1
|
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations. Anaerobe 2022; 76:102600. [PMID: 35709938 PMCID: PMC9831356 DOI: 10.1016/j.anaerobe.2022.102600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023]
Abstract
Stickland amino acid fermentations occur primarily among species of Clostridia. An ancient form of metabolism, Stickland fermentations use amino acids as electron acceptors in the absence of stronger oxidizing agents and provide metabolic capabilities to support growth when other fermentable substrates, such as carbohydrates, are lacking. The reactions were originally described as paired fermentations of amino acid electron donors, such as the branched-chain amino acids, with recipients that include proline and glycine. We present a redox-focused view of Stickland metabolism following electron flow through metabolically diverse oxidative reactions and the defined-substrate reductase systems, including for proline and glycine, and the role of dual redox pathways for substrates such as leucine and ornithine. Genetic studies and Environment and Gene Regulatory Interaction Network (EGRIN) models for the pathogen Clostridioides difficile have improved our understanding of the regulation and metabolic recruitment of these systems, and their functions in modulating inter-species interactions within host-pathogen-commensal systems and uses in industrial and environmental applications.
Collapse
|
2
|
|
3
|
Gröbe T, Reuter M, Gursinsky T, Söhling B, Andreesen JR. Peroxidase activity of selenoprotein GrdB of glycine reductase and stabilisation of its integrity by components of proprotein GrdE from Eubacterium acidaminophilum. Arch Microbiol 2006; 187:29-43. [PMID: 17009022 DOI: 10.1007/s00203-006-0169-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/09/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The anaerobe Eubacterium acidaminophilum has been shown to contain an uncharacterized peroxidase, which may serve to protect the sensitive selenoproteins in that organism. We purified this peroxidase and found that it was identical with the substrate-specific "protein B"-complex of glycine reductase. The "protein B"-complex consists of the selenocysteine-containing GrdB subunit and two subunits, which derive from the GrdE proprotein. The specific peroxidase activity was 1.7 U (mg protein)(-1) with DTT and cumene hydroperoxide as substrates. Immunoprecipitation experiments revealed that GrdB was important for DTT- and NADH-dependent peroxidase activities in crude extracts, whereas the selenoperoxiredoxin PrxU could be depleted without affecting these peroxidase activities. GrdB could be heterologously produced in Escherichia coli with coexpression of selB and selC from E. acidaminophilum for selenocysteine insertion. Although GrdB was sensitive to proteolysis, some full-size protein was present which accounted for a peroxidase activity of about 0.5 U (mg protein)(-1) in these extracts. Mutation of the potentially redox-active UxxCxxC motif in GrdB resulted in still significant, but decreased activity. Heterologous GrdB was protected from degradation by full-length GrdE or by GrdE-domains. The GrdB-GrdE interaction was confirmed by copurification of GrdE with Strep-tagged GrdB. The data suggest that GrdE domains serve to stabilise GrdB.
Collapse
Affiliation(s)
- Tina Gröbe
- Institute of Chemistry/Biochemistry, FU Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
4
|
Matsugi J, Murao K. Genomic investigation of the system for selenocysteine incorporation in the bacterial domain. ACTA ACUST UNITED AC 2004; 1676:23-32. [PMID: 14732487 DOI: 10.1016/j.bbaexp.2003.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The elucidation of nearly 100 bacterial genomes has made it possible to categorize them into two groups, according to the presence or absence of a selenocysteine (Sec) tRNA. In the group with the tRNA, a Sec incorporation system like that of Escherichia coli would be expected. However, for the other group, the following question has been left unsolved. Is it reasonable to assume that bacteria without the tRNA lack the entire Sec system, and do such bacteria exist commonly? To explore it experimentally, we chose Bacillus subtilis, a representative eubacterium for which a Sec tRNA has not been found. First, we reviewed the genome to search for the tRNA gene. Second, we examined the possible expression of an unknown tRNA. Third, we examined Sec-related enzymes and proteins in B. subtilis cell extracts. Fourth, the B. subtilis and E. coli seryl-tRNA synthetases were expressed, and the specificity was analyzed. Consequently, all of the data showed negative results about the existence of the Sec system in B. subtilis. Additionally, we discuss the possibility of predicting the existence or absence of the system in each bacterial organism by using the Sec tRNA and seryl-tRNA synthetase as indicators.
Collapse
Affiliation(s)
- Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical School, 3311-1 Yakushiji Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan.
| | | |
Collapse
|
5
|
Kohlstock UM, Rücknagel KP, Reuter M, Schierhorn A, Andreesen JR, Söhling B. Cys359 of GrdD is the active-site thiol that catalyses the final step of acetyl phosphate formation by glycine reductase from Eubacterium acidaminophilum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6417-25. [PMID: 11737196 DOI: 10.1046/j.0014-2956.2001.02590.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the amino-acid-fermenting anaerobe Eubacterium acidaminophilum, acetyl phosphate is synthesized by protein C of glycine reductase from a selenoprotein A-bound carboxymethyl-selenoether. We investigated specific thiols present in protein C for responsibility for acetyl phosphate liberation. After cloning of the genes encoding the large and the small subunit (grdC1, grdD1), they were expressed separately in Escherichia coli and purified as Strep-tag proteins. GrdD was the only subunit that catalysed arsenate-dependent hydrolysis of acetyl phosphate (up to 274 U.mg-1), whereas GrdC was completely inactive. GrdD contained two cysteine residues that were exchanged by site-directed mutagenesis. The GrdD(C98S) mutant enzyme still catalysed the hydrolysis of acetyl phosphate, but the GrdD(C359A) mutant enzyme was completely inactive. Next, these thiols were analysed further by chemical modification. After iodoacetate treatment of GrdD, the enzyme activity was lost, but in the presence of acetyl phosphate enzyme activity was protected. Subsequently, the inactivated carboxymethylated enzyme and the protected enzyme were both denatured, and the remaining thiols were pyridylethylated. Peptides generated by proteolytic cleavage were separated and subjected to mass spectrometry. Cys98 was not accessible to carboxymethylation by iodoacetate in the native enzyme in the presence or absence of the substrate, but could be alkylated after denaturation. Cys359, in contrast, was protected from carboxymethylation in the presence of acetyl phosphate, but became accessible to pyridylethylation upon prior denaturation of the protein. This clearly confirmed the catalytic role of Cys359 as the active site thiol of GrdD responsible for liberation of acetyl phosphate.
Collapse
Affiliation(s)
- U M Kohlstock
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Kabisch UC, Gräntzdörffer A, Schierhorn A, Rücknagel KP, Andreesen JR, Pich A. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J Biol Chem 1999; 274:8445-54. [PMID: 10085076 DOI: 10.1074/jbc.274.13.8445] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly active D-proline reductase was obtained from Clostridium sticklandii by a modified purification scheme. The cytoplasmic enzyme had a molecular mass of about 870 kDa and was composed of three subunits with molecular masses of 23, 26, and 45 kDa. The 23-kDa subunit contained a carbonyl group at its N terminus, which could either be labeled with fluorescein thiosemicarbazide or removed by o-phenylenediamine; thus, N-terminal sequencing became feasible for this subunit. L-[14C]proline was covalently bound to the 23-kDa subunit if proline racemase and NaBH4 were added. Selenocysteine was detected in the 26-kDa subunit, which correlated with an observed selenium content of 10.6 g-atoms in D-proline reductase. No other non-proteinaceous cofactor was identified in the enzyme. A 4.8-kilobase pair (kb) EcoRI fragment was isolated and sequenced containing the two genes prdA and prdB. prdA coding for a 68-kDa protein was most likely translated as a proprotein that was posttranslationally cleaved at a threonine-cysteine site to give the 45-kDa subunit and most probably a pyruvoyl-containing 23-kDa subunit. The gene prdB encoded the 26-kDa subunit and contained an in frame UGA codon for selenocysteine insertion. prdA and prdB were transcribed together on a transcript of 4.5 kb; prdB was additionally transcribed as indicated by a 0.8-kb mRNA species.
Collapse
Affiliation(s)
- U C Kabisch
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-6099 Halle, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Wagner M, Sonntag D, Grimm R, Pich A, Eckerskorn C, Söhling B, Andreesen JR. Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Biochemical and molecular analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:38-49. [PMID: 10091582 DOI: 10.1046/j.1432-1327.1999.00107.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.
Collapse
Affiliation(s)
- M Wagner
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Andreesen JR, Wagner M, Sonntag D, Kohlstock M, Harms C, Gursinsky T, Jäger J, Parther T, Kabisch U, Gräntzdörffer A, Pich A, Söhling B. Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. Biofactors 1999; 10:263-70. [PMID: 10609892 DOI: 10.1002/biof.5520100226] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electron transfer reactions for the reduction of glycine in Eubacterium acidaminophilum involve many selenocysteine (U)- and thiol-containing proteins, as shown by biochemical and molecular analysis. These include an unusual thioredoxin system (-CXXC-), protein A (-CXXU-) and the substrate-specific protein B of glycine reductase (-UXXCXXC-). Most probably a selenoether is formed at protein B by splitting the C-N-bond after binding of the substrate. The carboxymethyl group is then transferred to the selenocysteine of protein A containing a conserved motif. The latter protein acts as a carbon and electron donor by giving rise to a protein C-bound acetyl-thioester and a mixed selenide-sulfide bond at protein A that will be reduced by the thioredoxin system. The dithiothreitol-dependent D-proline reductase of Clostridium sticklandii exhibits many similarities to protein B of glycine reductase including the motif containing selenocysteine. In both cases proprotein processing at a cysteine residue gives rise to a blocked N-terminus, most probably a pyruvoyl group. Formate dehydrogenase and some other proteins from E. acidaminophilum contain selenocysteine, e.g., a 22 kDa protein showing an extensive homology to peroxiredoxins involved in the detoxification of peroxides.
Collapse
Affiliation(s)
- J R Andreesen
- Institut für Mikrobiologie, Martin-Luther Universität Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pott AS, Dahl C. Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1881-1894. [PMID: 9695921 DOI: 10.1099/00221287-144-7-1881] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sequence of the dsr gene region of the phototrophic sulfur bacterium Chromatium vinosum D (DSMZ 180) was determined to clarify the in vivo role of 'reverse' sirohaem sulfite reductase. The dsrAB genes encoding dissimilatory sulfite reductase are part of a gene cluster, dsrABEFHCMK, that encodes four small, soluble proteins (DsrE, DsrF, DsrH and DsrC), a transmembrane protein (DsrM) with similarity to haem-b-binding polypeptides and a soluble protein (DsrK) resembling [4Fe-4S]-cluster-containing heterodisulfide reductase from methanogenic archaea. Northern hybridizations showed that expression of the dsr genes is increased by the presence of reduced sulfur compounds. The dsr genes are not only transcribed from a putative promoter upstream of dsrA but primary transcripts originating from (a) transcription start site(s) downstream of dsrB are also formed. Polar insertion mutations immediately upstream of dsrA, and in dsrB, dsrH and dsrM, led to an inability of the cells to oxidize intracellularly stored sulfur. The capability of the mutants to oxidize sulfide, thiosulfate and sulfite under photolithoautotrophic conditions was unaltered. Photoorganoheterotrophic growth was also unaffected. 'Reverse' sulfite reductase and DsrEFHCMK are, therefore, not essential for oxidation of sulfide or thiosulfate, but are obligatory for sulfur oxidation. These results, together with the finding that the sulfur globules of C. vinosum are located in the extracytoplasmic space whilst the dsr gene products appear to be either cytoplasmic or membrane-bound led to the proposal of new models for the pathway of sulfur oxidation in this phototrophic sulfur bacterium.
Collapse
|
10
|
Harms C, Meyer MA, Andreesen JR. Fast purification of thioredoxin reductases and of thioredoxins with an unusual redox-active centre from anaerobic, amino-acid-utilizing bacteria. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 3):793-800. [PMID: 9534247 DOI: 10.1099/00221287-144-3-793] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thioredoxin reductase and thioredoxin are primarily involved in catabolic metabolism as important electron carriers in anaerobic, amino-acid-degrading bacteria. A general and fast procedure was developed for the purification of thioredoxin reductase and thioredoxin from Eubacterium acidaminophilum, Clostridium litorale, C. sticklandii, C. sporogenes, C. cylindrosporum and 'Tissierella creatinophila' based upon their properties: the binding to 2',5'-AMP-Sepharose by thioredoxin reductase and the inability of thioredoxins to bind to a DEAE-Sephacel column. The consensus sequence at the active site of thioredoxins (-WCGPC-) was found to be modified in all of these anaerobes: Trp-31 (Escherichia coli nomenclature) was replaced by Gly or Ser, Gly-33 by Val or Glu. None of these thioredoxins reacted with thioredoxin reductase of E. coli or vice versa, but they did interact with the thioredoxin reductases obtained from the other anaerobes studied. Based upon their distinguishing features it is suggested that these thioredoxins might form an evolutionarily separate group.
Collapse
Affiliation(s)
- Claudia Harms
- Institut für Mikrobiologie der Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Manfred A Meyer
- Institut für Mikrobiologie der Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jan R Andreesen
- Institut für Mikrobiologie der Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06099 Halle, >Germany
| |
Collapse
|
11
|
Jacquot JP, Lancelin JM, Meyer Y. Thioredoxins: structure and function in plant cells. THE NEW PHYTOLOGIST 1997; 136:543-570. [PMID: 33863109 DOI: 10.1046/j.1469-8137.1997.00784.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thioredoxins are ubiquitous small-molecular-weight proteins (typically 100-120 amino-acid residues) containing an extremely reactive disulphide bridge with a highly conserved sequence -Cys-Gly(Ala/Pro)-Pro-Cys-. In bacteria and animal cells, thioredoxins participate in multiple reactions which require reduction of disulphide bonds on selected target proteins/ enzymes. There is now ample biochemical evidence that thioredoxins exert very specific functions in plants, the best documented being the redox regulation of chloroplast enzymes. Another area in which thioredoxins are believed to play a prominent role is in reserve protein mobilization during the process of germination. It has been discovered that thioredoxins constitute a large multigene family in plants with different-subcellular localizations, a unique feature in living cells so far. Evolutionary studies based on these molecules will be discussed, as well as the available biochemical and genetic evidence related to their functions in plant cells. Eukaryotic photosynthetic plant cells are also unique in that they possess two different reducing systems, one extrachloroplastic dependent on NADPH as an electron donor, and the other one chloroplastic, dependent on photoreduced ferredoxin. This review will examine in detail the latest progresses in the area of thioredoxin structural biology in plants, this protein being an excellent model for this purpose. The structural features of the reducing enzymes ferredoxin thioredoxin reductase and NADPH thioredoxin reductase will also be described. The properties of the target enzymes known so far in plants will be detailed with special emphasis on the structural features which make them redox regulatory. Based on sequence analysis, evidence will be presented that redox regulation of enzymes of the biosynthetic pathways first appeared in cyanobacteria possibly as a way to cope with the oxidants produced by oxygenic photosynthesis. It became more elaborate in the chloroplasts of higher plants where a co-ordinated functioning of the chloroplastic and extra chloroplastic metabolisms is required. CONTENTS Summary 543 I. Introduction 544 II. Thioredoxins from photosynthetic organisms as a structural model 545 III. Physiological functions 552 IV. The thioredoxin reduction systems 556 V. Structural aspects of target enzymes 558 VI. Concluding remarks 563 Acknowledgements 564 References 564.
Collapse
Affiliation(s)
- Jean-Pierre Jacquot
- Institut de Biotechnologie des Plantes, URA 1128 CNRS, Université de Paris-Sud, Bâilment 630, 91405 Orsay Cedex, France
| | - Jean-Marc Lancelin
- Laboratoire de RMN Biomoléculaire, ESA 5078 CNRS, Université de Lyon 1 et CPE-Lyon, Bâilment 308, 69622 Villeurbanne Cedex France
| | - Yves Meyer
- Laboratoire de Physiologic et Biologie Moléculaire des Plantes, UMR 5545 CNRS, Université de Perpignan, 66025 Perpignan Cedex France
| |
Collapse
|
12
|
Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot JP, Eklund H. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution. J Mol Biol 1996; 264:1044-57. [PMID: 9000629 DOI: 10.1006/jmbi.1996.0695] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thioredoxin exists in all organisms and is responsible for the hydrogen transfer to important enzymes for ribonucleotide reduction and the reduction of methionine sulphoxide and sulphate. Thioredoxins have also been shown to regulate enzyme activity in plants and are also involved in the regulation of transcription factors and several other regulatory activities. Thioredoxin is reduced by the flavoenzyme thioredoxin reductase using NADPH. We have now determined the first structure of a eukaryotic thioredoxin reductase, from the plant Arabidopsis thaliana, at 2.5 A resolution. The dimeric A. thaliana thioredoxin reductase is structurally similar to that of the Escherichia coli enzyme, and most differences occur in the loops. Because the plant and E. coli enzymes have the same architecture, with the same dimeric structure and the same position of the redox active disulphide bond, a similar mechanism that involves very large domain rotations is likely for the two enzymes. The subunit is divided into two domains, one that binds FAD and one that binds NADPH. The relative positions of the domains in A. thaliana thioredoxin reductase differ from those of the E. coli reductase. When the FAD domains are superimposed, the NADPH domain of A. thaliana thioredoxin reductase must be rotated by 8 degrees to superimpose on the corresponding domain of the E. coli enzyme. The domain rotation we now observe is much smaller than necessary for the thioredoxin reduction cycle.
Collapse
Affiliation(s)
- S Dai
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Meyer M, Granderath K, Andreesen JR. Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:184-91. [PMID: 8529639 DOI: 10.1111/j.1432-1033.1995.184_c.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Simple complementation assay systems were developed for the substrate-specific proteins PB of glycine reductase, sarcosine reductase, and betaine reductase, in which acetyl phosphate was detected as the product in all three cases. The betaine-specific subunits of protein B (PB betaine) responsible for betaine reductase activity were purified to homogeneity from cells of Eubacterium acidaminophilum. The molecular masses of the two different subunits were 45 kDa and 48 kDa according to SDS/PAGE. The molecular mass of the native protein was about 200 kDa, indicating and alpha 2 beta 2 structure. The glycine-specific protein B (PB glycine) was partially purified and subunits of 47 kDa and 27 kDa were N-terminally sequenced. The latter subunits cross-reacted with antibodies raised against PB betaine and showed high sequence similarity to the 45-kDa and 48-kDa subunits of PB betaine, respectively. [2-14C]Glycine could be covalently coupled to the 47-kDa subunit by treatment with borohydride. By the same procedure, [2-14C]sarcosine labeled a protein of the same size. Like the sarcosine reductase activity, this protein was not present in glycine-grown cells, indicating its specific involvement in sarcosine metabolism. The labile viologen-dependent formate dehydrogenase purified with the respective PB proteins and could be tentatively assigned to a 95-kDa protein.
Collapse
Affiliation(s)
- M Meyer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | |
Collapse
|
14
|
Kreimer S, Andreesen JR. Glycine reductase of Clostridium litorale. Cloning, sequencing, and molecular analysis of the grdAB operon that contains two in-frame TGA codons for selenium incorporation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:192-9. [PMID: 8529640 DOI: 10.1111/j.1432-1033.1995.192_c.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 2.8-kb HindIII fragment, containing three open reading frames, has been cloned and sequenced from Clostridium litorale. The first gene grdA encoded the selenocysteine-containing protein PA of the glycine reductase complex, a protein of 159 amino acids with a deduced molecular mass of 16.7 kDa. The second gene (grdB) encoded the 47-kDa subunit of the substrate-specific selenoprotein PB glycine that is composed of 437 amino acids. The third gene contained the 5'-region of the gene for thioredoxin reductase, trxB. All gene products shared high similarity with the corresponding proteins from Eubacterium acidaminophilum. In both genes grdA and grdB, the opal termination codon (TGA) was found inframe, indicating the presence of selenocysteine in both polypeptides. Northern-blot analysis showed that grdA and grdB are organized as one operon. Unlike Escherichia coli, no stable secondary structures of the corresponding mRNA were found immediately downstream of the UGA codons to direct an insertion of selenocysteine into the grdA and grdB transcripts of C. litorale. Instead, a secondary structure was identified in the 3'-untranslated region of grdB.
Collapse
Affiliation(s)
- S Kreimer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
15
|
Abstract
The DNA sequence encoding human placental thioredoxin reductase has been determined. Of the 3826 base pairs sequenced, 1650 base pairs were in an open reading frame encoding a mature protein with 495 amino acids and a calculated molecular mass of 54,171. Sequence analysis showed strong similarity to glutathione reductases and other NADPH-dependent reductases. Human thioredoxin reductase contains the redox-active cysteines in the putative FAD binding domain and has a dimer interface domain not previously seen with prokaryote and lower eukaryote thioredoxin reductases.
Collapse
|
16
|
Wieles B, van Soolingen D, Holmgren A, Offringa R, Ottenhoff T, Thole J. Unique gene organization of thioredoxin and thioredoxin reductase in Mycobacterium leprae. Mol Microbiol 1995; 16:921-9. [PMID: 7476189 DOI: 10.1111/j.1365-2958.1995.tb02318.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thioredoxin system comprising thioredoxin (Trx), thioredoxin reductase (TR) and NADPH operates via redox-active disulphides and provides electrons for a wide variety of different metabolic processes in prokaryotic and eukaryotic cells. Thioredoxin is also a general protein disulphide reductase involved in redox regulation. In bacteria, the Trx and TR proteins previously identified were encoded by separate genes (trxA and trxB). In this study, we report a novel genomic organization of TR and Trx in mycobacteria and show that at least three modes of organization of TR and Trx genes can exist within a single bacterial genus: (i) in the majority of mycobacterial strains the genes coding for TR and Trx are located on separate sites of the genome; (ii) interestingly, in all pathogenic Mycobacterium tuberculosis complex mycobacteria both genes are found on the same locus, overlapping in one nucleotide; (iii) in the pathogen Mycobacterium leprae, TR and Trx are encoded by a single gene. Sequence analysis of the M. leprae gene demonstrated that the N-terminal part of the protein corresponds to TR and the C-terminal part to Trx. A corresponding single protein product of approximately 49 kDa was detected in cell extracts of M. leprae. These findings demonstrate the very unusual phenomenon of a single gene coding for both the substrate (thioredoxin) and the enzyme (thioredoxin reductase), which seems to be unique to M. leprae.
Collapse
Affiliation(s)
- B Wieles
- Department of Immunohaematology and Blood Bank, Leiden University Hospital, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Wagner M, Andreesen JR. Purification and characterization of threonine dehydrogenase from Clostridium sticklandii. Arch Microbiol 1995; 163:286-90. [PMID: 7763136 DOI: 10.1007/bf00393382] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Threonine dehydrogenase from Clostridium sticklandii has been purified 76-fold from cells grown in a defined medium to a homogeneous preparation of 234 units.mg-1 protein. Purification was obtained by chromatography on Q-Sepharose fast flow and Reactive green 19-Agarose. The native enzyme had a molecular mass of 67 kDa and consisted of two identical subunits (33 kDa each). The optimum pH for catalytic activity was 9.0. Only L-threo-threonine, DL-beta-hydroxynorvaline and acetoin were substrates; only NAD was used as the natural electron acceptor. The apparent Km values for L-threonine and NAD were 18 mM and 0.1 mM, respectively. Zn2+, Co2+ and Cu2+ ions (0.9 mM) inhibited enzyme activity. The N-terminal amino acid sequence revealed similarities to the class of non-metal short-chain alcohol dehydrogenases, whereas the threonine dehydrogenase from Escherichia coli belongs to the class of medium chain, zinc-containing alcohol dehydrogenases.
Collapse
Affiliation(s)
- M Wagner
- Institut für Mikrobiologie, Universität Göttingen, Germany
| | | |
Collapse
|
18
|
Hedderich R, Koch J, Linder D, Thauer RK. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:253-61. [PMID: 7925445 DOI: 10.1111/j.1432-1033.1994.00253.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genes hdrA, hdrB and hdrC, encoding the three subunits of the iron-sulfur flavoprotein heterodisulfide reductase, have been cloned and sequenced. HdrA (72.19 kDa) was found to contain a region of amino acid sequence highly similar to the FAD-binding domain of pyridine-nucleotide-dependent disulfide oxidoreductases. Additionally, 110 amino acids C-terminal to the FAD-binding consensus, a short polypeptide stretch (VX2CATID) was detected which shows similarity to the region of thioredoxine reductase that contains the active-site cysteine residues (VX2CATCD). These findings suggest that HdrA harbors the site of heterodisulfide reduction and that the catalytic mechanism of the enzyme is similar to that of pyridine-nucleotide-dependent thioredoxin reductase. HdrA was additionally found to contain four copies of the sequence motif CX2CX2CX3C(P), indicating the presence of four [4Fe-4S] clusters. Two such sequence motifs were also present in HdrC (21.76 kDa), the N-terminal amino acid sequence of which showed sequence similarity to the gamma-subunit of the anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. HdrC is therefore considered to be an electron carrier protein that contains two [4Fe-4S] clusters. HdrB (33.46 kDa) did not show sequence similarity to other known proteins, but appears to possess a C-terminal hydrophobic alpha-helix that might function as a membrane anchor. Although hdrB and hdrC are juxtaposed, these genes are not near hdrA.
Collapse
Affiliation(s)
- R Hedderich
- Max-Planck-Institut für terrestrische Mikrobiologie und Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
Some strict anaerobic bacteria catalyze with glycine as substrate an internal Stickland reaction by which glycine serves as electron donor being oxidized by glycine-cleavage system or as electron acceptor being reduced by glycine reductase. In both cases, energy is conserved by substrate level phosphorylation. Except for the different substrate-activating proteins PB, reduction of sarcosine or betaine to acetyl phosphate involves in Eubacterium acidaminophilum the same set of proteins as observed for glycine, e.g. a unique thioredoxin system as electron donor and an acetyl phosphate-forming protein PC interacting with the intermediarily formed Secarboxymethylselenoether bound to protein PA.
Collapse
Affiliation(s)
- J R Andreesen
- Institute of Microbiology, University of Halle, Germany
| |
Collapse
|