potentials (- 1.0 V and - 0.7 V vs. Ag/AgCl) and the potential-induced changes were analyzed using a metagenomic and metatranscriptomic approach. The most abundant and transcriptionally active organism on the biocathodes was a novel species of Methanobacterium sp. strain 34x. The cathode potential-induced changes limited electron donor availability and negatively affected the overall performance of the reactors in terms of CH4 production. Although high expression of key genes within the methane and carbon metabolism pathways was evident, there was no significant difference in transcriptional response to the different set potentials. The acetyl-CoA decarbonylase/synthase (ACDS) complex were the most highly expressed genes, highlighting the significance of carbon assimilation under limited electron donor conditions and its link to the methanogenesis pathway.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
McGovern E, McGee M, Byrne CJ, Kenny DA, Kelly AK, Waters SM. Investigation into the effect of divergent feed efficiency phenotype on the bovine rumen microbiota across diet and breed. Sci Rep 2020; 10:15317. [PMID: 32948787 PMCID: PMC7501277 DOI: 10.1038/s41598-020-71458-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
The relationship between rumen microbiota and host feed efficiency phenotype, for genetically divergent beef cattle breeds is unclear. This is further exacerbated when different growth stages, chemically diverse diets and production systems are considered. Residual feed intake (RFI), a measure of feed efficiency, was calculated for individually fed Charolais (CH) and Holstein-Friesian (HF) steers during each of four 70-day (excluding adaptation) successive dietary phases: namely, high-concentrate, grass silage, fresh zero-grazed grass and high-concentrate again. Rumen fluid from the ten highest- (HRFI) and ten lowest-ranking (LRFI) animals for RFI, within breed, during each dietary phase was collected using a trans-oesophageal sampler and subjected to 16S rRNA amplicon sequencing and metabolic profiling. The datasets were analysed to identify microbial and rumen fermentation markers associated with RFI status. Age, dietary phase and breed were included in the statistical model. Within breed, for each dietary phase, mid-test metabolic weight and average daily gain did not differ (P > 0.05) between HRFI and LRFI steers; however, for the initial high-concentrate, grass silage, fresh grass herbage and final high-concentrate dietary phases, HRFI HF steers consumed 19, 23, 18 and 27% more (P < 0.001) than their LRFI counterparts. Corresponding percentages for CH HRFI compared to CH LRFI steers were 18, 23, 13 and 22%. Ten OTUs were associated with RFI (q < 0.05) independent of the other factors investigated. Of these Methanomassiliicoccaceae, Mogibacteriaceae and the genus p-75-a5 of Erysipelotrichaceae and were negatively associated (q < 0.05) with RFI. The results gave evidence that microbial species could potentially be an indicator of RFI in ruminants rather than broader microbiome metrics; however, further research is required to elucidate this association.
Collapse
Affiliation(s)
- Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
- UCD, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mark McGee
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Colin J Byrne
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
- UCD, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- School of Veterinary and Life Sciences, Murdoch University, South Street, Perth, WA, 6150, Australia
| | - David A Kenny
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
- UCD, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan K Kelly
- UCD, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland.
| |
Collapse
|
10
|
Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
12
|
Improved Methanogenic Communities for Biogas Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Plane of nutrition affects the phylogenetic diversity and relative abundance of transcriptionally active methanogens in the bovine rumen. Sci Rep 2017; 7:13047. [PMID: 29026096 PMCID: PMC5638848 DOI: 10.1038/s41598-017-13013-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
Methane generated during enteric fermentation in ruminant livestock species is a major contributor to global anthropogenic greenhouse gas emissions. A period of moderate feed restriction followed by ad libitum access to feed is widely applied in cattle management to exploit the animal’s compensatory growth potential and reduce feed costs. In the present study, we utilised microbial RNA from rumen digesta samples to assess the phylogenetic diversity of transcriptionally active methanogens from feed-restricted and non-restricted animals. To determine the contribution of different rumen methanogens to methanogenesis during dietary restriction of cattle, we conducted high-throughput mcrA cDNA amplicon sequencing on an Illumina MiSeq and analysed both the abundance and phylogenetic origin of different mcrA cDNA sequences. When compared to their unrestricted contemporaries, in feed-restricted animals, the methanogenic activity, based on mcrA transcript abundance, of Methanobrevibacter gottschalkii clade increased while the methanogenic activity of the Methanobrevibacter ruminantium clade and members of the Methanomassiliicoccaceae family decreased. This study shows that the quantity of feed consumed can evoke large effects on the composition of methanogenically active species in the rumen of cattle. These data potentially have major implications for targeted CH4 mitigation approaches such as anti-methanogen vaccines and/or tailored dietary management.
Collapse
|
14
|
Phylogenetic and Structural Comparisons of the Three Types of Methyl Coenzyme M Reductase from Methanococcales and Methanobacteriales. J Bacteriol 2017; 199:JB.00197-17. [PMID: 28559298 DOI: 10.1128/jb.00197-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The phylogenetically diverse family of methanogenic archaea universally use methyl coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales and Methanococcales into three distinct types: (i) MCRs from Methanobacteriales, (ii) MCRs from Methanobacteriales and Methanococcales, and (iii) MCRs from Methanococcales The first and second types contain MCR isoenzymes I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated MCR type I and type II and accordingly; the third one was designated MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus As predicted, the three MCR types revealed highly similar overall structures and virtually identical active site architectures reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active-site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II, and III share most of the posttranslational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which thus far has been found only in the α-amanitin toxin peptide but not in proteins.IMPORTANCE Methyl coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCRs suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales, and the newly designated MCR type III exclusively from Methanococcales We determined the first X-ray structures for an MCR type III. Detailed analyses revealed substantial differences between the three types only in the peripheral region. The subtle modifications identified and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new posttranslational modification that thus far has been found only in the α-amanitin toxin.
Collapse
|
15
|
Ragsdale SW, Raugei S, Ginovska B, Wongnate T. Biochemistry of Methyl-Coenzyme M Reductase. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methanogens are masters of CO2 reduction. They conserve energy by coupling H2 oxidation to the reduction of CO2 to CH4, the primary constituent of natural gas. They also generate methane by the reduction of acetic acid, methanol, methane thiol, and methylamines. Methanogens produce 109 tons of methane per year and are the major source of the earth’s atmospheric methane. Reverse methanogenesis or anaerobic methane oxidation, which is catalyzed by methanotrophic archaea living in consortia among bacteria that can act as an electron acceptor, is responsible for annual oxidation of 108 tons of methane to CO2. This chapter briefly describes the overall process of methanogenesis and then describes the enzymatic mechanism of the nickel enzyme, methyl-CoM reductase (MCR), the key enzyme in methane synthesis and oxidation. MCR catalyzes the formation of methane and the heterodisulfide (CoBSSCoM) from methyl-coenzyme M (methyl-CoM) and coenzyme B (HSCoB). Uncovering the mechanistic and molecular details of MCR catalysis is critical since methane is an abundant and important fuel and is the second (to CO2) most prevalent greenhouse gas.
Collapse
Affiliation(s)
- Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School 1150 W. Medical Center Dr., 5301 MSRB III Ann Arbor MI 48109-0606 USA
| | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory, Post Office Box 999 K1-83 Richland WA 99352 USA
| | - Bojana Ginovska
- Physical Sciences Division, Pacific Northwest National Laboratory, Post Office Box 999 K1-83 Richland WA 99352 USA
| | - Thanyaporn Wongnate
- School of Bioresources and Technology and Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi Bangkhunthian, Bangkok 10140 Thailand
| |
Collapse
|
16
|
Wagner T, Kahnt J, Ermler U, Shima S. Didehydroaspartate Modification in Methyl‐Coenzyme M Reductase Catalyzing Methane Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Jörg Kahnt
- Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik Max-von-Laue-Strasse 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- CREST, Japan Science and Technology Agency (JST) Saitama 332-0012 Japan
| |
Collapse
|
17
|
Wagner T, Kahnt J, Ermler U, Shima S. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation. Angew Chem Int Ed Engl 2016; 55:10630-3. [PMID: 27467699 DOI: 10.1002/anie.201603882] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/02/2016] [Indexed: 12/26/2022]
Abstract
All methanogenic and methanotrophic archaea known to date contain methyl-coenzyme M reductase (MCR) that catalyzes the reversible reduction of methyl-coenzyme M to methane. This enzyme contains the nickel porphinoid F430 as a prosthetic group and, highly conserved, a thioglycine and four methylated amino acid residues near the active site. We describe herein the presence of a novel post-translationally modified amino acid, didehydroaspartate, adjacent to the thioglycine as revealed by mass spectrometry and high-resolution X-ray crystallography. Upon chemical reduction, the didehydroaspartate residue was converted into aspartate. Didehydroaspartate was found in MCR I and II from Methanothermobacter marburgensis and in MCR of phylogenetically distantly related Methanosarcina barkeri but not in MCR I and II of Methanothermobacter wolfeii, which indicates that didehydroaspartate is dispensable but might have a role in fine-tuning the active site to increase the catalytic efficiency.
Collapse
Affiliation(s)
- Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Strasse 3, 60438, Frankfurt/Main, Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043, Marburg, Germany. .,CREST, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.
| |
Collapse
|
18
|
Duin EC, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz DR, Duval S, Rümbeli R, Stemmler RT, Thauer RK, Kindermann M. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc Natl Acad Sci U S A 2016; 113:6172-7. [PMID: 27140643 PMCID: PMC4896709 DOI: 10.1073/pnas.1600298113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ruminants, such as cows, sheep, and goats, predominantly ferment in their rumen plant material to acetate, propionate, butyrate, CO2, and methane. Whereas the short fatty acids are absorbed and metabolized by the animals, the greenhouse gas methane escapes via eructation and breathing of the animals into the atmosphere. Along with the methane, up to 12% of the gross energy content of the feedstock is lost. Therefore, our recent report has raised interest in 3-nitrooxypropanol (3-NOP), which when added to the feed of ruminants in milligram amounts persistently reduces enteric methane emissions from livestock without apparent negative side effects [Hristov AN, et al. (2015) Proc Natl Acad Sci USA 112(34):10663-10668]. We now show with the aid of in silico, in vitro, and in vivo experiments that 3-NOP specifically targets methyl-coenzyme M reductase (MCR). The nickel enzyme, which is only active when its Ni ion is in the +1 oxidation state, catalyzes the methane-forming step in the rumen fermentation. Molecular docking suggested that 3-NOP preferably binds into the active site of MCR in a pose that places its reducible nitrate group in electron transfer distance to Ni(I). With purified MCR, we found that 3-NOP indeed inactivates MCR at micromolar concentrations by oxidation of its active site Ni(I). Concomitantly, the nitrate ester is reduced to nitrite, which also inactivates MCR at micromolar concentrations by oxidation of Ni(I). Using pure cultures, 3-NOP is demonstrated to inhibit growth of methanogenic archaea at concentrations that do not affect the growth of nonmethanogenic bacteria in the rumen.
Collapse
Affiliation(s)
- Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849
| | - Tristan Wagner
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Divya Prakash
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849
| | - David R Yáñez-Ruiz
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, 18008 Granada, Spain
| | - Stephane Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products France, 68305 Saint Louis, France
| | - Robert Rümbeli
- Research and Development, DSM Nutritional Products, 4002 Basel, Switzerland
| | - René T Stemmler
- Research and Development, DSM Nutritional Products, 4002 Basel, Switzerland
| | - Rudolf Kurt Thauer
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany;
| | - Maik Kindermann
- Research and Development, DSM Nutritional Products, 4002 Basel, Switzerland
| |
Collapse
|
19
|
Taubner RS, Schleper C, Firneis MG, Rittmann SKMR. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life (Basel) 2015; 5:1652-86. [PMID: 26703739 PMCID: PMC4695842 DOI: 10.3390/life5041652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Maria G Firneis
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Wongnate T, Ragsdale SW. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order. J Biol Chem 2015; 290:9322-34. [PMID: 25691570 DOI: 10.1074/jbc.m115.636761] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 01/03/2023] Open
Abstract
Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mM). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(Ni(I))·CH3SCoM) is highly favored (Kd = 79 μM). Only then can the chemical reaction occur (kobs = 20 s(-1) at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(Ni(II))·CoB7S(-)·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.
Collapse
Affiliation(s)
- Thanyaporn Wongnate
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Gräwert T, Hohmann HP, Kindermann M, Duval S, Bacher A, Fischer M. Inhibition of methyl-CoM Reductase from Methanobrevibacter ruminantium by 2-bromoethanesulfonate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12487-12490. [PMID: 25483006 DOI: 10.1021/jf505056g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cattle husbandry is a major contributor to atmospheric methane, which is considered as an important greenhouse gas. Moreover, the generation of methane in the intestine of domestic ruminants by methanogenic bacteria is a drag on feed efficacy. Studies on methanogenesis have typically implied model organisms that are, however, not relevant in the ruminant gut. This paper shows that methyl-CoM reductase catalyzing the final step of methanogenesis in Methanobrevibacter ruminantium, a major participant in methane production by cattle, is inhibited by 2-bromoethanesulfonate, a compound often used as a model in animal agriculture, with an apparent IC50 of 0.4 ± 0.04 μM.
Collapse
Affiliation(s)
- Tobias Gräwert
- Hamburg School of Food Science, Institute of Food Chemistry , Grindelallee 117, D-20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Bernacchi S, Rittmann S, H. Seifert A, Krajete A, Herwig C. Experimental methods for screening parameters influencing the growth to product yield (Y (x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS BIOENGINEERING 2014. [DOI: 10.3934/bioeng.2014.2.72] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Scheller S, Goenrich M, Thauer RK, Jaun B. Methyl-Coenzyme M Reductase from Methanogenic Archaea: Isotope Effects on the Formation and Anaerobic Oxidation of Methane. J Am Chem Soc 2013; 135:14975-84. [DOI: 10.1021/ja406485z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvan Scheller
- Laboratory
of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Meike Goenrich
- Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Bernhard Jaun
- Laboratory
of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
24
|
Rittmann S, Seifert A, Herwig C. Essential prerequisites for successful bioprocess development of biological CH4production from CO2and H2. Crit Rev Biotechnol 2013; 35:141-51. [DOI: 10.3109/07388551.2013.820685] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 2013; 15:2395-417. [DOI: 10.1111/1462-2920.12149] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Loïc Nazaries
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| | - J. Colin Murrell
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich; NR4 7TJ; UK
| | - Pete Millard
- Landcare Research; PO Box 40; Lincoln; 7604; New Zealand
| | - Liz Baggs
- Institute of Biological and Environmental Sciences; University of Aberdeen; Zoology Building; Tillydrone Avenue; Aberdeen; AB24 2TZ; Scotland; UK
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment; University of Western Sydney; Building L9; Locked Bag 1797; Penrith South; NSW; 2751; Australia
| |
Collapse
|
26
|
Wrede C, Walbaum U, Ducki A, Heieren I, Hoppert M. Localization of Methyl-Coenzyme M reductase as metabolic marker for diverse methanogenic Archaea. ARCHAEA (VANCOUVER, B.C.) 2013; 2013:920241. [PMID: 23533332 PMCID: PMC3596918 DOI: 10.1155/2013/920241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/09/2013] [Indexed: 11/23/2022]
Abstract
Methyl-Coenzyme M reductase (MCR) as key enzyme for methanogenesis as well as for anaerobic oxidation of methane represents an important metabolic marker for both processes in microbial biofilms. Here, the potential of MCR-specific polyclonal antibodies as metabolic marker in various methanogenic Archaea is shown. For standard growth conditions in laboratory culture, the cytoplasmic localization of the enzyme in Methanothermobacter marburgensis, Methanothermobacter wolfei, Methanococcus maripaludis, Methanosarcina mazei, and in anaerobically methane-oxidizing biofilms is demonstrated. Under growth limiting conditions on nickel-depleted media, at low linear growth of cultures, a fraction of 50-70% of the enzyme was localized close to the cytoplasmic membrane, which implies "facultative" membrane association of the enzyme. This feature may be also useful for assessment of growth-limiting conditions in microbial biofilms.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Ulrike Walbaum
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Andrea Ducki
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- School of Veterinary and Biomedical Sciences, Murdoch University, 90 South Street Murdoch, WA 6150, Australia
| | - Iris Heieren
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Courant Centre Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Dey M, Li X, Kunz RC, Ragsdale SW. Detection of Organometallic and Radical Intermediates in the Catalytic Mechanism of Methyl-Coenzyme M Reductase Using the Natural Substrate Methyl-Coenzyme M and a Coenzyme B Substrate Analogue. Biochemistry 2010; 49:10902-11. [DOI: 10.1021/bi101562m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mishtu Dey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xianghui Li
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan C. Kunz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010; 465:606-8. [PMID: 20520712 DOI: 10.1038/nature09015] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 03/17/2010] [Indexed: 11/08/2022]
Abstract
Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.
Collapse
|
29
|
Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH. Appl Environ Microbiol 2008; 74:6239-47. [PMID: 18757575 DOI: 10.1128/aem.02155-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.
Collapse
|
30
|
Hinderberger D, Ebner S, Mayr S, Jaun B, Reiher M, Goenrich M, Thauer RK, Harmer J. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. J Biol Inorg Chem 2008; 13:1275-89. [PMID: 18712421 DOI: 10.1007/s00775-008-0417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
Abstract
Methane formation in methanogenic Archaea is catalyzed by methyl-coenzyme M reductase (MCR) and takes place via the reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoB) to methane and the heterodisulfide CoM-S-S-CoB. MCR harbors the nickel porphyrinoid coenzyme F430 as a prosthetic group, which has to be in the Ni(I) oxidation state for the enzyme to be active. To date no intermediates in the catalytic cycle of MCRred1 (red for reduced Ni) have been identified. Here, we report a detailed characterization of MCRred1m ("m" for methyl-coenzyme M), which is the complex of MCRred1a ("a" for absence of substrate) with CH3-S-CoM. Using continuous-wave and pulse electron paramagnetic resonance spectroscopy in combination with selective isotope labeling (13C and 2H) of CH3-S-CoM, it is shown that CH3-S-CoM binds in the active site of MCR such that its thioether sulfur is weakly coordinated to the Ni(I) of F430. The complex is stable until the addition of the second substrate, HS-CoB. Results from EPR spectroscopy, along with quantum mechanical calculations, are used to characterize the electronic and geometric structure of this complex, which can be regarded as the first intermediate in the catalytic mechanism.
Collapse
Affiliation(s)
- Dariush Hinderberger
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Duin EC, McKee ML. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. J Phys Chem B 2008; 112:2466-82. [PMID: 18247503 DOI: 10.1021/jp709860c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a new DFT-based mechanism for methane production using the full F430 cofactor of MCR (methyl-coenzyme M reductase) along with a coordinated O=CH2CH2C(H)NH2C(H)O (surrogate for glutamine) as a model of the active site for conversion of CH3SCoM(-) (CH3SCH2CH2SO3(-)) + HSCoB to methane plus the corresponding heterodisulfide. The cycle begins with the protonation of F430, either on Ni or on the C-ring nitrogen of the tetrapyrrole ring, both of which are nearly equally favorable. The C-ring protonated form is predicted to oxidatively add CH3SCoM(-) to give a 4-coordinate Ni center where the Ni moves out of the plane of the four ring nitrogens. The movement of Ni (and the attached CH3 and SCH2CH2SO3(2-) ligands) toward the SCoB(-) (deprotonated HSCoB) cofactor allows a 2c-3e interaction to form between the two sulfur atoms. The release of the heterodisulfide yields a Ni(III) center with a methyl group attached. The concerted elimination of methane, where the methyl group coordinated to Ni abstracts the proton from the C-ring nitrogen, has a very small calculated activation barrier (5.4 kcal/mol). The NPA charge on Ni for the various reaction steps indicates that the oxidation state changes occur largely on the attached ligands.
Collapse
Affiliation(s)
- Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
32
|
Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J 2007; 274:4913-21. [PMID: 17725644 DOI: 10.1111/j.1742-4658.2007.06016.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. Isoenzyme I from Methanothermobacter marburgensiswas shown to contain a thioxo peptide bond and four methylated amino acids in the active site region. We report here that MCRs from all methanogens investigated contain the thioxo peptide bond, but that the enzymes differ in their post-translational methylations. The MS analysis included MCR I and MCR II from Methanothermobacter marburgensis, MCR I from Methanocaldococcus jannaschii and Methanoculleus thermophilus, and MCR from Methanococcus voltae, Methanopyrus kandleri and Methanosarcina barkeri. Two MCRs isolated from Black Sea mats containing mainly methanotrophic archaea of the ANME-1 cluster were also analyzed.
Collapse
Affiliation(s)
- Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kern DI, Goenrich M, Jaun B, Thauer RK, Harmer J, Hinderberger D. Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy. J Biol Inorg Chem 2007; 12:1097-105. [PMID: 17690920 DOI: 10.1007/s00775-007-0281-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme has two structurally interlinked active sites embedded in an alpha(2)beta(2)gamma(2) subunit structure. Each active site has the nickel porphyrinoid F(430) as a prosthetic group. In the active state, F(430) contains the transition metal in the Ni(I) oxidation state. The active enzyme exhibits an axial Ni(I)-based continuous wave (CW) electron paramagnetic resonance (EPR) signal, called red1a in the absence of substrates or red1c in the presence of coenzyme M. Addition of coenzyme B to the MCR-red1 state can partially and reversibly convert it into the MCR-red2 form, which shows a rhombic Ni(I)-based EPR signal (at X-band microwave frequencies of approximately 9.4 GHz). In this report we present evidence from high-field/high-frequency CW EPR spectroscopy (W-band, microwave frequency of approximately 94 GHz) that the red2 state consists of two substates that could not be resolved by EPR spectroscopy at X-band frequencies. At W-band it becomes apparent that upon addition of coenzyme B to MCR in the red1c state, two red2 EPR signals are induced, not one as was previously believed. The first signal is the well-characterized (ortho)rhombic EPR signal, thus far called red2, while the second previously unidentified signal is axial. We have named the two substates MCR-red2r and MCR-red2a after their rhombic and axial signals, respectively.
Collapse
Affiliation(s)
- Denise I Kern
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Harmer J, Finazzo C, Piskorski R, Bauer C, Jaun B, Duin EC, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A. Spin Density and Coenzyme M Coordination Geometry of the ox1 Form of Methyl-Coenzyme M Reductase: A Pulse EPR Study. J Am Chem Soc 2005; 127:17744-55. [PMID: 16351103 DOI: 10.1021/ja053794w] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (H-S-CoB) to CH4 and CoM-S-S-CoB in methanogenic archaea. Here we present a pulse EPR study of the "ready" form MCR(ox1), providing a detailed description of the spin density and the coordination of coenzyme M (CoM) to the Ni cofactor F430. To achieve this, MCR was purified from cells grown in a 61Ni enriched medium and samples were prepared in D2O with the substrate analogue CoM either deuterated in the beta-position or with 33S in the thiol group. To obtain the magnetic parameters ENDOR and HYSCORE measurements were done at X- and Q-band, and CW EPR, at X- and W-band. The hyperfine couplings of the beta-protons of CoM indicate that the nickel to beta-proton distances in MCR(ox1) are very similar to those in Ni(II)-MCR(ox1-silent), and thus the position of CoM relative to F430 is very similar in both species. Our thiolate sulfur and nickel EPR data prove a Ni-S coordination, with an unpaired spin density on the sulfur of 7 +/- 3%. These results highlight the redox-active or noninnocent nature of the sulfur ligand on the oxidation state. Assuming that MCR(ox1) is oxidized relative to the Ni(II) species, the complex is formally best described as a Ni(III) (d7) thiolate in resonance with a thiyl radical/high-spin Ni(II) complex, Ni(III)-(-)SR <--> Ni(II)-*SR.
Collapse
Affiliation(s)
- Jeffrey Harmer
- Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goenrich M, Duin EC, Mahlert F, Thauer RK. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J Biol Inorg Chem 2005; 10:333-42. [PMID: 15846525 DOI: 10.1007/s00775-005-0636-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH(3)-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an alpha(2)beta(2)gamma(2) subunit structure forming two structurally interlinked active sites each with a molecule F(430) as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV-vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV-vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20 degrees C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.
Collapse
Affiliation(s)
- Meike Goenrich
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
Methyl-coenzyme M reductase (MCR) catalyzes the reaction of methyl-coenzyme M (CH3-SCoM) and coenzyme B (HS-CoB) to methane and the corresponding heterodisulfide CoM-S-S-CoB. This unique reaction proceeds under strictly anaerobic conditions in the presence of coenzyme F430, a Ni-porphinoid. MCR is a large (alphabetagamma)2 heterohexameric protein complex containing two 50 A long active sites channels. Coenzyme F430 is embedded at the channel bottom and the substrates CH3-SCoM and HS-CoB bind in front of F430 into a solvent free and hydrophobic channel segment. Two principally different catalytic mechanisms are currently discussed. Mechanism I is based on a nucleophilic attack of Ni(I) onto the methyl group of CH3-SCoM yielding methyl-Ni(III) and mechanism II on an attack of Ni(I) onto the thioether sulfur of CH3-SCoM generating a Ni(II)-SCoM intermediate. Both mechanisms are discussed in the light of a large number of data collected about MCR over the last twenty years.
Collapse
Affiliation(s)
- Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60438, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J Biol Inorg Chem 2004; 9:691-705. [PMID: 15365904 DOI: 10.1007/s00775-004-0552-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 04/21/2004] [Indexed: 11/24/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH(3)-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. It contains the nickel porphyrinoid F(430) as prosthetic group which has to be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-derived EPR signal MCR-red1. We report here on experiments with methyl-coenzyme M analogues showing how they affect the activity and the MCR-red1 signal of MCR from Methanothermobacter marburgensis. Ethyl-coenzyme M was the only methyl-coenzyme M analogue tested that was used by MCR as a substrate. Ethyl-coenzyme M was reduced to ethane (apparent K(M)=20 mM; apparent V(max)=0.1 U/mg) with a catalytic efficiency of less than 1% of that of methyl-coenzyme M reduction to methane (apparent K(M)=5 mM; apparent V(max)=30 U/mg). Propyl-coenzyme M (apparent K(i)=2 mM) and allyl-coenzyme M (apparent K(i)=0.1 mM) were reversible inhibitors. 2-Bromoethanesulfonate ([I](0.5 V)=2 micro M), cyano-coenzyme M ([I](0.5 V)=0.2 mM), 3-bromopropionate ([I](0.5 V)=3 mM), seleno-coenzyme M ([I](0.5 V)=6 mM) and trifluoromethyl-coenzyme M ([I](0.5 V)=6 mM) irreversibly inhibited the enzyme. In their presence the MRC-red1 signal was quenched, indicating the oxidation of Ni(I) to Ni(II). The rate of oxidation increased over 10-fold in the presence of coenzyme B, indicating that the Ni(I) reactivity was increased in the presence of coenzyme B. Enzyme inactivated in the presence of coenzyme B showed an isotropic signal characteristic of a radical that is spin coupled with one hydrogen nucleus. The coupling was also observed in D(2)O. The signal was abolished upon exposure of the enzyme to O(2). 3-Bromopropanesulfonate ([I](0.5 V)=0.1 micro M), 3-iodopropanesulfonate ([I](0.5 V)=1 micro M), and 4-bromobutyrate also inactivated MCR. In their presence the EPR signal of MCR-red1 was converted into a Ni-based EPR signal MCR-BPS that resembles in line shape the MCR-ox1 signal. The signal was quenched by O(2). 2-Bromoethanesulfonate and 3-bromopropanesulfonate, which both rapidly reacted with Ni(I) of MRC-red1, did not react with the Ni of MCR-ox1 and MCR-BPS. The Ni-based EPR spectra of both inactive forms were not affected in the presence of high concentrations of these two potent inhibitors.
Collapse
Affiliation(s)
- Meike Goenrich
- Max-Planck-Institut für Terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Duin EC, Signor L, Piskorski R, Mahlert F, Clay MD, Goenrich M, Thauer RK, Jaun B, Johnson MK. Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms. J Biol Inorg Chem 2004; 9:563-76. [PMID: 15160314 DOI: 10.1007/s00775-004-0549-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F(430), a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F(430) in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F(430), variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F(430)M) in the (+)1, (+)2 and (+)3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle pi orbitals that are unique to Ni(I) forms of F(430). Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d-d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F(430) macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.
Collapse
Affiliation(s)
- Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Luo HW, Zhang H, Suzuki T, Hattori S, Kamagata Y. Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs. Appl Environ Microbiol 2002; 68:1173-9. [PMID: 11872465 PMCID: PMC123741 DOI: 10.1128/aem.68.3.1173-1179.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in methanogenesis in a thermophilic hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain TM, was investigated both in a pure culture sufficiently supplied with H(2) plus CO(2) and in a coculture with an acetate-oxidizing hydrogen-producing bacterium, Thermacetogenium phaeum strain PB, in which hydrogen partial pressure was constantly kept very low (20 to 80 Pa). Northern blot analysis indicated that only the mcr gene, which encodes methyl coenzyme M reductase I (MRI), catalyzing the final step of methanogenesis, was expressed in the coculture, whereas mcr and mrt, which encodes methyl coenzyme M reductase II (MRII), the isofunctional enzyme of MRI, were expressed at the early to late stage of growth in the pure culture. In contrast to these two genes, two isofunctional genes (mtd and mth) for N(5),N(10)-methylene-tetrahydromethanopterin dehydrogenase, which catalyzes the fourth step of methanogenesis, and two hydrogenase genes (frh and mvh) were expressed both in a pure culture and in a coculture at the early and late stages of growth. The same expression pattern was observed for Methanothermobacter thermoautotrophicus strain DeltaH cocultured with a thermophilic butyrate-oxidizing syntroph, Syntrophothermus lipocalidus strain TGB-C1. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole proteins of M. thermoautotrophicus strain TM obtained from a pure culture and a coculture with the acetate-oxidizing syntroph and subsequent N-terminal amino acid sequence analysis confirmed that MRI and MRII were produced in the pure culture, while only MRI was produced in the coculture. These results indicate that under syntrophic growth conditions, the methanogen preferentially utilizes MRI but not MRII. Considering that hydrogenotrophic methanogens are strictly dependent for growth on hydrogen-producing fermentative microbes in the natural environment and that the hydrogen supply occurs constantly at very low concentrations compared with the supply in pure cultures in the laboratory, the results suggest that MRI is an enzyme primarily functioning in natural methanogenic ecosystems.
Collapse
Affiliation(s)
- Hong-Wei Luo
- Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | | | | | |
Collapse
|
40
|
Horng YC, Becker DF, Ragsdale SW. Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: evidence that coenzyme B participates in cleaving the C-S bond of methyl-coenzyme M. Biochemistry 2001; 40:12875-85. [PMID: 11669624 DOI: 10.1021/bi011196y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl-coenzyme M reductase (MCR), the key enzyme in methanogenesis, catalyzes methane formation from methyl-coenzyme M (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoBSH). Steady-state and presteady-state kinetics have been used to test two mechanistic models that contrast in the role of CoBSH in the MCR-catalyzed reaction. In class 1 mechanisms, CoBSH is integrally involved in methane formation and in C-S (methyl-SCoM) bond cleavage. On the other hand, in class 2 mechanisms, methane is formed in the absence of CoBSH, which functions to regenerate active MCR after methane is released. Steady-state kinetic studies are most consistent with a ternary complex mechanism in which CoBSH binds before methane is formed, as found earlier [Bonacker et al. (1993) Eur. J. Biochem. 217, 587-595]. Presteady-state kinetic experiments at high MCR concentrations are complicated by the presence of tightly bound CoBSH in the purified enzyme. Chemical quench studies in which (14)CH(3)-SCoM is rapidly reacted with active MCRred1 in the presence versus the absence of added CoBSH indicate that CoBSH is required for a single-turnover of methyl-SCoM to methane. Similar single turnover studies using a CoBSH analogue leads to the same conclusion. The results are consistent with class 1 mechanisms in which CoBSH is integrally involved in methane formation and in C-S (methyl-SCoM) bond cleavage and are inconsistent with class 2 mechanisms in which CoBSH binds after methane is formed. These are the first reported pre-steady-state kinetic studies of MCR.
Collapse
Affiliation(s)
- Y C Horng
- Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | |
Collapse
|
41
|
Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J Mol Biol 2000; 303:329-44. [PMID: 11023796 DOI: 10.1006/jmbi.2000.4136] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea. In this reaction methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B. The crystal structures of methyl-coenzyme M reductase from Methanosarcina barkeri (growth temperature optimum, 37 degrees C) and Methanopyrus kandleri (growth temperature optimum, 98 degrees C) were determined and compared with the known structure of MCR from Methanobacterium thermoautotrophicum (growth temperature optimum, 65 degrees C). The active sites of MCR from M. barkeri and M. kandleri were almost identical to that of M. thermoautotrophicum and predominantly occupied by coenzyme M and coenzyme B. The electron density at 1.6 A resolution of the M. barkeri enzyme revealed that four of the five modified amino acid residues of MCR from M. thermoautotrophicum, namely a thiopeptide, an S-methylcysteine, a 1-N-methylhistidine and a 5-methylarginine were also present. Analysis of the environment of the unusual amino acid residues near the active site indicates that some of the modifications may be required for the enzyme to be catalytically effective. In M. thermoautotrophicum and M. kandleri high temperature adaptation is coupled with increasing intracellular concentrations of lyotropic salts. This was reflected in a higher fraction of glutamate residues at the protein surface of the thermophilic enzymes adapted to high intracellular salt concentrations.
Collapse
Affiliation(s)
- W Grabarse
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
42
|
Hoppert M, Mayer F. Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys 2000; 31:247-84. [PMID: 10736750 DOI: 10.1007/bf02738242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structural organization of the cytoplasm by compartmentation is a well established fact for the eukaryotic cell. In prokaryotes, compartmentation is less obvious. Most prokaryotes do not need intracytoplasmic membranes to maintain their vital functions. This review, especially dealing with prokaryotes, will point out that compartmentation in prokaryotes is present, but not only achieved by membranes. Besides membranes, the nucleoid, multienzyme complexes and metabolons, storage granules, and cytoskeletal elements are involved in compartmentation. In this respect, the organization of the cytoplasm of prokaryotes is similar to that in the eukaryotic cell. Compartmentation influences properties of water in cells.
Collapse
Affiliation(s)
- M Hoppert
- Abteilung Strukfurelle Mikrobiologie, Georg-August-Universitat, Göttingen, Germany.
| | | |
Collapse
|
43
|
Abstract
Methanoarchaea, the largest and most phylogenetically diverse group in the Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. All of the pathways have in common the two-electron reduction of methyl-coenzyme M to methane catalyzed by methyl-coenzyme M reductase but deviate in the source of the methyl group transferred to coenzyme M. Most of the methane produced in nature derives from acetate in a pathway where the activated substrate is cleaved by CO dehydrogenase/acetyl-CoA synthase and the methyl group is transferred to coenzyme M via methyltetrahydromethanopterin or methyltetrahydrosarcinapterin. Electrons for reductive demethylation of the methyl-coenzyme M originate from oxidation of the carbonyl group of acetate to carbon dioxide by the synthase. In the other major pathway, formate or H2 is oxidized to provide electrons for reduction of carbon dioxide to the methyl level and reduction of methyl-coenzyme to methane. Methane is also produced from the methyl groups of methanol and methylamines. In these pathways specialized methyltransferases transfer the methyl groups to coenzyme M. Electrons for reduction of the methyl-coenzyme M are supplied by oxidation of the methyl groups to carbon dioxide by a reversal of the carbon dioxide reduction pathway. Recent progress on the enzymology of one-carbon reactions in these pathways has raised the level of understanding with regard to the physiology and molecular biology of methanogenesis. These advances have also provided a foundation for future studies on the structure/function of these novel enzymes and exploitation of the recently completed sequences for the genomes from the methanoarchaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii.
Collapse
Affiliation(s)
- J G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16801, USA.
| |
Collapse
|
44
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
45
|
Simianu M, Murakami E, Brewer JM, Ragsdale SW. Purification and properties of the heme- and iron-sulfur-containing heterodisulfide reductase from Methanosarcina thermophila. Biochemistry 1998; 37:10027-39. [PMID: 9665708 DOI: 10.1021/bi9726483] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heterodisulfide reductase (HDR) from Methanosarcina thermophila was purified to homogeneity from acetate-grown cells. In the absence of detergents, HDR consisted of an eight-protein complex with hydrogenase activity. However, when HDR was purified in the presence of 0.6% Triton X-100, a two-subunit (53 and 27 kDa) high specific activity ( approximately 200 units mg-1) enzyme was obtained that lacked hydrogenase activity. Sedimentation equilibrium experiments demonstrated that HDR has a molecular mass of 206 kDa and a high partial specific volume (0.9 cm3/g), indicating that the purified protein contains a significant amount of bound lipid. Like the HDR from Methanosarcina barkeri [Kunkel, A., Vaupel, M., Heim, S., Thauer, R. K., and Hedderich, R. (1997) Eur. J. Biochem. 244, 226-234], it was found to contain two discrete b-type hemes in the small subunit and two distinct [Fe4S4]2+/1+ clusters in the large subunit. One heme is high-spin and has a high midpoint potential (-23 mV), whereas the other heme apparently is low-spin and exhibits a relatively low midpoint potential (-180 mV). Only the high-spin heme binds CO. The midpoint potentials for the two clusters are -100 and -400 mV. In the fully reduced state, a complicated EPR spectrum with g values of 2.03, 1.97, 1.92, and 1.88 was observed. This spectrum resembles that of 8Fe ferredoxins in the fully reduced state, indicating that the two clusters in HDR are near enough to experience relatively strong dipolar interactions. Kinetic studies in which CO oxidation is coupled to heterodisulfide reduction strongly indicate that a membrane-associated compound is the direct electron donor to HDR. An electron-transfer pathway is presented that postulates a mechanism for coupling electron transport to proton translocation.
Collapse
Affiliation(s)
- M Simianu
- Department of Biochemistry, The Beadle Center, University of Nebraska, Lincoln 68588-0664, USA
| | | | | | | |
Collapse
|
46
|
Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 1997; 278:1457-62. [PMID: 9367957 DOI: 10.1126/science.278.5342.1457] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Methyl-coenzyme M reductase (MCR), the enzyme responsible for the microbial formation of methane, is a 300-kilodalton protein organized as a hexamer in an alpha2beta2gamma2 arrangement. The crystal structure of the enzyme from Methanobacterium thermoautotrophicum, determined at 1.45 angstrom resolution for the inactive enzyme state MCRox1-silent, reveals that two molecules of the nickel porphinoid coenzyme F430 are embedded between the subunits alpha, alpha', beta, and gamma and alpha', alpha, beta', and gamma', forming two identical active sites. Each site is accessible for the substrate methyl-coenzyme M through a narrow channel locked after binding of the second substrate coenzyme B. Together with a second structurally characterized enzyme state (MCRsilent) containing the heterodisulfide of coenzymes M and B, a reaction mechanism is proposed that uses a radical intermediate and a nickel organic compound.
Collapse
Affiliation(s)
- U Ermler
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strabetae 7, 60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
47
|
Vermeij P, Pennings JL, Maassen SM, Keltjens JT, Vogels GD. Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH. J Bacteriol 1997; 179:6640-8. [PMID: 9352911 PMCID: PMC179590 DOI: 10.1128/jb.179.21.6640-6648.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methanobacterium thermoautotrophicum deltaH was grown in a fed-batch fermentor and in a chemostat under a variety of 80% hydrogen-20% CO2 gassing regimes. During growth or after the establishment of steady-state conditions, the cells were analyzed for the content of adenylylated coenzyme F420 (factor F390-A) and other methanogenic cofactors. In addition, cells collected from the chemostat were measured for methyl coenzyme M reductase isoenzyme (MCR I and MCR II) content as well as for specific activities of coenzyme F420-dependent and H2-dependent methylenetetrahydromethanopterin dehydrogenase (F420-MDH and H2-MDH, respectively), total (viologen-reducing) and coenzyme F420-reducing hydrogenase (FRH), factor F390 synthetase, and factor F390 hydrolase. The experiments were performed to investigate how the intracellular F390 concentrations changed with the growth conditions used and how the variations were related to changes in levels of enzymes that are known to be differentially expressed. The levels of factor F390 varied in a way that is consistently understood from the biochemical mechanisms underlying its synthesis and degradation. Moreover, a remarkable correlation was observed between expression levels of MCR I and II, F420-MDH, and H2-MDH and the cellular contents of the factor. These results suggest that factor F390 is a reporter compound for hydrogen limitation and may act as a response regulator of methanogenic metabolism.
Collapse
Affiliation(s)
- P Vermeij
- Department of Microbiology, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
49
|
Goubeaud M, Schreiner G, Thauer RK. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:110-4. [PMID: 9030728 DOI: 10.1111/j.1432-1033.1997.00110.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nickel porphinoid, coenzyme F430, is the prosthetic group of methyl-coenzyme M reductase. The active form of the enzyme exhibits Ni-EPR signals designated as MCR-red1 and MCR-red2. The inactive form of the enzyme is either EPR silent or it exhibits a distinct Ni-EPR signal designated MCR-ox1. Evidence is presented here that the MCR-ox1 form of the enzyme can be converted in vitro to the MCR-red1 form by reduction with titanium(III) citrate at pH 9. During conversion, the specific activity increases with increasing MCR-red1 spin concentration from 2 U/mg to approximately 100 U/mg at spin concentrations higher than 80%. The reduced methyl-coenzyme-M reductase shows an ultraviolet/visible spectrum characteristic for coenzyme F430 in the Ni(I) oxidation state, with maxima at 386 nm and at 750 nm. The results indicate that methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the Ni(I) oxidation state. The experiments were performed with purified methyl-coenzyme-M reductase isoenzyme I of Methanobacterium thermoautotrophicum (strain Marburg).
Collapse
Affiliation(s)
- M Goubeaud
- Max-Planck-Institut für terrestrische Mikrobiologie, Philipps-Universität, Marburg, Germany
| | | | | |
Collapse
|
50
|
Keltjens JT, Vogels GD. Metabolic regulation in methanogenic archaea during growth on hydrogen and CO2. ENVIRONMENTAL MONITORING AND ASSESSMENT 1996; 42:19-37. [PMID: 24193491 DOI: 10.1007/bf00394040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methanogenic Archaea represent a unique group of micro-organisms in their ability to derive their energy for growth from the conversion of their substrates to methane. The common substrates are hydrogen and CO2. The energy obtained in the latter conversion is highly dependent on the hydrogen concentration which may dramatically vary in their natural habitats and under laboratory conditions. In this review the bio-energetic consequences of the variations in hydrogen supply will be investigated. It will be described how the organisms seem to be equipped as to their methanogenic apparatus to cope with extremes in hydrogen availability and how they could respond to hydrogen changes by the regulation of their metabolism.
Collapse
Affiliation(s)
- J T Keltjens
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld, NL-6525 ED, Nijmegen, The Netherlands
| | | |
Collapse
|