1
|
Martinez M, Bouillon A, Brûlé S, Raynal B, Haouz A, Alzari PM, Barale JC. Prodomain-driven enzyme dimerization: a pH-dependent autoinhibition mechanism that controls Plasmodium Sub1 activity before merozoite egress. mBio 2024; 15:e0019824. [PMID: 38386597 PMCID: PMC10936178 DOI: 10.1128/mbio.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Malaria symptoms are associated with the asexual multiplication of Plasmodium falciparum within human red blood cells (RBCs) and fever peaks coincide with the egress of daughter merozoites following the rupture of the parasitophorous vacuole (PV) and the RBC membranes. Over the last two decades, it has emerged that the release of competent merozoites is tightly regulated by a complex cascade of events, including the unusual multi-step activation mechanism of the pivotal subtilisin-like protease 1 (Sub1) that takes place in three different cellular compartments and remains poorly understood. Following an initial auto-maturation in the endoplasmic reticulum (ER) between its pro- and catalytic domains, the Sub1 prodomain (PD) undergoes further cleavages by the parasite aspartic protease plasmepsin X (PmX) within acidic secretory organelles that ultimately lead to full Sub1 activation upon discharge into the PV. Here, we report the crystal structure of full-length P. falciparum Sub1 (PfS1FL) and demonstrate, through structural, biochemical, and biophysical studies, that the atypical Plasmodium-specific Sub1 PD directly promotes the assembly of inactive enzyme homodimers at acidic pH, whereas Sub1 is primarily monomeric at neutral pH. Our results shed new light into the finely tuned Sub1 spatiotemporal activation during secretion, explaining how PmX processing and full activation of Sub1 can occur in different cellular compartments, and uncover a robust mechanism of pH-dependent subtilisin autoinhibition that plays a key role in P. falciparum merozoites egress from infected host cells.IMPORTANCEMalaria fever spikes are due to the rupture of infected erythrocytes, allowing the egress of Plasmodium sp. merozoites and further parasite propagation. This fleeting tightly regulated event involves a cascade of enzymes, culminating with the complex activation of the subtilisin-like protease 1, Sub1. Differently than other subtilisins, Sub1 activation strictly depends upon the processing by a parasite aspartic protease within acidic merozoite secretory organelles. However, Sub1 biological activity is required in the pH neutral parasitophorous vacuole, to prime effectors involved in the rupture of the vacuole and erythrocytic membranes. Here, we show that the unusual, parasite-specific Sub1 prodomain is directly responsible for its acidic-dependent dimerization and autoinhibition, required for protein secretion, before its full activation at neutral pH in a monomeric form. pH-dependent Sub1 dimerization defines a novel, essential regulatory element involved in the finely tuned spatiotemporal activation of the egress of competent Plasmodium merozoites.
Collapse
Affiliation(s)
- Mariano Martinez
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Anthony Bouillon
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Pedro M. Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Jean-Christophe Barale
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Birchfield AS, McIntosh CA. Expression and Purification of Cp3GT: Structural Analysis and Modeling of a Key Plant Flavonol-3-O Glucosyltransferase from Citrus paradisi. BIOTECH 2024; 13:4. [PMID: 38390907 PMCID: PMC10885057 DOI: 10.3390/biotech13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Glycosyltransferases (GTs) are pivotal enzymes in the biosynthesis of various biological molecules. This study focuses on the scale-up, expression, and purification of a plant flavonol-specific 3-O glucosyltransferase (Cp3GT), a key enzyme from Citrus paradisi, for structural analysis and modeling. The challenges associated with recombinant protein production in Pichia pastoris, such as proteolytic degradation, were addressed through the optimization of culture conditions and purification processes. The purification strategy employed affinity, anion exchange, and size exclusion chromatography, leading to greater than 95% homogeneity for Cp3GT. In silico modeling, using D-I-TASSER and COFACTOR integrated with the AlphaFold2 pipeline, provided insights into the structural dynamics of Cp3GT and its ligand binding sites, offering predictions for enzyme-substrate interactions. These models were compared to experimentally derived structures, enhancing understanding of the enzyme's functional mechanisms. The findings present a comprehensive approach to produce a highly purified Cp3GT which is suitable for crystallographic studies and to shed light on the structural basis of flavonol specificity in plant GTs. The significant implications of these results for synthetic biology and enzyme engineering in pharmaceutical applications are also considered.
Collapse
Affiliation(s)
- Aaron S Birchfield
- Department of Biological Sciences, East Tennessee State University, P.O. Box 70703, Johnson City, TN 37614, USA
| | - Cecilia A McIntosh
- Department of Biological Sciences, East Tennessee State University, P.O. Box 70703, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Watanabe Y, Iwasaki Y, Sasaki K, Motono C, Imai K, Suzuki K. Atg15 is a vacuolar phospholipase that disintegrates organelle membranes. Cell Rep 2023; 42:113567. [PMID: 38118441 DOI: 10.1016/j.celrep.2023.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023] Open
Abstract
Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan.
| | - Yurina Iwasaki
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Kyoka Sasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan; Global Research and Development Center for Business by Quantum-AI Technology (G-QuAT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan; Life Science Data Research Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
4
|
Yang Y, Zhang Z, Klionsky DJ. Follicular lymphoma-associated mutations in the V-ATPase chaperone Vma21 activate autophagy by dysfunctional V-ATPase assembly. AUTOPHAGY REPORTS 2022; 1:226-233. [PMID: 37389034 PMCID: PMC10309153 DOI: 10.1080/27694127.2022.2077509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A significant number of follicular lymphoma patients display recurrent mutations in subunits and regulators of the vacuolar-type H+-translocating ATPase (V-ATPase). Past studies focusing on the role of these mutations highlighted essential functions of macroautophagy/autophagy, amino-acid, and nutrient-sensing pathways in the pathogenesis of this disease. Here, we demonstrate novel results understanding the role of the follicular lymphoma-associated hotspot mutation VMA21p.93X, which corresponds to Vma21[Δ66-77] in S. cerevisiae cells. We find that V-ATPase assembly is affected by the Vma21[Δ66-77] mutation, shown by decreased vacuolar levels of V0 subunits as well as a Vph1 stability assay. In addition, we report that vacuolar levels of histidine, lysine and arginine are significantly reduced in Vma21[Δ66-77] mutant cells. These results deepen the current understanding on the mechanism of how autophagy is activated by these mutations in follicular lymphoma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Zhang H, Shao F, Cong J, Huang Y, Chen M, He W, Zhang T, Liu L, Yao M, Gwabin H, Lin Y. Modification of the second PEP4-allele enhances citric acid stress tolerance during cultivation of an industrial rice wine yeast strain with one PEP4-allele disrupted. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 2020; 10:1881. [PMID: 32024908 PMCID: PMC7002768 DOI: 10.1038/s41598-020-58795-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6–6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.
Collapse
|
7
|
Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells 2019; 8:cells8070661. [PMID: 31262095 PMCID: PMC6678646 DOI: 10.3390/cells8070661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023] Open
Abstract
The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8Δ strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.
Collapse
|
8
|
Parzych KR, Klionsky DJ. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 2018; 15:212-227. [PMID: 30422029 DOI: 10.1080/15548627.2018.1545821] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydrolysis within the vacuole in yeast and the lysosome in mammals is required for the degradation and recycling of a multitude of substrates, many of which are delivered to the vacuole/lysosome by autophagy. In humans, defects in lysosomal hydrolysis and efflux can have devastating consequences, and contribute to a class of diseases referred to as lysosomal storage disorders. Despite the importance of these processes, many of the proteins and regulatory mechanisms involved in hydrolysis and efflux are poorly understood. In this review, we describe our current knowledge of the vacuolar/lysosomal degradation and efflux of a vast array of substrates, focusing primarily on what is known in the yeast Saccharomyces cerevisiae. We also highlight many unanswered questions, the answers to which may lead to new advances in the treatment of lysosomal storage disorders. Abbreviations: Ams1: α-mannosidase; Ape1: aminopeptidase I; Ape3: aminopeptidase Y; Ape4: aspartyl aminopeptidase; Atg: autophagy related; Cps1: carboxypeptidase S; CTNS: cystinosin, lysosomal cystine transporter; CTSA: cathepsin A; CTSD: cathepsin D; Cvt: cytoplasm-to-vacuole targeting; Dap2: dipeptidyl aminopeptidase B; GS-bimane: glutathione-S-bimane; GSH: glutathione; LDs: lipid droplets; MVB: multivesicular body; PAS: phagophore assembly site; Pep4: proteinase A; PolyP: polyphosphate; Prb1: proteinase B; Prc1: carboxypeptidase Y; V-ATPase: vacuolar-type proton-translocating ATPase; VTC: vacuolar transporter chaperone.
Collapse
Affiliation(s)
- Katherine R Parzych
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
9
|
Ouahoud S, Fiet MD, Martínez-Montañés F, Ejsing CS, Kuss O, Roden M, Markgraf DF. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci 2018; 131:jcs.213876. [PMID: 29678904 DOI: 10.1242/jcs.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Lipid droplets (LDs) store neutral lipids and are integrated into a cellular metabolic network that relies on functional coupling with various organelles. Factors mediating efficient coupling and mechanisms regulating them remain unknown. Here, we conducted a global screen in S. cerevisiae to identify genes required for the functional coupling of LDs and other organelles during LD consumption. We show that LD utilization during growth resumption is coupled to vacuole homeostasis. ESCRT-, V-ATPase- and vacuole protein sorting-mutants negatively affect LD consumption, independent of lipophagy. Loss of ESCRT function leads to the accumulation of LD-derived diacylglycerol (DAG), preventing its conversion into phosphatidic acid (PA) and membrane lipids. In addition, channeling of DAG from LD-proximal sites to the vacuole is blocked. We demonstrate that utilization of LDs requires intact vacuolar signaling via TORC1 and its downstream effector Sit4p. These data suggest that vacuolar status is coupled to LD catabolism via TORC1-mediated regulation of DAG-PA interconversion and explain how cells coordinate organelle dynamics throughout cell growth.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Mitchell D Fiet
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| |
Collapse
|
10
|
Cotabarren J, Tellechea ME, Avilés FX, Lorenzo Rivera J, Obregón WD. Biochemical characterization of the YBPCI miniprotein, the first carboxypeptidase inhibitor isolated from Yellow Bell Pepper ( Capsicum annuum L). A novel contribution to the knowledge of miniproteins stability. Protein Expr Purif 2018; 144:55-61. [DOI: 10.1016/j.pep.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
11
|
Aufschnaiter A, Habernig L, Kohler V, Diessl J, Carmona-Gutierrez D, Eisenberg T, Keller W, Büttner S. The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity. Front Mol Neurosci 2017; 10:207. [PMID: 28713240 PMCID: PMC5491553 DOI: 10.3389/fnmol.2017.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/12/2017] [Indexed: 11/24/2022] Open
Abstract
The degeneration of dopaminergic neurons during Parkinson’s disease (PD) is intimately linked to malfunction of α-synuclein (αSyn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of αSyn has been attributed to disturbances in several biological processes conserved from yeast to humans, including Ca2+ homeostasis, general lysosomal function and autophagy. However, the precise sequence of events that eventually results in cell death remains unclear. Here, we establish a connection between the major lysosomal protease cathepsin D (CatD) and the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for PD, high levels of human αSyn triggered cytosolic acidification and reduced vacuolar hydrolytic capacity, finally leading to cell death. This could be counteracted by overexpression of yeast CatD (Pep4), which re-installed pH homeostasis and vacuolar proteolytic function, decreased αSyn oligomers and aggregates, and provided cytoprotection. Interestingly, these beneficial effects of Pep4 were independent of autophagy. Instead, they required functional calcineurin signaling, since deletion of calcineurin strongly reduced both the proteolytic activity of endogenous Pep4 and the cytoprotective capacity of overexpressed Pep4. Calcineurin contributed to proper endosomal targeting of Pep4 to the vacuole and the recycling of the Pep4 sorting receptor Pep1 from prevacuolar compartments back to the trans-Golgi network. Altogether, we demonstrate that stimulation of this novel calcineurin-Pep4 axis reduces αSyn cytotoxicity.
Collapse
Affiliation(s)
| | - Lukas Habernig
- Institute of Molecular Biosciences, University of GrazGraz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| | - Verena Kohler
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| | | | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of GrazGraz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
12
|
Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory. PLoS One 2015; 10:e0124545. [PMID: 25970342 PMCID: PMC4430139 DOI: 10.1371/journal.pone.0124545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022] Open
Abstract
Rhizopus oryzae lipase (ROL) has a propeptide at its N-terminus that functions as an intramolecular chaperone and facilitates the folding of mature ROL (mROL). In this study, we successfully generated a functionally distinct imprinted mROL (mROLimp) through protein folding memory using a mutated propeptide. The mutated propeptide left its structural memory on mROL and produced mROLimp that exhibited different substrate specificities compared with mROLWT (prepared from the wild type propeptide), although the amino acid sequences of both mROLs were the same. mROLimp showed a preference for substrates with medium chain-length acyl groups and, noticeably, recognized a peptidase-specific substrate. In addition, ROLimp was more stable than mROLWT. These results strongly suggest that proteins with identical amino acid sequences can fold into different conformations and that mutations in intramolecular chaperones can dynamically induce changes in enzymatic activity.
Collapse
|
13
|
Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci U S A 2014; 112:100-5. [PMID: 25453092 DOI: 10.1073/pnas.1413764111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.
Collapse
|
14
|
Bauerová V, Hájek M, Pichová I, Hrušková-Heidingsfeldová O. Intracellular aspartic proteinase Apr1p of Candida albicans is required for morphological transition under nitrogen-limited conditions but not for macrophage killing. Folia Microbiol (Praha) 2014; 59:485-93. [DOI: 10.1007/s12223-014-0324-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/13/2014] [Indexed: 02/04/2023]
|
15
|
Identification of Interaction Site of Propeptide toward Mature Carboxypeptidase Y (mCPY) Based on the Similarity between Propeptide and CPY Inhibitor (IC). Biosci Biotechnol Biochem 2014; 76:153-6. [DOI: 10.1271/bbb.110668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Nagayama M, Maeda H, Kuroda K, Ueda M. Mutated Intramolecular Chaperones Generate High-Activity Isomers of Mature Enzymes. Biochemistry 2012; 51:3547-53. [DOI: 10.1021/bi3001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuru Nagayama
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruko Maeda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division
of Applied Life Sciences, Graduate School
of Agriculture, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Williams DC, Novick PJ. Analysis of SEC9 suppression reveals a relationship of SNARE function to cell physiology. PLoS One 2009; 4:e5449. [PMID: 19421331 PMCID: PMC2674220 DOI: 10.1371/journal.pone.0005449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 04/08/2009] [Indexed: 11/21/2022] Open
Abstract
Background Growth and division of Saccharomyces cerevisiae is dependent on the action of SNARE proteins that are required for membrane fusion. SNAREs are regulated, through a poorly understood mechanism, to ensure membrane fusion at the correct time and place within a cell. Although fusion of secretory vesicles with the plasma membrane is important for yeast cell growth, the relationship between exocytic SNAREs and cell physiology has not been established. Methodology/Principal Findings Using genetic analysis, we identified several influences on the function of exocytic SNAREs. Genetic disruption of the V-ATPase, but not vacuolar proteolysis, can suppress two different temperature-sensitive mutations in SEC9. Suppression is unlikely due to increased SNARE complex formation because increasing SNARE complex formation, through overexpression of SRO7, does not result in suppression. We also observed suppression of sec9 mutations by growth on alkaline media or on a non-fermentable carbon source, conditions associated with a reduced growth rate of wild-type cells and decreased SNARE complex formation. Conclusions/Significance Three main conclusions arise from our results. First, there is a genetic interaction between SEC9 and the V-ATPase, although it is unlikely that this interaction has functional significance with respect to membrane fusion or SNAREs. Second, Sro7p acts to promote SNARE complex formation. Finally, Sec9p function and SNARE complex formation are tightly coupled to the physiological state of the cell.
Collapse
Affiliation(s)
- Daniel C. Williams
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Peter J. Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
18
|
The proteolytic systems and heterologous proteins degradation in the methylotrophic yeastPichia pastoris. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Sarry JE, Chen S, Collum RP, Liang S, Peng M, Lang A, Naumann B, Dzierszinski F, Yuan CX, Hippler M, Rea PA. Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. FEBS J 2007; 274:4287-305. [PMID: 17651441 DOI: 10.1111/j.1742-4658.2007.05959.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite its large size and the numerous processes in which it is implicated, neither the identity nor the functions of the proteins targeted to the yeast vacuole have been defined comprehensively. In order to establish a methodological platform and protein inventory to address this shortfall, we refined techniques for the purification of 'proteomics-grade' intact vacuoles. As confirmed by retention of the preloaded fluorescent conjugate glutathione-bimane throughout the fractionation procedure, the resistance of soluble proteins that copurify with this fraction to digestion by exogenous extravacuolar proteinase K, and the results of flow cytometric, western and marker enzyme activity analyses, vacuoles prepared in this way retain most of their protein content and are of high purity and integrity. Using this material, 360 polypeptides species associated with the soluble fraction of the vacuolar isolates were resolved reproducibly by 2D gel electrophoresis. Of these, 260 were identified by peptide mass fingerprinting and peptide sequencing by MALDI-MS and liquid chromatography coupled to ion trap or quadrupole TOF tandem MS, respectively. The polypeptides identified in this way, many of which correspond to alternate size and charge states of the same parent translation product, can be assigned to 117 unique ORFs. Most of the proteins identified are canonical vacuolar proteases, glycosidases, phosphohydrolases, lipid-binding proteins or established vacuolar proteins of unknown function, or other proteases, glycosidases, lipid-binding proteins, regulatory proteins or proteins involved in intermediary metabolism, protein synthesis, folding or targeting, or the alleviation of oxidative stress. On the basis of the high purity of the vacuolar preparations, the electrophoretic properties of the proteins identified and the results of quantitative proteinase K protection measurements, many of the noncanonical vacuolar proteins identified are concluded to have entered this compartment for breakdown, processing and/or salvage purposes.
Collapse
Affiliation(s)
- Jean-Emmanuel Sarry
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
21
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1534-40. [PMID: 10903761 DOI: 10.4049/jimmunol.165.3.1534] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chloroquine (CQ) is a lysosomotropic weak base with over 60 years of clinical use for the treatment of malaria and rheumatologic disorders. Consistent with its anti-inflammatory properties, CQ has been shown to interfere with TNF-alpha release from mononuclear phagocytes. Because it is unclear how CQ mediates these immunomodulatory effects, we set out to elucidate its mechanism of action. CQ exhibited dose-dependent inhibition of LPS-induced TNF-alpha release from human PBMC at therapeutically attainable concentrations. Additional studies to determine the specificity of this effect showed that although CQ reduced IL-1beta and IL-6 release, secretion of RANTES was unaffected. CQ acted by reducing TNF-alpha mRNA accumulation without destabilizing its mRNA or interfering with NF-kappaB nuclear translocation or p50/p65 isoform composition of DNA-binding complexes. Intracellular cytokine staining indicated that CQ reduced TNF-alpha production pretranslationally without interfering with TNF-alpha processing or release. We utilized bafilomycin A1 pretreatment to block the pH-dependent trapping of CQ in endosomes and lysosomes. Although bafilomycin A1 alone did not interfere with TNF-alpha expression, preincubation augmented the ability of CQ to reduce TNF-alpha mRNA levels, suggesting that CQ did not act by a lysosomotropic mechanism. Using confocal microscopy, we showed that bafilomycin A1 pretreatment resulted in a dramatic redistribution of quinacrine, a fluorescent congener of CQ, from cytoplasmic vacuoles to the nucleus. These data indicate that CQ inhibits TNF-alpha gene expression without altering translocation of NF-kappaB p50/p65 heterodimers. This dose-dependent effect occurs over a pharmacologically relevant concentration range and does not require pH-dependent lysosomotropic accumulation of CQ.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Biological Transport/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Chemokine CCL5/metabolism
- Chloroquine/pharmacology
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Immunologic
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Hydrogen-Ion Concentration
- Immunosuppressive Agents/pharmacology
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/metabolism
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/immunology
- Lysosomes/drug effects
- Lysosomes/immunology
- Lysosomes/metabolism
- Macrolides
- NF-kappa B/metabolism
- NF-kappa B p50 Subunit
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/immunology
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/immunology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Transcription Factor RelA
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- S M Weber
- Department of Microbiology, Evans Memorial Department of Clinical Research, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
23
|
Westphal V, Darby NJ, Winther JR. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo. J Mol Biol 1999; 286:1229-39. [PMID: 10047493 DOI: 10.1006/jmbi.1999.2560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (yPDI) has been analysed by exchanging the active-site cysteine residues for serine residues. The activity of the mutant forms of yPDI was determined quantitatively by following the refolding of bovine pancreatic trypsin inhibitor in vitro. In this assay the activity of the wild-type yPDI is quite similar to that of human PDI, both in rearrangement and oxidation reactions. However, while the a domain active site of the human enzyme is more active than the a'-site, the reverse is the case for yPDI. This prompted us to set up an assay to investigate whether the situation would be different with a native yeast substrate, procarboxypeptidase Y. In this assay, however, the a' domain active site also appeared to be much more potent than the a-site. These results were unexpected, not only because of the difference with human PDI, but also because analysis of folding of procarboxypeptidase Y in vivo had shown the a-site to be most important. We furthermore show that the apparent difference between in vivo and in vitro activities is not due to catalytic contributions from the other PDI homologues found in yeast.
Collapse
Affiliation(s)
- V Westphal
- Carlsberg Laboratory, Gamle Carlsbergvej 10, Copenhagen Valby, DK- 2500, Denmark
| | | | | |
Collapse
|
24
|
|
25
|
Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65-79. [PMID: 9763421 PMCID: PMC2132800 DOI: 10.1083/jcb.143.1.65] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Revised: 09/03/1998] [Indexed: 11/22/2022] Open
Abstract
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Delta, fab1(tsf), and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Delta mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.
Collapse
Affiliation(s)
- J D Gary
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668, USA
| | | | | | | | | |
Collapse
|
26
|
McNew JA, Coe JG, Søgaard M, Zemelman BV, Wimmer C, Hong W, Söllner TH. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett 1998; 435:89-95. [PMID: 9755865 DOI: 10.1016/s0014-5793(98)01044-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific transport between secretory compartments requires that vesicular carriers contain targeting proteins known as SNAREs. Ten v-SNAREs have been identified in the genome of the yeast Saccharomyces cerevisiae by sequence analysis. We report here the characterization of Gos1p, a v-SNARE localized to the Golgi compartment and likely homolog of the mammalian protein GOS-28/GS28. Gos1p is a type II membrane protein with characteristic SNARE sequence hallmarks and is functionally a SNARE protein. Gos1p was originally identified as a 28 kDa protein in an immunoprecipitate of the cis-Golgi t-SNARE Sed5p. This interaction between Sed5p and Gos1p is direct as demonstrated by in vitro binding with recombinant proteins. Deletion of GOS1 results in viable haploids with modest growth and secretory defects. Close examination of the secretory phenotype of GOS1-disrupted cells suggests that Gos1p may play a role in multiple transport steps, specifically ER-Golgi and/or intra-Golgi transport.
Collapse
Affiliation(s)
- J A McNew
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wurmser AE, Emr SD. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 1998; 17:4930-42. [PMID: 9724630 PMCID: PMC1170822 DOI: 10.1093/emboj/17.17.4930] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Golgi/endosome-associated Vps34 phosphatidylinositol 3-kinase is essential for the sorting of hydrolases from the Golgi to the vacuole/lysosome. Upon inactivation of a temperature-conditional Vps34 kinase, cellular levels of PtdIns(3)P rapidly decrease and it has been proposed that this decrease is due to the continued turnover of PtdIns(3)P by cytoplasmic phosphatases. Here we show that mutations in VAM3 (vacuolar t-SNARE) and YPT7 (rab GTPase), which are required to direct protein and membrane delivery from prevacuolar endosomal compartments to the vacuole, dramatically increase/stabilize PtdIns(3)P levels in vivo by disrupting its turnover. We find that the majority of the total pool of PtdIns(3)P which has been synthesized, but not PtdIns(4)P, requires transport to the vacuole in order to be turned over. Unexpectedly, strains with impaired vacuolar hydrolase activity accumulate 4- to 5-fold higher PtdIns(3)P levels than wild-type cells, suggesting that lumenal vacuolar lipase and/or phosphatase activities degrade PtdIns(3)P. Because vacuolar hydrolases act in the lumen, PtdIns(3)P is likely to be transferred from the cytoplasmic membrane leaflet where it is synthesized, to the lumen of the vacuole. Interestingly, mutants that stabilize PtdIns(3)P accumulate small uniformly-sized vesicles (40-50 nm) within prevacuolar endosomes (multivesicular bodies) or the vacuole lumen. Based on these and other observations, we propose that PtdIns(3)P is degraded by an unexpected mechanism which involves the sorting of PtdIns(3)P into vesicles generated by invagination of the limiting membrane of the endosome or vacuole, ultimately delivering the phosphoinositide into the lumen of the compartment where it can be degraded by the resident hydrolases.
Collapse
Affiliation(s)
- A E Wurmser
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, CA 92093-0668, USA
| | | |
Collapse
|
28
|
Campbell CL, Thorsness PE. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 1998; 111 ( Pt 16):2455-64. [PMID: 9683639 DOI: 10.1242/jcs.111.16.2455] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inactivation of Yme1p, a mitochondrially-localized ATP-dependent metallo-protease in the yeast Saccharomyces cerevisiae, causes a high rate of DNA escape from mitochondria to the nucleus as well as pleiotropic functional and morphological mitochondrial defects. The evidence presented here suggests that the abnormal mitochondria of a yme1 strain are degraded by the vacuole. First, electron microscopy of Yme1p-deficient strains revealed mitochondria physically associated with the vacuole via electron dense structures. Second, disruption of vacuolar function affected the frequency of mitochondrial DNA escape from yme1 and wild-type strains. Both PEP4 or PRC1 gene disruptions resulted in a lower frequency of mitochondrial DNA escape. Third, an in vivo assay that monitors vacuole-dependent turnover of the mitochondrial compartment demonstrated an increased rate of mitochondrial turnover in yme1 yeast when compared to the rate found in wild-type yeast. In this assay, vacuolar alkaline phosphatase, encoded by PHO8, was targeted to mitochondria in a strain bearing disruption to the genomic PHO8 locus. Maturation of the mitochondrially localized alkaline phosphatase pro-enzyme requires proteinase A, which is localized in the vacuole. Therefore, alkaline phosphatase activity reflects vacuole-dependent turnover of mitochondria. This assay reveals that mitochondria of a yme1 strain are taken up by the vacuole more frequently than mitochondria of an isogenic wild-type strain when these yeast are cultured in medium necessitating respiratory growth. Degradation of abnormal mitochondria is one pathway by which mitochondrial DNA escapes and migrates to the nucleus.
Collapse
Affiliation(s)
- C L Campbell
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | |
Collapse
|
29
|
Extracellular processing of carboxypeptidase Y secreted by a Saccharomyces cerevisiae ssl1 mutant strain. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(99)80004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
From Proteasome to Lysosome: Studies on Yeast Demonstrate the Principles Of Protein Degradation in the Eukaryote Cell. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2558(08)60457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Khan AR, Cherney MM, Tarasova NI, James MN. Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin. NATURE STRUCTURAL BIOLOGY 1997; 4:1010-5. [PMID: 9406551 DOI: 10.1038/nsb1297-1010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The crystal structure of an activation intermediate of human gastricsin has been determined at 2.4 A resolution. The human digestive enzyme gastricsin (pepsin C) is an aspartic proteinase that is synthesized as the inactive precursor (zymogen) progastricsin (pepsinogen C or hPGC). In the zymogen, a positively-charged N-terminal prosegment of 43 residues (Ala 1p-Leu 43p; the suffix 'p' refers to the prosegment) sterically prevents the approach of a substrate to the active site. Zymogen conversion occurs in an autocatalytic and stepwise fashion at low pH through the formation of intermediates. The structure of the non-covalent complex of a partially-cleaved peptide of the prosegment (Ala 1p-Phe 26p) with mature gastricsin (Ser 1-Ala 329) suggests an activation pathway that may be common to all gastric aspartic proteinases.
Collapse
Affiliation(s)
- A R Khan
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
32
|
Tabuchi M, Iwaihara O, Ohtani Y, Ohuchi N, Sakurai J, Morita T, Iwahara S, Takegawa K. Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe. J Bacteriol 1997; 179:4179-89. [PMID: 9209031 PMCID: PMC179237 DOI: 10.1128/jb.179.13.4179-4189.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PCR was used to isolate a carboxypeptidase Y (CPY) homolog gene from the fission yeast Schizosaccharomyces pombe. The cloned S. pombe cpy1+ gene has a single open reading frame, which encodes 950 amino acids with one potential N-glycosylation site. It appears to be synthesized as an inactive pre-pro protein that likely undergoes processing following translocation into appropriate intracellular organelles. The C-terminal mature region is highly conserved in other serine carboxypeptidases. In contrast, the N-terminal pro region containing the vacuolar sorting signal in CPY from Saccharomyces cerevisiae shows fewer identical residues. The pro region contains two unusual repeating sequences; repeating sequence I consists of seven contiguous repeating segments of 13 amino acids each, and repeating sequence II consists of seven contiguous repeating segments of 9 amino acids each. Pulse-chase radiolabeling analysis revealed that Cpy1p was initially synthesized in a 110-kDa pro-precursor form and via the 51-kDa single-polypeptide-chain intermediate form which has had its pro segment removed is finally converted to a heterodimer, the mature form, which is detected as a 32-kDa protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Like S. cerevisiae CPY, S. pombe Cpy1p does not require the N-linked oligosaccharide moiety for vacuolar delivery. To investigate the vacuolar sorting signal of S. pombe Cpy1p, we have constructed cpy1+-SUC2 gene fusions that direct the synthesis of hybrid proteins consisting of N-terminal segments of various lengths of S. pombe Cpy1p fused to the secreted enzyme S. cerevisiae invertase. The N-terminal 478 amino acids of Cpy1 are sufficient to direct delivery of a Cpy1-Inv hybrid protein to the vacuole. These results showed that the pro peptide of Cpy1 contains the putative vacuolar sorting signal.
Collapse
Affiliation(s)
- M Tabuchi
- Department of Bioresource Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Anderson ED, VanSlyke JK, Thulin CD, Jean F, Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J 1997; 16:1508-18. [PMID: 9130696 PMCID: PMC1169755 DOI: 10.1093/emboj/16.7.1508] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of furin requires autoproteolytic cleavage of its 83-amino acid propeptide at the consensus furin site, Arg-Thr-Lys-Arg107/. This RER-localized cleavage is necessary, but not sufficient, for enzyme activation. Rather, full activation of furin requires exposure to, and correct routing within, the TGN/endosomal system. Here, we identify the steps in addition to the initial propeptide cleavage necessary for activation of furin. Exposure of membrane preparations containing an inactive RER-localized soluble furin construct to either: (i) an acidic and calcium-containing environment characteristic of the TGN; or (ii) mild trypsinization at neutral pH, resulted in the activation of the endoprotease. Taken together, these results suggest that the pH drop facilitates the removal of a furin inhibitor. Consistent with these findings, following cleavage in the RER, the furin propeptide remains associated with the enzyme and functions as a potent inhibitor of the endoprotease. Co-immunoprecipitation studies coupled with analysis by mass spectrometry show that release of the propeptide at acidic pH, and hence activation of furin, requires a second cleavage within the autoinhibitory domain at a site containing a P6 arginine (-Arg70-Gly-Val-Thr-Lys-Arg75/-). The significance of this cleavage in regulating the compartment-specific activation of furin, and the relationship of the furin activation pathway to those of other serine endoproteases are discussed.
Collapse
Affiliation(s)
- E D Anderson
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
The vacuolar aspartyl protease proteinase A (PrA) of Saccharomyces cerevisiae is encoded as a preproenzyme by the PEP4 gene and transported to the vacuole via the secretory route. Upon arrival of the proenzyme proPrA to the vacuole, active mature 42 kDa PrA is generated by specific proteolysis involving the vacuolar endoprotease proteinase B (PrB). Vacuolar activation of proPrA can also take place in mutants lacking PrB activity (prb1). Here an active 43 kDa species termed pseudoPrA is formed, probably by an autocatalytic process. When the PEP4 gene is overexpressed in wild-type cells, mature PrA can be found in the growth medium. We have found that prb1 strains overexpressing PEP4 can form pseudoPrA extracellularly. N-terminal amino acid sequence determination of extracellular, as well as vacuolar pseudoPrA showed that it contains nine amino acids of the propeptide, indicating a cleavage between Phe67 and Ser68 of the preproenzyme. This cleavage site is in accordance with the known substrate preference for PrA, supporting the notion that pseudoPrA is formed by autoactivation. When a multicopy PEP4 transformant of a prb1 mutant was grown in the presence of the aspartyl protease inhibitor pepstatin A, a significant level of proPrA was found in the growth medium. Our analyses show that overexpression of PEP4 leads to the secretion of proPrA to the growth medium where the zymogen is converted to pseudoPrA or mature PrA in a manner similar to the vacuolar processing reactions. Amino acid sequencing of secreted proPrA confirmed the predicted cleavage by signal peptidase between Ala22 and Lys23 of the preproenzyme.
Collapse
Affiliation(s)
- A M Wolff
- Novo Nordisk A/S, Novo Allé, Bagsvaerd, Denmark
| | | | | |
Collapse
|
35
|
van Voorst F, Kielland-Brandt MC, Winther JR. Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation. J Biol Chem 1996; 271:841-6. [PMID: 8557694 DOI: 10.1074/jbc.271.2.841] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The core of the vacuolar targeting signal of yeast carboxypeptidase Y (CPY) is recognized by the receptor Vps10p and consists of four contiguous amino acid residues, Gln24-Arg-Pro-Leu27, near the amino terminus of the propeptide (Valls, L.A., Winther, J. R., and Stevens, T. H. (1990) J. Cell Biol. 111, 361-368; Marcusson, E. G., Horazdovsky, B. F., Cereghino, J. L., Gharakhanian, E., and Emr, S. D. (1994) Cell 77, 579-586). In order to determine the sequence specificity of the interaction with the sorting receptor, substitutions were introduced into this part of the propeptide by semirandom site-directed mutagenesis. The efficiency of vacuolar sorting by the mutants was determined by immunoprecipitation of CPY from pulse-labeled cells. It was found that amino acid residues Gln24 and Leu27 were the most important ones. While it appears that Gln24 is essential for proper function, Leu27 can be exchanged with the other hydrophobic amino acid residues, isoleucine, valine, and phenylalanine. Tolerance toward various substitutions for Arg25 is fairly high, while substitution of Pro26 for uncharged amino acid residues also resulted in only weak missorting. In addition to the low requirement for sequence conservation, the position of the targeting element relative to the amino terminus of the propeptide was analyzed and found not to be critical.
Collapse
Affiliation(s)
- F van Voorst
- Carlsberg Laboratory, Department of Yeast Genetics, Copenhagen Valby, Denmark
| | | | | |
Collapse
|
36
|
Abstract
The yeast vacuole, which is equivalent to the lysosome of higher eukaryotes, is one of the best characterized degradative organelles. This review describes the biosynthesis and function of yeast vacuolar proteases. Most of these enzymes are delivered to the vacuole via the early compartments of the secretory pathway and the endosome, while one of them is directly imported from the cytoplasm. The proteases are synthesized as precursors which undergo many post-translational modifications before the final active form is generated. Proteolytic activation by developments in the analysis of the functions of vacuolar proteolysis are described. Substrates of the vacuolar proteases are mostly imported via endocytosis or autophagocytosis, and vacuolar proteolysis appears to be mainly important under nutritional stress conditions and sporulation.
Collapse
Affiliation(s)
- H B Van Den Hazel
- Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
37
|
van den Hazel HB, Kielland-Brandt MC, Winther JR. Random substitution of large parts of the propeptide of yeast proteinase A. J Biol Chem 1995; 270:8602-9. [PMID: 7721762 DOI: 10.1074/jbc.270.15.8602] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast aspartic protease, proteinase A, has a 54 amino-acid propeptide, which is removed during activation of the zymogen in the vacuole. Apart from being involved inhibition/activation, the propeptide has been shown to be essential for formation of a stable active enzyme (van den Hazel, H. B., Kielland-Brandt, M. C., and Winther, J. R. (1993) J. Biol. Chem. 268, 18002-18007). We have investigated the sequence requirements for function of the propeptide. The N-terminal half and the C-terminal half of the propeptide were replaced by random sequences at the genetic level, and collections of the mutants were subjected to a colony screen for ones exhibiting activity. A high frequency (around 1%) of active constructs was found, which indicates a very high tolerance for mutations in the propeptide. Thirty-nine functional mutant forms containing random sequence at either the N- or C-terminal half of the propeptide were characterized. Comparison of the propeptides of the active constructs suggests that a particular lysine residue is important for efficient biosynthesis of proteinase A.
Collapse
Affiliation(s)
- H B van den Hazel
- Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | |
Collapse
|
38
|
Refolding of a carboxypeptidase Y folding intermediate in vitro by low-affinity binding of the proregion. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31747-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|