1
|
Mounkoro P, Michel T, Golinelli-Cohen MP, Blandin S, Davioud-Charvet E, Meunier B. A role for the succinate dehydrogenase in the mode of action of the redox-active antimalarial drug, plasmodione. Free Radic Biol Med 2021; 162:533-541. [PMID: 33232753 DOI: 10.1016/j.freeradbiomed.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Malaria, caused by protozoan parasites, is a major public health issue in subtropical countries. An arsenal of antimalarial treatments is available, however, resistance is spreading, calling for the development of new antimalarial compounds. The new lead antimalarial drug plasmodione is a redox-active compound that impairs the redox balance of parasites leading to cell death. Based on extensive in vitro assays, a model of its mode of action was drawn, involving the generation of active plasmodione metabolites that act as subversive substrates of flavoproteins, initiating a redox cycling process producing reactive oxygen species. We showed that, in yeast, the mitochondrial respiratory chain NADH-dehydrogenases are the main redox-cycling target enzymes. Furthermore, our data supported the proposal that plasmodione is a pro-drug acting via its benzhydrol and benzoyl metabolites. Here, we selected plasmodione-resistant yeast mutants to further decipher plasmodione mode of action. Of the eleven mutants analysed, nine harboured a mutation in the FAD binding subunit of succinate dehydrogenase (SDH). The analysis of the SDH mutations points towards a specific role for SDH-bound FAD in plasmodione bioactivation, possibly in the first step of the process, highlighting a novel property of SDH.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles (ICSN), 91198, Gif-sur-Yvette, cedex, France
| | - Stéphanie Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Université de Strasbourg, Université de Haute-Alsace, Centre National de la Recherche Scientifique (CNRS), UMR 7042 LIMA, Team Bioorganic and Medicinal Chemistry, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
2
|
Li H, Hu B, Luo Q, Hu S, Luo Y, Zhao B, Gan Y, Li Y, Shi M, Nie Q, Zhang D, Zhang X. Runting and Stunting Syndrome Is Associated With Mitochondrial Dysfunction in Sex-Linked Dwarf Chicken. Front Genet 2020; 10:1337. [PMID: 32010193 PMCID: PMC6978286 DOI: 10.3389/fgene.2019.01337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Runting and stunting syndrome (RSS) in chicken are commonly known as “frozen chicken.” The disease is characterized by lower body weight and slow growth and the incidence rate is widely 5%–20% in sex-linked dwarf (SLD) chickens. However, the etiology of RSS in chickens has plagued researchers for several decades. In this study, histopathology studies demonstrated that the hepatocytes of the RSS chickens contain many mitochondria with damaged and outer and inner membrane along with vacuolar hydropic degeneration. No mtDNA mutation was detected, but our microarray data showed that RSS chickens exhibited abnormal expression of genes, many of which are involved in oxidative phosphorylation (OXPHOS) and fatty acid metabolism. In particular, nuclear gene IGF2BP3 was upregulated in RSS chickens' liver cells. The abnormal expression of these genes is likely to impair the OXPHOS, resulting in reduced ATP synthesis in the hepatocytes of the RSS chickens, which may in turn leads to poor weight gain and retarded growth or stunting of chicks. Our findings suggest that mitochondria dysfunction rather than chronic inflammation is responsible for the reduced growth and RSS in SLD chickens. Mutations in GHR have been shown to compromise mitochondrial function in SLD chickens. Since the mitochondrial damage in the RSS chicken is more severe, we suggest that extra genes are likely to be affected to exacerbate the phenotype.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuang Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yabiao Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bojing Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanmin Gan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ying Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Moosavi B, Berry EA, Zhu XL, Yang WC, Yang GF. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell Mol Life Sci 2019; 76:4023-4042. [PMID: 31236625 PMCID: PMC11105593 DOI: 10.1007/s00018-019-03200-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Succinate dehydrogenase (SDH) also known as complex II or succinate:quinone oxidoreductase is an enzyme involved in both oxidative phosphorylation and tricarboxylic acid cycle; the processes that generate energy. SDH is a multi-subunit enzyme which requires a series of proteins for its proper assembly at several steps. This enzyme has medical significance as there is a broad range of human diseases from cancers to neurodegeneration related to SDH malfunction. Some of these disorders have recently been linked to defective assembly factors, reinvigorating further research in this area. Apart from that this enzyme has agricultural importance as many fungicides have been/will be designed targeting specifically this enzyme in plant fungal pathogens. In addition, we speculate it might be possible to design novel fungicides specifically targeting fungal assembly factors. Considering the medical and agricultural implications of SDH, the aim of this review is an overview of the SDH assembly factors and critical analysis of controversial issues around them.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
4
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Crystal structure of bacterial succinate:quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proc Natl Acad Sci U S A 2018. [PMID: 29514959 DOI: 10.1073/pnas.1800195115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Succinate:quinone oxidoreductase (SQR) functions in energy metabolism, coupling the tricarboxylic acid cycle and electron transport chain in bacteria and mitochondria. The biogenesis of flavinylated SdhA, the catalytic subunit of SQR, is assisted by a highly conserved assembly factor termed SdhE in bacteria via an unknown mechanism. By using X-ray crystallography, we have solved the structure of Escherichia coli SdhE in complex with SdhA to 2.15-Å resolution. Our structure shows that SdhE makes a direct interaction with the flavin adenine dinucleotide-linked residue His45 in SdhA and maintains the capping domain of SdhA in an "open" conformation. This displaces the catalytic residues of the succinate dehydrogenase active site by as much as 9.0 Å compared with SdhA in the assembled SQR complex. These data suggest that bacterial SdhE proteins, and their mitochondrial homologs, are assembly chaperones that constrain the conformation of SdhA to facilitate efficient flavinylation while regulating succinate dehydrogenase activity for productive biogenesis of SQR.
Collapse
|
6
|
Dourado DFAR, Swart M, Carvalho ATP. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH 2 into FAD. Chemistry 2017; 24:5246-5252. [PMID: 29124817 PMCID: PMC5969107 DOI: 10.1002/chem.201704622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Indexed: 11/10/2022]
Abstract
A covalently bound flavin cofactor is predominant in the succinate‐ubiquinone oxidoreductase (SQR; Complex II), an essential component of aerobic electron transport, and in the menaquinol‐fumarate oxidoreductase (QFR), the anaerobic counterpart, although it is only present in approximately 10 % of the known flavoenzymes. This work investigates the role of this 8α‐N3‐histidyl linkage between the flavin adenine dinucleotide (FAD) cofactor and the respiratory Complex II. After parameterization with DFT calculations, classical molecular‐dynamics simulations and quantum‐mechanics calculations for Complex II:FAD and Complex II:FADH2, with and without the covalent bond, were performed. It was observed that the covalent bond is essential for the active‐center arrangement of the FADH2/FAD cofactor. Removal of this bond causes a displacement of the isoalloxazine group, which influences interactions with the protein, flavin solvation, and possible proton‐transfer pathways. Specifically, for the noncovalently bound FADH2 cofactor, the N1 atom moves away from the His‐A365 and His‐A254 residues and the N5 atom moves away from the glutamine‐62A residue. Both of the histidine and glutamine residues interact with a chain of water molecules that cross the enzyme, which is most likely involved in proton transfer. Breaking this chain of water molecules could thereby compromise proton transfer across the two active sites of Complex II.
Collapse
Affiliation(s)
- Daniel F A R Dourado
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.,Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, Northern Ireland, UK
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, 17003, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Alexandra T P Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
7
|
Zafreen L, Walker-Kopp N, Huang LS, Berry E. In-vitro, SDH5-dependent flavinylation of immobilized human respiratory complex II flavoprotein. Arch Biochem Biophys 2016; 604:47-56. [PMID: 27296776 DOI: 10.1016/j.abb.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Mitochondrial Complex II (Succinate: ubiquinone oxidoreductase) has a covalently bound FAD cofactor in its largest subunit (SDHA), which accepts electrons from oxidation of succinate during catalysis. The mechanism of flavin attachment, and factors involved, have not been fully elucidated. The recent report of an assembly factor SDH5 (SDHAF2, SDHE) required for flavinylation (Hao et al., 2009 Science 325, 1139-1142) raises the prospect of achieving flavinylation in a completely defined system, which would facilitate elucidation of the precise role played by SDH5 and other factors. At this time that goal has not been achieved, and the actual function of SDH5 is still unknown. We have developed a procedure for in-vitro flavinylation of recombinant human apo-SDHA, immobilized on Ni-IMAC resin by a His tag, in a chemically defined medium. In this system flavinylation has a pH optimum of 6.5 and is completely dependent on added SDH5. The results suggest that FAD interacts noncovalently with SDHA in the absence of SDH5. This system will be useful in understanding the process of flavinylation of SDHA and the role of SDH5 in this process.
Collapse
Affiliation(s)
- Lala Zafreen
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nancy Walker-Kopp
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Shar Huang
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Edward Berry
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
8
|
Cheng VWT, Piragasam RS, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase. Biochemistry 2015; 54:1043-52. [PMID: 25569225 DOI: 10.1021/bi501350j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.
Collapse
Affiliation(s)
- Victor W T Cheng
- Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Van Vranken JG, Na U, Winge DR, Rutter J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit Rev Biochem Mol Biol 2014; 50:168-80. [PMID: 25488574 DOI: 10.3109/10409238.2014.990556] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data.
Collapse
|
10
|
Van Vranken JG, Bricker DK, Dephoure N, Gygi SP, Cox JE, Thummel CS, Rutter J. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab 2014; 20:241-52. [PMID: 24954416 PMCID: PMC4126880 DOI: 10.1016/j.cmet.2014.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023]
Abstract
Succinate dehydrogenase (SDH) occupies a central place in cellular energy production, linking the tricarboxylic cycle with the electron transport chain. As a result, a subset of cancers and neuromuscular disorders result from mutations affecting any of the four SDH structural subunits or either of two known SDH assembly factors. Herein we characterize an evolutionarily conserved SDH assembly factor designated Sdh8/SDHAF4, using yeast, Drosophila, and mammalian cells. Sdh8 interacts specifically with the catalytic Sdh1 subunit in the mitochondrial matrix, facilitating its association with Sdh2 and the subsequent assembly of the SDH holocomplex. These roles for Sdh8 are critical for preventing motility defects and neurodegeneration in Drosophila as well as the excess ROS generated by free Sdh1. These studies provide insights into the mechanisms by which SDH is assembled and raise the possibility that some forms of neuromuscular disease may be associated with mutations that affect this SDH assembly factor.
Collapse
Affiliation(s)
- Jonathan G Van Vranken
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Daniel K Bricker
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Noah Dephoure
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
McNeil MB, Fineran PC. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity. Biochemistry 2013; 52:7628-40. [PMID: 24070374 DOI: 10.1021/bi401006a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Succinate dehydrogenase (SDH) is an important respiratory enzyme that plays a critical role in the generation of energy in the majority of eukaryotes, bacteria, and archaea. The activity of SDH is dependent on the covalent attachment of the redox cofactor FAD to the flavoprotein subunit SdhA. In the Gram-negative bacteria Escherichia coli and Serratia sp. ATCC 39006, the covalent attachment of FAD to SdhA is dependent on the FAD assembly factor SdhE (YgfY). Although mechanisms have been proposed, experimental evidence that elucidates the molecular details of SdhE-mediated flavinylation are scarce. In this study, truncation and alanine swap mutagenesis of SdhE identified a highly conserved RGxxE motif that was important for SdhE function. Interestingly, RGxxE site-directed variants were not impaired in terms of protein folding or interactions with SdhA. Purification and analysis of SdhA from different mutant backgrounds demonstrated that SdhE interacts with and flavinylates folded SdhA without a requirement for the assembly of the entire SDH complex. SdhA was also partially active in the absence of SdhE, suggesting that SdhA is able to attach FAD through an inefficient autocatalytic mechanism. The results presented are of widespread relevance because SdhE and SDH are required for bacterial pathogenesis and mutations in the eukaryotic homologues of SdhE and SDH are associated with cancer in humans.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | | |
Collapse
|
12
|
McNeil MB, Iglesias-Cans MC, Clulow JS, Fineran PC. YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor SdhE (YgfY). MICROBIOLOGY-SGM 2013; 159:1352-1365. [PMID: 23657679 DOI: 10.1099/mic.0.068510-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serratia sp. strain ATCC 39006 produces the red-pigmented antibiotic prodigiosin. Prodigiosin biosynthesis is regulated by a complex hierarchy that includes the uncharacterized protein YgfX (DUF1434). The ygfX gene is co-transcribed with sdhE, an FAD assembly factor essential for the flavinylation and activation of the SdhA subunit of succinate dehydrogenase (SDH), a central enzyme in the tricarboxylic acid cycle and electron transport chain. The sdhEygfX operon is highly conserved within the Enterobacteriaceae, suggesting that SdhE and YgfX function together. We performed an extensive mutagenesis to gain molecular insights into the uncharacterized protein YgfX, and have investigated the relationship between YgfX and SdhE. YgfX localized to the membrane, interacted with itself, forming dimers or larger multimers, and interacted with SdhE. The transmembrane helices of YgfX were critical for protein function and the formation of YgfX multimers. Site-directed mutagenesis of residues conserved in DUF1434 proteins revealed a periplasmic tryptophan and a cytoplasmic aspartate that were crucial for YgfX activity. Both of these amino acids were required for the formation of YgfX multimers and interactions with SdhE but not membrane localization. Multiple cell division proteins were identified as putative interaction partners of YgfX and overexpression of YgfX had effects on cell morphology. These findings represent an important step in understanding the function of DUF1434 proteins. In contrast to a recent report, we found no evidence that YgfX and SdhE form a toxin-antitoxin system. In summary, YgfX functions as a multimeric membrane-bound protein that interacts with SdhE, an important FAD assembly factor that controls SDH activity.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Marina C Iglesias-Cans
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James S Clulow
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Kim HJ, Winge DR. Emerging concepts in the flavinylation of succinate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:627-36. [PMID: 23380393 DOI: 10.1016/j.bbabio.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
The Succinate Dehydrogenase (SDH) heterotetrameric complex catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and in the aerobic respiratory chains of eukaryotes and bacteria. Essential in this catalysis is the covalently-linked cofactor flavin adenine dinucleotide (FAD) in subunit1 (Sdh1) of the SDH enzyme complex. The mechanism of FAD insertion and covalent attachment to Sdh1 is unknown. Our working concept of this flavinylation process has relied mostly on foundational works from the 1990s and by applying the principles learned from other enzymes containing a similarly linked FAD. The discovery of the flavinylation factor Sdh5, however, has provided new insight into the possible mechanism associated with Sdh1 flavinylation. This review focuses on encapsulating prior and recent advances towards understanding the mechanism associated with flavinylation of Sdh1 and how this flavinylation process affects the overall assembly of SDH. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
14
|
Eletsky A, Jeong MY, Kim H, Lee HW, Xiao R, Pagliarini DJ, Prestegard JH, Winge DR, Montelione GT, Szyperski T. Solution NMR structure of yeast succinate dehydrogenase flavinylation factor Sdh5 reveals a putative Sdh1 binding site. Biochemistry 2012; 51:8475-7. [PMID: 23062074 PMCID: PMC3667956 DOI: 10.1021/bi301171u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The yeast mitochondrial protein Sdh5 is required for the covalent attachment of flavin adenine dinucleotide (FAD) to protein Sdh1, a subunit of the heterotetrameric enzyme succinate dehydrogenase. The NMR structure of Sdh5 represents the first eukaryotic structure of Pfam family PF03937 and reveals a conserved surface region, which likely represents a putative Sdh1-Sdh5 interaction interface. Point mutations in this region result in the loss of covalent flavinylation of Sdh1. Moreover, chemical shift perturbation measurements showed that Sdh5 does not bind FAD in vitro, indicating that it is not a simple cofactor transporter in vivo.
Collapse
Affiliation(s)
- Alexander Eletsky
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| | - Mi-Young Jeong
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry and Mitochondrial Proteome Partnership, Salt Lake City, Utah 84132, United States
| | - Hyung Kim
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry and Mitochondrial Proteome Partnership, Salt Lake City, Utah 84132, United States
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| | - Rong Xiao
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey 08854, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| | - David J. Pagliarini
- Department of Biochemistry and the Mitochondrial Protein Partnership, The University of Wisconsin – Madison, Madison, Wisconsin 53562, United States
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| | - Dennis R. Winge
- University of Utah Health Sciences Center, Departments of Medicine and Biochemistry and Mitochondrial Proteome Partnership, Salt Lake City, Utah 84132, United States
| | - Gaetano T. Montelione
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey 08854, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
- Northeast Structural Genomics Consortium Supporting Information Placeholder
| |
Collapse
|
15
|
Kim HJ, Jeong MY, Na U, Winge DR. Flavinylation and assembly of succinate dehydrogenase are dependent on the C-terminal tail of the flavoprotein subunit. J Biol Chem 2012; 287:40670-9. [PMID: 23043141 DOI: 10.1074/jbc.m112.405704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Succinate dehydrogenase (SDH) requires a covalent addition of FAD for catalytic function. RESULTS Mutational analyses of Sdh1 implicate C-terminal region Arg residues involvement in covalent flavinylation and SDH assembly. CONCLUSION SDH assembly is dependent on FAD binding to Sdh1 but not covalent binding. SIGNIFICANCE These results document the basis for the SDH deficiency and pathology seen with mutations in human Sdh1. The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ~70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg(582) in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg(638) compromises SDH function only when present in combination with a Cys(630) substitution. Mutations of either Arg(582) or Arg(638)/Cys(630) do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
16
|
McNeil MB, Clulow JS, Wilf NM, Salmond GPC, Fineran PC. SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria. J Biol Chem 2012; 287:18418-28. [PMID: 22474332 DOI: 10.1074/jbc.m111.293803] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conserved uncharacterized genes account for ~30% of genes in both eukaryotic and bacterial genomes and are predicted to encode what are often termed "conserved hypothetical proteins." Many of these proteins have a wide phylogenetic distribution and might play important roles in conserved cellular pathways. Using the bacterium Serratia as a model system, we have investigated two conserved uncharacterized proteins, YgfY (a DUF339 protein, renamed SdhE; succinate dehydrogenase protein E) and YgfX (a DUF1434 protein). SdhE was required for growth on succinate as a sole carbon source and for the function, but not stability, of succinate dehydrogenase, an important component of the electron transport chain and the tricarboxylic acid cycle. SdhE interacted with the flavoprotein SdhA, directly bound the flavin adenine dinucleotide co-factor, and was required for the flavinylation of SdhA. This is the first demonstration of a protein required for FAD incorporation in bacteria. Furthermore, the loss of SdhE was highly pleiotropic, suggesting that SdhE might flavinylate other flavoproteins. Our findings are of wide importance to central metabolism because SdhE homologues are present in α-, β-, and γ-proteobacteria and multiple eukaryotes, including humans and yeast.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
17
|
Juhnke HD, Hiltscher H, Nasiri HR, Schwalbe H, Lancaster CRD. Production, characterization and determination of the real catalytic properties of the putative 'succinate dehydrogenase' from Wolinella succinogenes. Mol Microbiol 2008; 71:1088-101. [PMID: 19170876 PMCID: PMC2680327 DOI: 10.1111/j.1365-2958.2008.06581.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both the genomes of the epsilonproteobacteria Wolinella succinogenes and Campylobacter jejuni contain operons (sdhABE) that encode for so far uncharacterized enzyme complexes annotated as ‘non-classical’ succinate:quinone reductases (SQRs). However, the role of such an enzyme ostensibly involved in aerobic respiration in an anaerobic organism such as W. succinogenes has hitherto been unknown. We have established the first genetic system for the manipulation and production of a member of the non-classical succinate:quinone oxidoreductase family. Biochemical characterization of the W. succinogenes enzyme reveals that the putative SQR is in fact a novel methylmenaquinol:fumarate reductase (MFR) with no detectable succinate oxidation activity, clearly indicative of its involvement in anaerobic metabolism. We demonstrate that the hydrophilic subunits of the MFR complex are, in contrast to all other previously characterized members of the superfamily, exported into the periplasm via the twin-arginine translocation (tat)-pathway. Furthermore we show that a single amino acid exchange (Ala86→His) in the flavoprotein of that enzyme complex is the only additional requirement for the covalent binding of the otherwise non-covalently bound FAD. Our results provide an explanation for the previously published puzzling observation that the C. jejuni sdhABE operon is upregulated in an oxygen-limited environment as compared with microaerophilic laboratory conditions.
Collapse
Affiliation(s)
- Hanno D Juhnke
- Cluster of Excellence 'Macromolecular Complexes', Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
18
|
Szeto SSW, Reinke SN, Sykes BD, Lemire BD. Ubiquinone-binding Site Mutations in the Saccharomyces cerevisiae Succinate Dehydrogenase Generate Superoxide and Lead to the Accumulation of Succinate. J Biol Chem 2007; 282:27518-27526. [PMID: 17636259 DOI: 10.1074/jbc.m700601200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial succinate dehydrogenase (SDH) is an essential component of the electron transport chain and of the tricarboxylic acid cycle. Also known as complex II, this tetrameric enzyme catalyzes the oxidation of succinate to fumarate and reduces ubiquinone. Mutations in the human SDHB, SDHC, and SDHD genes are tumorigenic, leading to the development of several types of tumors, including paraganglioma and pheochromocytoma. The mechanisms linking SDH mutations to oncogenesis are still unclear. In this work, we used the yeast SDH to investigate the molecular and catalytic effects of tumorigenic or related mutations. We mutated Arg(47) of the Sdh3p subunit to Cys, Glu, and Lys and Asp(88) of the Sdh4p subunit to Asn, Glu, and Lys. Both Arg(47) and Asp(88) are conserved residues, and Arg(47) is a known site of cancer causing mutations in humans. All of the mutants examined have reduced ubiquinone reductase activities. The SDH3 R47K, SDH4 D88E, and SDH4 D88N mutants are sensitive to hyperoxia and paraquat and have elevated rates of superoxide production in vitro and in vivo. We also observed the accumulation and secretion of succinate. Succinate can inhibit prolyl hydroxylase enzymes, which initiate a proliferative response through the activation of hypoxia-inducible factor 1alpha. We suggest that SDH mutations can promote tumor formation by contributing to both reactive oxygen species production and to a proliferative response normally induced by hypoxia via the accumulation of succinate.
Collapse
Affiliation(s)
- Samuel S W Szeto
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Stacey N Reinke
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Bernard D Lemire
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
19
|
Lucas MF, Ramos MJ. Mechanism of a Soluble Fumarate Reductase from Shewanella frigidimarina: A Theoretical Study. J Phys Chem B 2006; 110:10550-6. [PMID: 16722766 DOI: 10.1021/jp057456t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of a unique fumarate reductase is explored using the hybrid density functional B3LYP method. The calculations show a two-step mechanism, initiated with a hydride transfer from FAD (flavin adenine dinucleotide) to fumarate, followed by a proton shift from Arg402. The rate-limiting process is assigned to the hydride transfer, and the energetics are consistent with experimental data. It is shown that the enzyme is essential to correctly position the substrate in the active site, stabilizing its extremely anionic character.
Collapse
Affiliation(s)
- M Fatima Lucas
- REQUIMTE, Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | |
Collapse
|
20
|
Scheffler IE. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2005; 1:3-31. [PMID: 16120266 DOI: 10.1016/s1567-7249(00)00002-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California, San Diego, and Center for Molecular Genetics, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
21
|
Hassan-Abdallah A, Bruckner RC, Zhao G, Jorns MS. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. Biochemistry 2005; 44:6452-62. [PMID: 15850379 PMCID: PMC1993914 DOI: 10.1021/bi047271x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.
Collapse
Affiliation(s)
| | | | | | - Marilyn Schuman Jorns
- *To whom requests for reprints should be addressed. Phone: (215) 762-7495 FAX: (215) 762-4452, E-mail:
| |
Collapse
|
22
|
Abstract
Complex II is the only membrane-bound component of the Krebs cycle and in addition functions as a member of the electron transport chain in mitochondria and in many bacteria. A recent X-ray structural solution of members of the complex II family of proteins has provided important insights into their function. One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain. Exciting recent developments in relation to disease in humans and the formation of reactive oxygen species by complex II point to its overall importance in cellular physiology.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
23
|
Abstract
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.
Collapse
Affiliation(s)
- Marco H Hefti
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | |
Collapse
|
24
|
Lemire BD, Oyedotun KS. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:102-16. [PMID: 11803020 DOI: 10.1016/s0005-2728(01)00229-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) provides an excellent model system for studying the assembly, structure, and function of a mitochondrial succinate:quinone oxidoreductase. The powerful combination of genetic and biochemical approaches is better developed in yeast than in other eukaryotes. The yeast protein is strikingly similar to other family members in the structural and catalytic properties of its subunits. However, the membrane domain and particularly the role of the single heme in combination with two ubiquinone-binding sites need further investigation. The assembly of subunits and cofactors that occurs to produce new holoenzyme molecules is a complex process that relies on molecular chaperones. The yeast SDH provides the best opportunity for understanding the biogenesis of this family of iron-sulfur flavoproteins.
Collapse
Affiliation(s)
- Bernard D Lemire
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | |
Collapse
|
25
|
Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:140-57. [PMID: 11803023 DOI: 10.1016/s0005-2728(01)00238-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
26
|
Edmondson DE, Newton-Vinson P. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction. Antioxid Redox Signal 2001; 3:789-806. [PMID: 11761328 DOI: 10.1089/15230860152664984] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of flavoenzymes in which the flavin coenzyme redox cofactor is covalently attached to the protein through an amino acid side chain is covered in this review. Flavin-protein covalent linkages have been shown to exist through each of five known linkages: (a) 8alpha-N(3)-histidyl, (b) 8alpha-N(1)-histidyl, (c) 8alpha-S-cysteinyl, (d) 8alpha-O-tyrosyl, or (e) 6-S-cysteinyl with the flavin existing at either the flavin mononucleotide or flavin adenine dinucleotide (FAD) levels. This class of enzymes is widely distributed in diverse biological systems and catalyzes a variety of enzymatic reactions. Current knowledge on the mechanism of covalent flavin attachment is discussed based on studies on the 8alpha-S-cysteinylFAD of monoamine oxidases A and B, as well as studies on other flavoenzymes. The evidence supports an autocatalytic quinone-methide mechanism of protein flavinylation. Proposals to explain the structural and mechanistic advantages of a covalent flavin linkage in flavoenzymes are presented. It is concluded that multiple factors are involved and include: (a) stabilization of the apoenzyme structure, (b) steric alignment of the cofactor in the active site to facilitate catalysis, and (c) modulation of the redox potential of the covalent flavin through electronic effects of 8alpha-substitution.
Collapse
Affiliation(s)
- D E Edmondson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
27
|
Abstract
This review attempts to summarize our present state of knowledge of mitochondria in relation to a number of areas of biology, and to indicate where future research might be directed. In the evolution of eukaryotic cells mitochondria have for a long time played a prominent role. Nowadays their integration into many activities of a cell, and their dynamic behavior as subcellular organelles within a cell and during cell division are a major focus of attention. The crystal structures of the major complexes of the electron transport chain (except complex I) have been established, permitting increasingly detailed analyses of the important mechanism of proton pumping coupled to electron transport. The mitochondrial genome and its replication and expression are beginning to be understood in considerable detail, but more questions remain with regard to mutations and their repair, and the segregation of the mtDNA in oogenesis and development. Much emphasis and a large effort have recently been devoted to understand the role of mitochondria in programmed cell death (apoptosis). The understanding of their central role in mitochondrial diseases is a major achievement of the past decade. Finally, various drugs have traditionally played a part in understanding biochemical mechanisms within mitochondria; the repertoire of drugs with novel and interesting targets is expanding.
Collapse
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
28
|
Oyedotun KS, Lemire BD. The Quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. J Biol Chem 2001; 276:16936-43. [PMID: 11279023 DOI: 10.1074/jbc.m100184200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) of the mitochondrial electron transport chain oxidizes succinate and reduces ubiquinone. Using a random mutagenesis approach, we identified functionally important amino acid residues in one of the anchor subunits, Sdh4p. We analyzed three point mutations (F69V, S71A, and H99L) and one nonsense mutation (Y89OCH) that truncates the Sdh4p subunit at the third predicted transmembrane segment. The F69V and the S71A mutations result in greatly impaired respiratory growth in vivo and quinone reductase activities in vitro, with negligible effects on enzyme stability. In contrast, the Y89OCH and the H99L mutations elicit large structural perturbations that impair assembly as evidenced by reduced covalent FAD levels, membrane-associated succinate-phenazine methosulfate reductase activities, and thermal stability. We propose that the Phe-69 and the Ser-71 residues are involved in the formation of a quinone-binding site, whereas the His-99 residue is at the interface of the peripheral and the membrane domains. In addition, the properties of the Y89OCH mutation are consistent with the interpretation that the third transmembrane segment is not involved in catalysis but rather plays an important structural role. The mutant enzymes are differentially sensitive to a quinone analog inhibitor, providing further evidence for a two-quinone binding model in the yeast SDH.
Collapse
Affiliation(s)
- K S Oyedotun
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
29
|
Eschenbrenner M, Chlumsky LJ, Khanna P, Strasser F, Jorns MS. Organization of the multiple coenzymes and subunits and role of the covalent flavin link in the complex heterotetrameric sarcosine oxidase. Biochemistry 2001; 40:5352-67. [PMID: 11330998 DOI: 10.1021/bi010101p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.
Collapse
Affiliation(s)
- M Eschenbrenner
- Department of Biochemistry, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
30
|
Barquera B, Häse CC, Gennis RB. Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na(+) pump from Vibrio cholerae with covalently attached FMN. FEBS Lett 2001; 492:45-9. [PMID: 11248234 DOI: 10.1016/s0014-5793(01)02224-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is present in the membranes of a number of marine bacteria and pathogenic bacteria. Two of the six subunits of the Na(+)-NQR, NqrB and NqrC, have been previously shown to contain covalently bound flavin adenine mononucleotide (FMN). In the current work, the cloning of nqrC from Vibrio cholerae is reported. The gene has been expressed in V. cholerae and shown to contain one equivalent of covalently bound FMN. In contrast, no covalent flavin was detected when threonine-225 was replaced by leucine. The data show that the FMN attachment does not require assembly of the enzyme and are consistent with the unusual threonine attachment site.
Collapse
Affiliation(s)
- B Barquera
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
| | | | | |
Collapse
|
31
|
Li J, Saxena S, Pain D, Dancis A. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J Biol Chem 2001; 276:1503-9. [PMID: 11035018 DOI: 10.1074/jbc.m007198200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arh1p is an essential mitochondrial protein of yeast with reductase activity. Here we show that this protein is involved in iron metabolism. A yeast strain was constructed in which the open reading frame was placed under the control of a galactose-regulated promoter. Protein expression was induced by galactose and repressed to undetectable levels in the absence of galactose, although cells grew quite well in the absence of inducer. Under noninducing conditions, cellular iron uptake was dysregulated, exhibiting a failure to repress in response to medium iron. Iron trafficking within the cell was also disturbed. Exposure of Arh1p-depleted cells to increasing iron concentrations during growth led to drastic increases in mitochondrial iron, indicating a loss of homeostatic control. Activity of aconitase, a prototype Fe-S protein, was deficient at all concentrations of mitochondrial iron, although the protein level was unaltered. Heme protein deficiencies were exacerbated in the iron-loaded mitochondria, suggesting a toxic side effect of accumulated iron. Finally, a time course correlated the cellular depletion of Arh1p with the coordinated appearance of various mutant phenotypes including dysregulated cellular iron uptake, deficiency of Fe-S protein activities in mitochondria and cytoplasm, and deficiency of hemoproteins. Thus, Arh1p is required for control of cellular and mitochondrial iron levels and for the activities of Fe-S cluster proteins.
Collapse
Affiliation(s)
- J Li
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
32
|
Abstract
We describe two new sequence motifs, present in several families of flavoproteins. The "GG motif" (RxGGRxxS/T) is found shortly after the betaalphabetadinucleotide-binding motif (DBM) in L-amino acid oxidases, achacin and aplysianin-A, monoamine oxidases, corticosteroid-binding proteins, and tryptophan 2-monooxygenases. Other disperse sequence similarities between these families suggest a common origin. A GG motif is also found in protoporphyrinogen oxidase and carotenoid desaturases and, reduced to the central GG doublet, in the THI4 protein, dTDP-4-dehydrorhamnose reductase, soluble fumarate reductase, steroid dehydrogenases, Rab GDP-dissociation inhibitor, and in most flavoproteins with two dinucleotide-binding domains (glutathione reductase, glutamate synthase, flavin-containing monooxygenase, trimethylamine dehydrogenase...). In the latter families, an "ATG motif" (oxhhhATG) is found in both the FAD- and NAD(P)H-binding domains, forming the fourth beta-strand of the Rossman fold and the connecting loop. On the basis of these and previously described motifs, we present a classification of dinucleotide-binding proteins that could also serve as an evolutionary scheme. Like the DBM, the ATG motif appears to predate the divergence of NAD(P)H- and FAD-binding proteins. We propose that flavoproteins have evolved from a well-differentiated NAD(P)H-binding protein. The bulk of the substrate-binding domain was formed by an insertion after the fourth beta-strand, either of a closely related NAD(P)H-binding domain or of a domain of completely different origin.
Collapse
Affiliation(s)
- O Vallon
- Institut de Biologie Physico-Chimique, CNRS, Paris, France.
| |
Collapse
|
33
|
Fraaije MW, van den Heuvel RH, van Berkel WJ, Mattevi A. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J Biol Chem 1999; 274:35514-20. [PMID: 10585424 DOI: 10.1074/jbc.274.50.35514] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By mutating the target residue of covalent flavinylation in vanillyl-alcohol oxidase, the functional role of the histidyl-FAD bond was studied. Three His(422) mutants (H422A, H422T, and H422C) were purified, which all contained tightly but noncovalently bound FAD. Steady state kinetics revealed that the mutants have retained enzyme activity, although the turnover rates have decreased by 1 order of magnitude. Stopped-flow analysis showed that the H422A mutant is still able to form a stable binary complex of reduced enzyme and a quinone methide product intermediate, a crucial step during vanillyl-alcohol oxidase-mediated catalysis. The only significant change in the catalytic cycle of the H422A mutant is a marked decrease in reduction rate. Redox potentials of both wild type and H422A vanillyl-alcohol oxidase have been determined. During reduction of H422A, a large portion of the neutral flavin semiquinone is observed. Using suitable reference dyes, the redox potentials for the two one-electron couples have been determined: -17 and -113 mV. Reduction of wild type enzyme did not result in any formation of flavin semiquinone and revealed a remarkably high redox potential of +55 mV. The marked decrease in redox potential caused by the missing covalent histidyl-FAD bond is reflected in the reduced rate of substrate-mediated flavin reduction limiting the turnover rate. Elucidation of the crystal structure of the H422A mutant established that deletion of the histidyl-FAD bond did not result in any significant structural changes. These results clearly indicate that covalent interaction of the isoalloxazine ring with the protein moiety can markedly increase the redox potential of the flavin cofactor, thereby facilitating redox catalysis. Thus, formation of a histidyl-FAD bond in specific flavoenzymes might have evolved as a way to contribute to the enhancement of their oxidative power.
Collapse
Affiliation(s)
- M W Fraaije
- Department of Genetics, University of Pavia, via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | |
Collapse
|
34
|
Vergani L, Barile M, Angelini C, Burlina AB, Nijtmans L, Freda MP, Brizio C, Zerbetto E, Dabbeni-Sala F. Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies. Brain 1999; 122 ( Pt 12):2401-11. [PMID: 10581232 DOI: 10.1093/brain/122.12.2401] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two unrelated adult males, aged 36 (patient 1) and 25 (patient 2) years, presented with subacute carnitine-deficient lipid storage myopathy that was totally and partly responsive to riboflavin supplementation in the two patients, respectively. Plasma acyl-carnitine and urinary organic acid profiles indicated multiple acyl coenzyme A dehydrogenase deficiency, which was mild in patient 1 and severe in patient 2. The activities of short-chain and medium-chain acyl coenzyme A dehydrogenases in mitochondrial fractions were decreased, especially in patient 2. This was in agreement with Western blotting results. Flavin-dependent complexes I and II were studied by immunoblotting and densitometric quantification of two-dimensional electrophoresis with comparable results. Complex I was present in normal amounts in both patients, whereas complex II was decreased only in the pretherapy muscle of patient 2. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) concentrations in muscle and isolated mitochondria, and the activity of mitochondrial FAD pyrophosphatase, showed that patient 1 had low levels of FAD (46%) and FMN (49%) in mitochondria, with a significant increase (P < 0.01) in mitochondrial FAD pyrophosphatase (273%) compared with controls. Patient 2 had similar low levels of FAD and FMN in both total muscle (FAD and FMN 22% of controls) and mitochondria (FAD 26%; FMN 16%) and normal activity of mitochondrial FAD pyrophosphatase. All of these biochemical parameters were either totally or partly corrected after riboflavin therapy.
Collapse
Affiliation(s)
- L Vergani
- Neuromuscular Center, Department of Neurological Science, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li J, Kogan M, Knight SA, Pain D, Dancis A. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 1999; 274:33025-34. [PMID: 10551871 DOI: 10.1074/jbc.274.46.33025] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nfs1p is the yeast homolog of the bacterial proteins NifS and IscS, enzymes that release sulfur from cysteine for iron-sulfur cluster assembly. Here we show that the yeast mitochondrial protein Nfs1p regulates cellular and mitochondrial iron homeostasis. A strain of Saccharomyces cerevisiae, MA14, with a missense NFS1 allele (I191S) was isolated in a screen for altered iron-dependent gene regulation. This mutant exhibited constitutive up-regulation of the genes of the cellular iron uptake system, mediated through effects on the Aft1p iron-regulatory protein. Iron accumulating in the mutant cells was retained in the mitochondrial matrix while, at the same time, iron-sulfur proteins were deficient. In this work, the yeast protein was localized to mitochondria, and the gene was shown to be essential for viability. Furthermore, Nfs1p in the MA14 mutant was found to be markedly decreased, suggesting that this low protein level produced the observed regulatory effects. This hypothesis was confirmed by experiments in which expression of wild-type Nfs1p from a regulated galactose-induced promoter was turned off, leading to recapitulation of the iron regulatory phenotypes characteristic of the MA14 mutant. These phenotypes include decreases in iron-sulfur protein activities coordinated with increases in cellular iron uptake and iron distribution to mitochondria.
Collapse
Affiliation(s)
- J Li
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
36
|
Dibrov E, Fu S, Lemire BD. The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J Biol Chem 1998; 273:32042-8. [PMID: 9822678 DOI: 10.1074/jbc.273.48.32042] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of the mitochondrial respiratory chain is mediated by a large number of helper proteins. To better understand the biogenesis of the yeast succinate dehydrogenase (SDH), we searched for assembly-defective mutants. SDH is encoded by the SDH1, SDH2, SDH3, and SDH4 genes. The holoenzyme is composed of two domains. The membrane extrinsic domain, consisting of Sdh1p and Sdh2p, contains a covalent FAD cofactor and three iron-sulfur clusters. The membrane intrinsic domain, consisting of Sdh3p and Sdh4p, is proposed to bind two molecules of ubiquinone and one heme. We isolated one mutant that is respiration-deficient with a specific loss of SDH oxidase activity. SDH is not assembled in this mutant. The complementing gene, TCM62 (also known as SCYBR044C), does not encode an SDH subunit and is not essential for cell viability. It encodes a mitochondrial membrane protein of 64,211 Da. The Tcm62p sequence is 17.3% identical to yeast hsp60, a molecular chaperone. The Tcm62p amino terminus is in the mitochondrial matrix, whereas the carboxyl terminus is accessible from the intermembrane space. Tcm62p forms a complex containing at least three SDH subunits. We propose that Tcm62p functions as a chaperone in the assembly of yeast SDH.
Collapse
Affiliation(s)
- E Dibrov
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
37
|
Scheffler IE. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:267-315. [PMID: 9594577 DOI: 10.1016/s0079-6603(08)60895-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Succinate:quinone oxidoreductase is a membrane-associated complex in mitochondria, often referred to as complex II, based on the fractionation scheme developed by Y. Hatefi and colleagues. It consists of four peptides, two of which are integral membrane proteins (15 and 12-13 kDa, respectively) and two others that are peripheral membrane proteins, i.e., a flavoprotein (Fp, 70 kDa) and an iron-protein (Ip, 27 kDa). The mature, functional complex contains a cytochrome in association with the membrane proteins, a flavin linked covalently to the largest peptide, and three iron-sulfur clusters in the 27-kDa subunit. The present review touches only briefly on the biochemical and biophysical properties of this complex. Instead, the focus is on the molecular-genetic studies that have become possible since the first genes from eukaryotes were cloned in 1989. The evolutionary conservation of the amino acid sequence of both the Fp and the Ip peptides has facilitated the cloning of these genes from a large variety of eukaryotic organisms by PCR-based methods. The review addresses questions related to the regulation of the expression of these genes, with an emphasis on mammals and yeast, for which most of the information is available. Four different genes have to be co-ordinately regulated. Transcriptional as well as posttranscriptional regulatory mechanisms have been observed in diverse organisms. Intriguing observations have been made in studies of this enzyme during the life cycle of organisms existing alternately under aerobic and anaerobic conditions. Naturally occurring or induced mutations in these genes have shed light on several questions related to the assembly of this complex, and on the relationship between structure and function. Four different peptides are imported into the mitochondria. They have to be modified, folded, and assembled. The stage is set for the exploration of highly specific changes introduced by site-directed mutagenesis. Until recently the genes were believed to be exclusively nuclear in all eukaryotes, but exceptions have since been found. This finding has relevance in the discussion of the evolution of mitochondria from prokaryotes. A highly conserved set of genes is found in prokaryotes, and some informative comparisons on gene organization and expression in prokaryotes and eukaryotes have been included.
Collapse
Affiliation(s)
- I E Scheffler
- Department of Biology, University of California, San Diego 92093, USA
| |
Collapse
|
38
|
Mewies M, McIntire WS, Scrutton NS. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci 1998; 7:7-20. [PMID: 9514256 PMCID: PMC2143808 DOI: 10.1002/pro.5560070102] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first identified covalent flavoprotein, a component of mammalian succinate dehydrogenase, was reported 42 years ago. Since that time, more than 20 covalent flavoenzymes have been described, each possessing one of five modes of FAD or FMN linkage to protein. Despite the early identification of covalent flavoproteins, the mechanisms of covalent bond formation and the roles of the covalent links are only recently being appreciated. The main focus of this review is, therefore, one of mechanism and function, in addition to surveying the types of linkage observed and the methods employed for their identification. Case studies are presented for a variety of covalent flavoenzymes, from which general findings are beginning to emerge.
Collapse
Affiliation(s)
- M Mewies
- Department of Biochemistry, University of Leicester, UK
| | | | | |
Collapse
|
39
|
Robinson KM, Lemire BD. A requirement for matrix processing peptidase but not for mitochondrial chaperonin in the covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein. J Biol Chem 1996; 271:4061-7. [PMID: 8626740 DOI: 10.1074/jbc.271.8.4061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Succinate dehydrogenase (EC 1.3.99.1) in the yeast Saccharomyces cerevisiae is a mitochondrial heterotetramer containing a flavoprotein subunit with an 8alpha-N(3)-histidyl-linked FAD cofactor. The covalent linkage of the FAD is necessary for activity. We have developed an in vitro assay that measures the flavinylation of the flavoprotein precursor in mitochondrial matrix fractions. Flavoprotein modification does not depend on translocation across a membrane, but it does require proteolytic processing by the mitochondrial processing peptidase prior to flavin attachment. Since ATP depletion, N-ethylmaleimide, or proteinase treatments of matrix fractions inhibit flavoprotein modification, at least one additional matrix protein component appears to be required. Having previously suggested that the flavoprotein begins folding before FAD attachment occurs, we tested whether the mitochondrial chaperonin, heat shock protein 60, might be necessary. Co-immunoprecipitation of the flavoprotein and the chaperonin demonstrate that the proteins do indeed interact. However, immunodepletion of the chaperonin from matrix fractions does not inhibit FAD attachment. Nonprotein components are also required for flavoprotein modification. In addition to ATP, effector molecules such as succinate, fumarate, or malate also stimulate modification. Together, these results suggest that FAD addition is an early event in succinate dehydrogenase assembly.
Collapse
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
40
|
Robinson KM, Lemire BD. Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding. J Biol Chem 1996; 271:4055-60. [PMID: 8626739 DOI: 10.1074/jbc.271.8.4055] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Succinate dehydrogenase (EC 1.3.99.1) in the yeast Saccharomyces cerevisiae is a mitochondrial respiratory chain enzyme that utilizes the cofactor, FAD, to catalyze the oxidation of succinate and the reduction of ubiqinone. The succinate dehydrogenase enzyme is a heterotetramer composed of a flavoprotein, an iron-sulfur protein, and two hydrophobic subunits. The FAD is covalently attached to a histidine residue near the amino terminus of the flavoprotein. In this study, we have investigated the attachment of the FAD cofactor with the use of an antiserum that specifically recognizes FAD and hence, can discriminate between apo- and holoflavoproteins. Cofactor attachment, both in vivo and in vitro, occurs within the mitochondrial matrix once the presequence has been cleaved. FAD attachment is stimulated by, but not dependent upon, the presence of the iron-sulfur subunit and citric acid cycle intermediates such as succinate, malate, or fumarate. Furthermore, this modification does not occur with C-terminally truncated flavoprotein subunits that are fully competent for import. Taken together, these data suggest that cofactor addition occurs to an imported protein that has folded sufficiently to recognize both FAD and its substrate.
Collapse
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
41
|
Serra EC, Krapp AR, Ottado J, Feldman MF, Ceccarelli EA, Carrillo N. The precursor of pea ferredoxin-NADP+ reductase synthesized in Escherichia coli contains bound FAD and is transported into chloroplasts. J Biol Chem 1995; 270:19930-5. [PMID: 7650008 DOI: 10.1074/jbc.270.34.19930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The precursor of the chloroplast flavoprotein ferredoxin-NADP+ reductase from pea was expressed in Escherichia coli as a carboxyl-terminal fusion to glutathione S-transferase. The fused protein was soluble, and the precursor could be purified in a few steps involving affinity chromatography on glutathione-agarose, cleavage of the transferase portion by protease Xa, and ion exchange chromatography on DEAE-cellulose. The purified prereductase contained bound FAD but displayed marginally low levels of activity. Removal of the transit peptide by limited proteolysis rendered a functional protease-resistant core exhibiting enzymatic activity. The FAD-containing precursor expressed in E. coli was readily transported into isolated pea chloroplasts and was processed to the mature size, both inside the plastid and by incubation with stromal extracts in a plastid-free reaction. Import was dependent on the presence of ATP and was stimulated severalfold by the addition of plant leaf extracts.
Collapse
Affiliation(s)
- E C Serra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
42
|
Stoltz M, Rysavy P, Kalousek F, Brandsch R. Folding, flavinylation, and mitochondrial import of 6-hydroxy-D-nicotine oxidase fused to the presequence of rat dimethylglycine dehydrogenase. J Biol Chem 1995; 270:8016-22. [PMID: 7713902 DOI: 10.1074/jbc.270.14.8016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We analyzed the folding, covalent flavinylation, and mitochondrial import of the rabbit reticulocyte lysate-translated bacterial 6-hydroxy-D-nicotine oxidase (6-HDNO) fused to the mitochondrial targeting sequence of rat liver dimethylglycine dehydrogenase. Translation of 6-HDNO in FAD-supplemented reticulocyte lysate resulted in a protein that contained covalently incorporated FAD, exhibited enzyme activity, and was trypsin-resistant, a characteristic of the tight conformation of the holoenzyme. The attached mitochondrial presequence did not prevent folding, binding of FAD, or enzyme activity of the 6-HDNO moiety of the fusion protein (pre-6-HDNO). Pre-6-HDNO was imported into rat liver mitochondria and processed by the mitochondrial processing peptidase. Incubation of the trypsin-resistant pre-holo-6-HDNO protein with deenergized rat liver mitochondria demonstrated that upon contact with mitochondria, the protein was unfolded and became trypsin sensitive. Mitochondrial import assays showed that the unfolded pre-holo-6-HDNO with covalently attached FAD was imported into rat liver mitochondria. Inside the mitochondrion the holo-6-HDNO was refolded into the trypsin-resistant conformation. However, when pre-apo-6-HDNO was imported only part of the protein became trypsin resistant (approximately 20%). Addition of FAD and the allosteric effector glycerol 3-phosphate to apo-6-HDNO containing mitochondrial matrix was required to transform the protein into the trypsin-resistant conformation characteristic of holo-6-HDNO.
Collapse
Affiliation(s)
- M Stoltz
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
43
|
Robinson KM, Lemire BD. Flavinylation of succinate: ubiquinone oxidoreductase from Saccharomyces cerevisiae. Methods Enzymol 1995; 260:34-51. [PMID: 8592458 DOI: 10.1016/0076-6879(95)60128-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|