1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Krylov VB, Gómez-Redondo M, Solovev AS, Yashunsky DV, Brown AJ, Stappers MH, Gow NA, Ardá A, Jiménez-Barbero J, Nifantiev NE. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf 2023; 10:100109. [PMID: 37520856 PMCID: PMC10382935 DOI: 10.1016/j.tcsw.2023.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 → 2)-linked mannose chains with one inner α-(1 → 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
4
|
Quintana JI, Delgado S, Núñez-Franco R, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Ardá A. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Front Chem 2021; 9:664097. [PMID: 33968903 PMCID: PMC8097242 DOI: 10.3389/fchem.2021.664097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
The tandem-repeat Galectin-4 (Gal-4) contains two different domains covalently linked through a short flexible peptide. Both domains have been shown to bind preferentially to A and B histo blood group antigens with different affinities, although the binding details are not yet available. The biological relevance of these associations is unknown, although it could be related to its attributed role in pathogen recognition. The presentation of A and B histo blood group antigens in terms of peripheral core structures differs among tissues and from that of the antigen-mimicking structures produced by pathogens. Herein, the binding of the N-terminal domain of Gal-4 toward a group of differently presented A and B oligosaccharide antigens in solution has been studied through a combination of NMR, isothermal titration calorimetry (ITC), and molecular modeling. The data presented in this paper allow the identification of the specific effects that subtle chemical modifications within this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of affinity and intermolecular interactions, providing a structural-based rationale for the observed trend in the binding preferences.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - F Javier Cañada
- Margarita Salas Center for Biological Research, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country, Leioa, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,lkerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Gómez-Redondo M, Delgado S, Núñez-Franco R, Jiménez-Osés G, Ardá A, Jiménez-Barbero J, Gimeno A. The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chem Biol 2021; 2:932-941. [PMID: 34179785 PMCID: PMC8190895 DOI: 10.1039/d1cb00051a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interaction of human galectin-8 and its two separate N-terminal and C-terminal carbohydrate recognition domains (CRD) to their natural ligands has been analysed using a synergistic combination of experimental NMR and ITC methods, and molecular dynamics simulations. Both domains bind the minimal epitopes N-acetyllactosamine (1) and Galβ1–3GalNAc (2) in a similar manner. However, the N-terminal and C-terminal domains show exquisite and opposing specificity to bind either Neu5Ac- or Fuc-containing ligands, respectively. Moreover, the addition of the high-affinity ligands specific for one of the CRDs does not make any effect on the binding at the alternative one. Thus, the two CRDs behave independently and may simultaneously target different molecular entities to promote clustering through the generation of supramolecular assemblies. NMR, ITC, and MD data show that the two domains of human galectin-8 independently recognize sialyl- and fucosyl-containing glycans.![]()
Collapse
Affiliation(s)
- Marcos Gómez-Redondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain.,Departament of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| |
Collapse
|
6
|
Ardá A, Canales A, Cañada FJ, Jiménez-Barbero J. Carbohydrate–Protein Interactions: A 3D View by NMR. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NMR spectroscopy is a key tool for carbohydrate research. In studies with complex oligosaccharides there are limits to the amount of relevant structural information provided by these observables due to problems of signal overlapping, strong coupling and/or the scarcity of the key NOE information. Thus, there is an increasing need for additional parameters with structural information, such as residual dipolar couplings (RDCs), paramagnetic relaxation enhancements (PREs) or pseudo contact shifts (PCSs). Carbohydrates are rather flexible molecules. Therefore, NMR observables do not always correlate with a single conformer but with an ensemble of low free-energy conformers that can be accessed by thermal fluctuations. Depending on the system under study, different NMR approaches can be followed to characterize protein–carbohydrate interactions: the standard methodologies can usually be classified as “ligand-based” or “receptor-based”. The selection of the proper methodology is usually determined by the size of the receptor, the dissociation constant of the complex (KD), the availability of the labelled protein (15N, 13C) and the access to soluble receptors at enough concentration for NMR measurements.
Collapse
Affiliation(s)
- Ana Ardá
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Angeles Canales
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - F. Javier Cañada
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edif. 801A-1 48160 Derio-Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
7
|
Unione L, Galante S, Díaz D, Cañada FJ, Jiménez-Barbero J. NMR and molecular recognition. The application of ligand-based NMR methods to monitor molecular interactions. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00138a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NMR allows the monitoring of molecular recognition processes in solution. Nowadays, a plethora of NMR methods are available to deduce the key features of the interaction from both the ligand or the receptor points of view.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Silvia Galante
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Dolores Díaz
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - F. Javier Cañada
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| |
Collapse
|
8
|
Martín-Santamaría S, Gabius HJ, Jiménez-Barbero J. Structural studies on the interaction of saccharides and glycomimetics with galectin-1: A 3D perspective using a combined molecular modeling and NMR approach. PURE APPL CHEM 2011. [DOI: 10.1351/pac-con-11-10-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of a variety of saccharides and mimetics thereof with lectin receptors has been studied using a combination of molecular modeling protocols and NMR spectroscopy techniques. It is shown that both methods complement each other in a synergistic manner to provide a detailed perspective of the conformational and structural features of the recognition process.
Collapse
Affiliation(s)
- Sonsoles Martín-Santamaría
- 1Department of Chemistry, Faculty of Pharmacy, Universidad San Pablo CEU, 28668-Boadilla del Monte, Madrid, Spain
| | - Hans-Joachim Gabius
- 2Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstrasse 13, 80539 München, Germany
| | - Jesús Jiménez-Barbero
- 3Department of Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
9
|
Roldós V, Cañada FJ, Jiménez-Barbero J. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem 2011; 12:990-1005. [DOI: 10.1002/cbic.201000705] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 12/29/2022]
|
10
|
Calle LP, Cañada FJ, Jiménez-Barbero J. Application of NMR methods to the study of the interaction of natural products with biomolecular receptors. Nat Prod Rep 2011; 28:1118-25. [DOI: 10.1039/c0np00071j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Guzzi C, Angulo J, Doro F, Reina JJ, Thépaut M, Fieschi F, Bernardi A, Rojo J, Nieto PM. Insights into molecular recognition of LewisX mimics by DC-SIGN using NMR and molecular modelling. Org Biomol Chem 2011; 9:7705-12. [DOI: 10.1039/c1ob05938f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
13
|
Jiménez-Barbero J, L. Asensio J, Cuevas G, Canales A, Fernández-Alonso MC, Javier Cañada F. Conformational insights on the molecular recognition processes of carbohydrate molecules by proteins and enzymes: A 3D view by using NMR. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600598103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Jiménez-Barbero J, Canales A, Northcote PT, Buey RM, Andreu JM, Díaz JF. NMR determination of the bioactive conformation of peloruside A bound to microtubules. J Am Chem Soc 2007; 128:8757-65. [PMID: 16819869 DOI: 10.1021/ja0580237] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here on the determination of the conformation of Peloruside A bound to biochemically stabilized microtubules, by using TR-NOESY NMR experiments. As a previous step, the conformation of the free molecule in water solution has also been deduced. Despite the large size of the ring, Peloruside A mainly adopts two conformations in water solution. A conformational selection process takes place, and the microtubules-bound conformer is one of those present in the water solution, different than that existing in chloroform medium. A model of the binding mode to tubulin has also been proposed, by docking the bioactive conformation of peloruside, which involves the alpha-tubulin monomer, in contrast with taxol, which binds to the beta-monomer.
Collapse
Affiliation(s)
- Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Lee YC, Jackson PL, Jablonsky MJ, Muccio DD. Conformation of 3'CMP bound to RNase A using TrNOESY. Arch Biochem Biophys 2007; 463:37-46. [PMID: 17416340 DOI: 10.1016/j.abb.2007.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3'CMP) bound to a small protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3'CMP bound to RNase A was determined (glycosidic torsion angle, chi=-166 degrees ; pseudorotational phase angle, 0 degrees < or = P < or =36 degrees ). Ligand-protein NOESY cross peaks were also observed and used to dock 3'CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the 3'CMP:RNase A complex was similar to the X-ray structure (1 rpf) except that a C3'-endo conformation for the ribose ring (rather than C2'-exo conformation) was found in the TrNOESY structure.
Collapse
Affiliation(s)
- Yi-Chien Lee
- National Cancer Institute at Frederick, Laboratory of Medical Chemistry, 376 Boyles Street, Building 376, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
16
|
García-Aparicio V, Sollogoub M, Blériot Y, Colliou V, André S, Asensio JL, Cañada FJ, Gabius HJ, Sinaÿ P, Jiménez-Barbero J. The conformation of the C-glycosyl analogue of N-acetyl-lactosamine in the free state and bound to a toxic plant agglutinin and human adhesion/growth-regulatory galectin-1. Carbohydr Res 2007; 342:1918-28. [PMID: 17408600 DOI: 10.1016/j.carres.2007.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/21/2022]
Abstract
The conformational behavior of the C-glycoside analogue of N-acetyl-lactosamine, beta-C-Gal-(1-->4)-beta-GlcNAc-OMe, 1, has been studied using a combination of molecular mechanics calculations and NMR spectroscopy (J and NOE data). It is shown that the C-disaccharide populates three distinctive conformational families in solution, the major one being the anti-psi conformation. Of note, this conformation is only marginally populated for the O-disaccharide. Due to its conspicuous role in the regulation of adhesion, growth and tissue invasion of tumors and its avid binding to N-acetyl-lactosamine human, galectin-1 was tested as a receptor. This endogenous lectin recognizes a local minimum of 1, the syn-PhiPsi conformer, and thus a conformational selection process is correlated with the molecular recognition event.
Collapse
Affiliation(s)
- Víctor García-Aparicio
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodríguez‐Carvajal MA, Gil‐Serrano AM, Tejero‐Mateo P, Espartero JL, Pérez S. NMR and Monte Carlo Studies on the Solution Conformation of a Linear Capsular Polysaccharide from a Soybean‐Nodulating Bacterium (Strain B33). J Carbohydr Chem 2007. [DOI: 10.1081/car-120026474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miguel A. Rodríguez‐Carvajal
- a Departamento de Química Orgánica , Facultad de Química , Universidad de Sevilla , 41071 , Sevilla , Spain
- c CNRS , Centre de Recherches sur les Macromolécules Végétales , BP 53, 38041 , Grenoble , France
| | - Antonio M. Gil‐Serrano
- a Departamento de Química Orgánica , Facultad de Química , Universidad de Sevilla , 41071 , Sevilla , Spain
| | - Pilar Tejero‐Mateo
- a Departamento de Química Orgánica , Facultad de Química , Universidad de Sevilla , 41071 , Sevilla , Spain
| | - José L. Espartero
- b Departamento de Química Orgánica y Farmacéutica , Facultad de Farmacia , Universidad de Sevilla , Sevilla , 41071 , Spain
| | - Serge Pérez
- c CNRS , Centre de Recherches sur les Macromolécules Végétales , BP 53, 38041 , Grenoble , France
| |
Collapse
|
18
|
Rinnbauer M, Mikros E, Peters T. Conformational Analysis of a Complex Between Dolichos biflorus Lectin and the Forssman Pentasaccharide Using Transferred NOE Build-Up Curves. J Carbohydr Chem 2006. [DOI: 10.1080/07328309808002323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meike Rinnbauer
- a Institute of Chemistry , Medical University of Lübeck , Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Emmanuel Mikros
- b Department of Pharmacy , Division of Pharmaceutical Chemistry , Panepistimiopoli-Zografou, GR-157 71, Athens, Greece
| | - Thomas Peters
- b Department of Pharmacy , Division of Pharmaceutical Chemistry , Panepistimiopoli-Zografou, GR-157 71, Athens, Greece
| |
Collapse
|
19
|
Jiménez-Barbero J, Javier Cañada F, Asensio JL, Aboitiz N, Vidal P, Canales A, Groves P, Gabius HJ, Siebert HC. Hevein Domains: An Attractive Model to Study Carbohydrate–Protein Interactions at Atomic Resolution. Adv Carbohydr Chem Biochem 2006; 60:303-54. [PMID: 16750446 DOI: 10.1016/s0065-2318(06)60007-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Martín-Pastor M, Canales A, Corzana F, Asensio JL, Jiménez-Barbero J. Limited Flexibility of Lactose Detected from Residual Dipolar Couplings Using Molecular Dynamics Simulations and Steric Alignment Methods. J Am Chem Soc 2005; 127:3589-95. [PMID: 15755180 DOI: 10.1021/ja043445m] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational flexibility of lactose in solution has been investigated by residual dipolar couplings (RDCs). One-bond carbon-proton and proton-proton coupling constants have been measured in two oriented media and interpreted in combination with molecular dynamics simulations (MD). Two different approaches, known as PALES (Zweckstetter et al., J. Am. Chem. Soc. 2000, 122, 3791-3792) and TRAMITE (Azurmendi et al., J. Am. Chem. Soc. 2002, 124, 2426-2427), have been used to determine the alignment tensor from a shape-induced alignment model with the oriented medium. The steric alignment of the structures from several MD trajectories has provided ensemble averaged RDCs that have been compared with the experimental ones. The obtained results reveal the almost exclusive presence of a major low energy region defined as syn-phi/syn-psi (> 97%), for which sampling occurs in a dynamic manner. This result satisfactorily agrees with that determined by standard NOE-based methods.
Collapse
|
21
|
The conformational behaviour of α,β-trehalose-like disaccharides and their C-glycosyl, imino-C-glycosyl and carbagalactose analogues depends on the chemical nature of the modification: an NMR investigation. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bernardi A, Arosio D, Potenza D, Sánchez-Medina I, Mari S, Cañada FJ, Jiménez-Barbero J. Intramolecular Carbohydrate-Aromatic Interactions and Intermolecular van der Waals Interactions Enhance the Molecular Recognition Ability of GM1 Glycomimetics for Cholera Toxin. Chemistry 2004; 10:4395. [PMID: 15378617 DOI: 10.1002/chem.200400084] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The design and synthesis of two GM1 glycomimetics, 6 and 7, and analysis of their conformation in the free state and when complexed to cholera toxin is described. These compounds, which include an (R)-cyclohexyllactic acid and an (R)-phenyllactic acid fragment, respectively, display significant affinity for cholera toxin. A detailed NMR spectroscopy study of the toxin/glycomimetic complexes, assisted by molecular modeling techniques, has allowed their interactions with the toxin to be explained at the atomic level. It is shown that intramolecular van der Waals and CH-pi carbohydrate-aromatic interactions define the conformational properties of 7, which adopts a three-dimensional structure significantly preorganized for proper interaction with the toxin. The exploitation of this kind of sugar-aromatic interaction, which is very well described in the context of carbohydrate/protein complexes, may open new avenues for the rational design of sugar mimics.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano-Dipartimento di Chimica Organica e Industriale e Centro di Eccellenza CISI via Venezian 21, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Aboitiz N, Cañada FJ, Husakova L, Kuzma M, Kren V, Jiménez-Barbero J. Enzymatic synthesis of complex glycosaminotrioses and study of their molecular recognition by hevein domains. Org Biomol Chem 2004; 2:1987-94. [PMID: 15254625 DOI: 10.1039/b401037j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hevein, a protein found in Hevea brasiliensis, has a CRD domain, which is known to bind chitin and GlcNAc-containing oligosaccharides. By using NMR and molecular modeling as major tools we have demonstrated that trisaccharides containing GalNAc and ManNAc residues are also recognized by hevein domains. Thus far unknown trisaccharides GlcNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (1) and GalNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (2) were synthesized with the use of beta-N-acetylhexosaminidase from Aspergillus oryzae. This method is based on the rather unique phenomenon that some fungal beta-N-acetylhexosaminidases cannot hydrolyze disaccharide GlcNAcbeta(1-->4)ManNAc (5) contrary to chitobiose GlcNAcbeta(1-->4)GlcNAc (4) that is cleaved and, therefore, cannot be used as an acceptor for further transglycosylation. Both trisaccharides 1 and 2 were prepared by transglycosylation from disaccharidic acceptor in good yields ranging from 35% to 40%. Our observations strongly indicate that the present nature of the modifications of chitotriose (GlcNAcbeta(1-->lcNAcbeta(1-->4)GlcNAc, 3) at either the non-reducing end (GalNAc instead of GlcNAc) or at the reducing end (ManNAc instead of GlcNAc) do not modify the mode of binding of the trisaccharide to hevein. The association constant values indicate that chitotriose (3) binding is better than that of 1 and 2, and that the binding of (with ManNAc at the reducing end) is favored with respect to that of 2 (with ManNAc at the reducing end with a non-reducing GalNAc moiety).
Collapse
Affiliation(s)
- Nuria Aboitiz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Muraki M, Ishimura M, Harata K. Interactions of wheat-germ agglutinin with GlcNAc beta 1,6Gal sequence. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1569:10-20. [PMID: 11853952 DOI: 10.1016/s0304-4165(01)00231-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interactions of wheat-germ agglutinin (WGA) with the GlcNAc beta 1,6Gal sequence, a characteristic component of branched poly-N-acetyllactosaminoglycans, were investigated using isothermal titration calorimetry and X-ray crystallography. GlcNAc beta 1,6Gal exhibited an affinity greater than GlcNAc beta 1,4GlcNAc to all WGA isolectins, whereas Gal beta 1,6GlcNAc showed much less affinity than GlcNAc beta 1,4GlcNAc. X-ray structural analyses of the glutaraldehyde-crosslinked WGA isolectin 3 crystals in complex with GlcNAc beta 1,6Gal, GlcNAc beta 1,4GlcNAc and GlcNAc beta 1,6Gal beta 1,4Glc were performed at 2.4, 2.2 and 2.2 A resolution, respectively. In spite of different glycosidic linkages, GlcNAc beta 1,6Gal and GlcNAc beta 1,4GlcNAc exhibited basically similar binding modes to each other, in contact with side chains of two aromatic residues, Tyr64 and His66. However, the conformations of the ligands in the two primary binding sites were not always identical. GlcNAc beta 1,6Gal showed more extensive variation in the parameters defining the glycosidic linkage structure compared to GlcNAc beta 1,4GlcNAc, demonstrating large conformational flexibility of the former ligand in the interaction with WGA. The difference in the ligand binding conformation was accompanied by alterations of the side chain conformation of the amino acid residues involved in the interactions. The hydrogen bond between Ser62 and the non-reducing end GlcNAc was always observed regardless of the ligand type, indicating the key role of this interaction. In addition to the hydrogen bonding and van der Waals interactions, CH--pi interactions involving Tyr64, His66 and Tyr73 are suggested to play an essential role in determining the ligand binding conformation in all complexes. One of the GlcNAc beta 1,6Gal ligands had no crystal packing contact with another WGA molecule, therefore the conformation might be more relevant to the interaction mode in solution.
Collapse
Affiliation(s)
- Michiro Muraki
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
25
|
Alonso-Plaza JM, Canales MA, Jiménez M, Roldán JL, García-Herrero A, Iturrino L, Asensio JL, Cañada FJ, Romero A, Siebert HC, André S, Solís D, Gabius HJ, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:225-36. [PMID: 11786229 DOI: 10.1016/s0304-4165(01)00224-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hallmark of oligosaccharides is their often limited spatial flexibility, allowing them to access a distinct set of conformers in solution. Viewing each individual or even the complete ensemble of conformations as potential binding partner(s) for lectins in protein-carbohydrate interactions, it is pertinent to address the question on the characteristics of bound state conformation(s) in solution. Also, it is possible that entering the lectin's binding site distorts the low-energy topology of a glycosidic linkage. As a step to delineate the strategy of ligand selection for galactosides, a common physiological docking point, we have performed a NMR study on two non-homologous lectins showing identical monosaccharide specificity. Thus, the conformation of lactose analogues bound to bovine heart galectin-1 and to mistletoe lectin in solution has been determined by transferred nuclear Overhauser effect measurements. It is demonstrated that the lectins select the syn conformation of lactose and various structural analogues (Galbeta(1-->4)Xyl, Galbeta(1-->3)Xyl, Galbeta(1-->2)Xyl, and Galbeta(1-->3)Glc) from the ensemble of presented conformations. No evidence for conformational distortion was obtained. Docking of the analogues to the modeled binding sites furnishes explanations, in structural terms, for exclusive recognition of the syn conformer despite the non-homologous design of the binding sites.
Collapse
|
26
|
Miura T, Klaus W, Ross A, Sakata K, Masubuchi M, Senn H. Protein-bound conformation of a specific inhibitor against Candida albicans myristoyl-CoA:protein N-myristoyltransferase in the ternary complex with CaNmt and myristoyl-CoA by transferred NOE measurements. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4833-41. [PMID: 11559351 DOI: 10.1046/j.1432-1327.2001.02400.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Transferred nuclear Overhauser enhancement (trNOE) experiments have been performed to study the bioactive conformation(s) of Ro09-3472/000 derivatives in the ternary complex with Candida albicans myristoyl-CoA: protein N-myristoyltransferase (CaNmt) and myristoylCoA (MyrCoA). A critical step in the trNOE study is to identify 'true' trNOEs in the spectra. Nonspecific binding of ligands to target proteins and/or spin diffusion effects can give rise to 'false' trNOEs, which may lead to an incorrect conclusion if used to derive bound conformations. In this study for all ligands the observed trNOEs arose from specific binding interactions with the active site of CaNmt. This was shown by displacing the ligand with the known tightly binding active-site inhibitor 1 [Devadas, B., Zupec, M.E., Freeman, S.K., Brown, D.L., Nagarajan, S., Sikorski, J.A., McWherter, C.A., Getman, D. P. & Gordon, J.I. (1995) J. Med. Chem. 38, 1837-1840] and measuring the resonance linewidths in the NMR spectrum before and after addition of the competitive inhibitor. The compounds were also tested for nonspecific protein binding with bovine serum albumin (BSA) using the same METHOD Of the six compounds tested, Ro09-3700/001 (racemate) and its optically pure enantiomers, Ro09-4764/001(S) and Ro09-4765/001(R), showed both specific binding to CaNmt and no interaction with BSA. The NMR data of these molecules in the ternary complex with CaNmt/MyrCoA could thus be used for a detailed structural analysis. Thereby, the conformation of the bound ligand was obtained from a conformational search using the observed trNOEs as a selection filter. The NMR-determined conformations are in good agreement with the recently solved CaNmt-bound X-ray structures of two similar Ro09-3472/000 derivatives.
Collapse
Affiliation(s)
- T Miura
- Nippon Roche Research Center, Kamakura, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Jiménez-Barbero J, Espinosa JF, Asensio JL, Cañada FJ, Poveda A. The conformation of C-glycosyl compounds. Adv Carbohydr Chem Biochem 2001; 56:235-84. [PMID: 11039113 DOI: 10.1016/s0065-2318(01)56006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Carpintero M, Fernández-Mayoralas A, Jiménez-Barbero J. The Conformational Behaviour of Fucosyl and Carbafucosyl Mimetics in the Free and in the Protein-Bound States. European J Org Chem 2001. [DOI: 10.1002/1099-0690(200102)2001:4<681::aid-ejoc681>3.0.co;2-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Asensio JL, Espinosa JF, Dietrich H, Cañada FJ, Schmidt RR, Martín-Lomas M, André S, Gabius HJ, Jiménez-Barbero J. Bovine Heart Galectin-1 Selects a Unique (Syn) Conformation of C-Lactose, a Flexible Lactose Analogue. J Am Chem Soc 1999. [DOI: 10.1021/ja990601u] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Hricovíni M, Guerrini M, Bisio A. Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:789-801. [PMID: 10215897 DOI: 10.1046/j.1432-1327.1999.00335.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A complex of the synthetic tetrasaccharide AGA*IM [GlcN, 6-SO3-alpha(1-4)-GlcA-beta(1-4)-GlcN,3, 6-SO3-alpha(1-4)-IdoA-alphaOMe] and the plasma protein antithrombin has been studied by NMR spectroscopy. 1H and 13C chemical shifts, three-bond proton-proton (3JH-H) and one-bond proton-carbon coupling constants (1JC-H) as well as transferred NOEs and rotating frame Overhauser effects (ROEs) were monitored as a function of the protein : ligand molar ratio and temperature. Considerable changes were observed at both 20 : 1 and 10 : 1 ratios (AGA*IM : antithrombin) in 1H as well as 13C chemical shifts. The largest changes in 1H chemical shifts, and the linewidths, were found for proton resonances (A1, A2, A6, A6', A1*, A2*, A3*, A4*) in GlcN, 6-SO3 and GlcN,3,6-SO3 units, indicating that both glucosamine residues are strongly involved in the binding process. The changes in the linewidths in the IdoA residue were considerably smaller than those in other residues, suggesting that the IdoA unit experienced different internal dynamics during the binding process. This observation was supported by measurements of 3JH-H and 1JC-H. The magnitude of the three-bond proton-proton couplings (3JH1-H2 = 2.51 Hz and 3JH4-H5 = 2.23 Hz) indicate that in the free state an equilibrium exists between 1C4 and 2S0 conformers in the ratio of approximately 75 : 25. The chair form appears the more favourable in the presence of antithrombin, as inferred from the magnitude of the coupling constants. In addition, two-dimensional NOESY and ROESY experiments in the free ligand, as well as transferred NOESY and ROESY spectra of the complex, were measured and interpreted using full relaxation and conformational exchange matrix analysis. The theoretical NOEs were computed using the geometry of the tetrasaccharide found in a Monte Carlo conformational search, and the three-dimensional structures of AGA*IM in both free and bound forms were derived. All monitored NMR variables, 1H and 13C chemical shifts, 1JC-H couplings and transferred NOEs, indicated that the changes in conformation at the glycosidic linkage GlcN, 6-SO3-alpha(1-4)-GlcA were induced by the presence of antithrombin and suggested that the receptor selected a conformer different from that in the free state. Such changes are compatible with the two-step model [Desai, U.R., Petitou, M., Bjork, I. & Olson, S. (1998) J. Biol. Chem. 273, 7478-7487] for the interaction of heparin-derived oligosaccharides with antithrombin, but with a minor extension: in the first step a low-affinity recognition complex between ligand and receptor is formed, accompanied by a conformational change in the tetrasaccharide, possibly creating a complementary three-dimensional structure to fit the protein-binding site. During the second step, as observed in a structurally similar pentasaccharide [Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) J. Mol. Biol. 266, 601-609; Jin, L., Abrahams, J.-P., Skinner, R., Petitou, M., Pike, R. N. & Carrell, R.W. (1997) Proc. Natl Acad. Sci. USA 94, 14683-14688], conformational changes in the binding site of the protein result in a latent conformation.
Collapse
Affiliation(s)
- M Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | |
Collapse
|
31
|
Asensio JL, Cañada FJ, Bruix M, González C, Khiar N, Rodríguez-Romero A, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Glycobiology 1998; 8:569-77. [PMID: 9592123 DOI: 10.1093/glycob/8.6.569] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The specific interaction of hevein with GlcNAc-containing oligosaccharides has been analyzed by1H-NMR spectroscopy. The association constants for the binding of hevein to a variety of ligands have been estimated from1H-NMR titration experiments. The association constants increase in the order GlcNAc-alpha(1-->6)-Man < GlcNAc < benzyl-beta-GlcNAc < p-nitrophenyl-beta-GlcNAc < chitobiose < p-nitrophenyl-beta-chitobioside < methyl-beta-chitobioside < chitotriose. Entropy and enthalpy of binding for different complexes have been obtained from van't Hoff analysis. The driving force for the binding process is provided by a negative DeltaH0which is partially compensated by negative DeltaS0. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 475 accurate protein proton-proton distance constraints after employing the MARDIGRAS program. In addition, 15 unambiguous protein/carbohydrate NOEs were detected. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the highly refined solution conformation of this protein-carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein nOe's were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 20 refined structures was 0.055 nm, while the heavy atom rmsd was 0.116 nm. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to the complex. A comparison of the three-dimensional structure of hevein in solution to those reported for wheat germ agglutinin (WGA) and hevein itself in the solid state has also been performed. The polypeptide conformation has also been compared to the NMR-derived structure of a smaller antifungical peptide, Ac-AMP2.
Collapse
Affiliation(s)
- J L Asensio
- Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Homans SW, Field RA, Milton MJ, Probert M, Richardson JM. Probing carbohydrate-protein interactions by high-resolution NMR spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:29-38. [PMID: 9498062 DOI: 10.1007/978-1-4615-5383-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S W Homans
- Centre for Biomolecular Sciences, University of St. Andrews, Fife, UK
| | | | | | | | | |
Collapse
|
33
|
Espinosa JF, Montero E, Vian A, García JL, Dietrich H, Schmidt RR, Martín-Lomas M, Imberty A, Cañada FJ, Jiménez-Barbero J. Escherichia coli β-Galactosidase Recognizes a High-Energy Conformation of C-Lactose, a Nonhydrolizable Substrate Analogue. NMR and Modeling Studies of the Molecular Complex. J Am Chem Soc 1998. [DOI: 10.1021/ja972291q] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. F. Espinosa
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - E. Montero
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - A. Vian
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - J. L. García
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - H. Dietrich
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - R. R. Schmidt
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - M. Martín-Lomas
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - A. Imberty
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - F. J. Cañada
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| | - J. Jiménez-Barbero
- Contribution from the Departmento Química Orgánica Biológica, Instituto Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain, CIBCSIC, Velazquez, 28006 Madrid, Spain, Fak. Chemie, University Konstanz, Germany, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Sevilla, Spain, and CERMAVCNRS, Grenoble, France
| |
Collapse
|
34
|
Montero E, Vallmitjana M, Pérez-Pons JA, Querol E, Jiménez-Barbero J, Cañada FJ. NMR studies of the conformation of thiocellobiose bound to a beta-glucosidase from Streptomyces sp. FEBS Lett 1998; 421:243-8. [PMID: 9468315 DOI: 10.1016/s0014-5793(97)01571-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conformation of 4-thiocellobiose bound to beta-glucosidase from Streptomyces sp. has been studied by 1H-NMR transferred nuclear Overhauser effect spectroscopy (TR-NOE). Thiocellobiose behaves as an inhibitor of this glucosidase when cellobiose is used as substrate. NOE measurements and molecular mechanics calculations have also been performed to estimate the probability distribution of conformers of thiocellobiose when free in solution. Experimental data show that, in contrast with the natural O-analogue, thiocellobiose presents three conformational families in the free state, namely syn, anti-psi and anti-phi, whilst only one of them (syn) is recognized by the enzyme.
Collapse
Affiliation(s)
- E Montero
- Instituto de Química Orgánica, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Gabius HJ. The how and why of protein-carbohydrate interaction: a primer to the theoretical concept and a guide to application in drug design. Pharm Res 1998; 15:23-30. [PMID: 9487542 DOI: 10.1023/a:1011936300845] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The common principles of molecular recognition with cooperative or bidentate hydrogen bonds, dispersion forces and hydrophobic packing govern the specificity of protein-carbohydrate interaction. Enthalpy/entropy-compensation is also valid, maintaining KD-values in the range of 30 mM to 200 nM. The individual contributions of the enthalpic and entropic factors which originate from the receptor, the ligand and/or the solvent to the overall free energy change can at least be estimated by a combination of computer-assisted molecular modeling, NMR spectroscopy of the reactants before and after complex formation and thermodynamic measurements. The delineation of adaptable parameters such as ligand or receptor side chain flexibility points to a route to practicable guidelines for a rational design of mimetics in glycosciences.
Collapse
Affiliation(s)
- H J Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Germany
| |
Collapse
|
36
|
Poveda A, Jiménez-Barbero J. NMR studies of carbohydrate–protein interactions in solution. Chem Soc Rev 1998. [DOI: 10.1039/a827133z] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
Recently, the interdependency of theoretical and experimental approaches in the structure determination of oligosaccharides has been confirmed. More accurate simulations are possible because of the advances in software and computers. Meanwhile, improvements in NMR techniques permit the measurement of numerous structural and dynamical parameters, either for the free state or for carbohydrate ligands bound to receptors. Several crystal structures of isolated or protein-complexed oligosaccharides give new clues for modeling the intermolecular forces that drive the interactions.
Collapse
Affiliation(s)
- A Imberty
- Centre de Recherches sur les Macromolécules Végétales, Joseph Fourier Université, Grenoble, France.
| |
Collapse
|
38
|
Casset F, Imberty A, Pérez S, Etzler ME, Paulsen H, Peters T. Transferred nuclear Overhauser enhancement (NOE) and rotating-frame NOE experiments reflect the size of the bound segment of the Forssman pentasaccharide in the binding site of Dolichos biflorus lectin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:242-50. [PMID: 9063470 DOI: 10.1111/j.1432-1033.1997.00242.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A complex between the Forssman pentasaccharide alpha-D-GalNAc-(1-->3)-beta-D-GalNAc-(1-->3)-alpha-D-Gal-(1-->4)-beta-D- Gal-(1-->4)-D-Glc and the seed lectin from Dolichos biflorus was studied using transfer-NOESY and transfer rotating frame NOE spectroscopy (ROESY) experiments. The evolution of transferred NOEs and ROEs as a function of the pentasaccharide/lectin ratio was different for the non-reducing disaccharide moiety alpha-D-GalNAc-(1-->3)-beta-D-GalNac compared to the rest of the molecule, which reflects distinct relaxation properties and effects of exchange broadening of the corresponding ligand resonances. Significantly, several intermolecular transferred NOEs were observed between protons of the nonreducing disaccharide moiety alpha-D-GalNAc-(1-->3)-beta-D-GalNAc and aliphatic as well as aromatic amino acid side chain protons in the binding pocket of the lectin. It is concluded that the non-reducing disaccharide fragment is buried in the lectin-binding pocket, whereas the reducing trisaccharide portion alpha-D-Gal-(1-->4)-beta-D-Gal-(1-->4)-D-Glc has no immediate contacts with the protein. The experimental transfer NOE data were qualitatively compared to theoretical proton-proton distances from a model that was based on a previous homology modeling study of a complex between the disaccharide fragment alpha-D-GalNAc-(1-->3)-beta-D-GalNAc and D. biflorus lectin. It was found that all intermolecular transferred NOEs matched short interatomic distances between ligand protons and aliphatic or aromatic amino acid side chain protons predicted by the theoretical model.
Collapse
Affiliation(s)
- F Casset
- Department of Bio-Organic Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Martín-Pastor M, Espinosa JF, Asensio JL, Jiménez-Barbero J. A comparison of the geometry and of the energy results obtained by application of different molecular mechanics force fields to methyl α-lactoside and the C-analogue of lactose. Carbohydr Res 1997. [DOI: 10.1016/s0008-6215(96)00225-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Poveda A, Asensio JL, Espinosa JF, Martin-Pastor M, Cañada J, Jiménez-Barbero J. Applications of nuclear magnetic resonance spectroscopy and molecular modeling to the study of protein-carbohydrate interactions. J Mol Graph Model 1997; 15:9-17, 53. [PMID: 9346819 DOI: 10.1016/s1093-3263(97)00012-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work provides an overview of the applications of NMR to the study of protein-carbohydrate interactions. The use of TR-NOE experiments in this context is given. In particular, the study of Ricin/lactose and Hevein/chitobiose complexes is detailed.
Collapse
Affiliation(s)
- A Poveda
- Servicio Interdepartamental de Investigación, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Espinosa JF, Cañada FJ, Asensio JL, Martín-Pastor M, Dietrich H, Martín-Lomas M, Schmidt RR, Jiménez-Barbero J. Experimental Evidence of Conformational Differences between C-Glycosides and O-Glycosides in Solution and in the Protein-Bound State: The C-Lactose/O-Lactose Case. J Am Chem Soc 1996. [DOI: 10.1021/ja9603463] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan-Félix Espinosa
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - F. Javier Cañada
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Juan Luis Asensio
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Manuel Martín-Pastor
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Hansjörg Dietrich
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Manuel Martín-Lomas
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Richard R. Schmidt
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| | - Jesús Jiménez-Barbero
- Contribution from the Grupo de Carbohidratos, Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain, and Fakultät für Chemie der Universität Konstanz, Postfach 5560 M 725, D-78434 Konstanz, Germany
| |
Collapse
|
42
|
Abstract
Recent advances in the conformational analysis of oligosaccharides have focused on protein-bound oligosaccharides, glycopeptides, and glycoproteins, as well as on the conformational dynamics about glycosidic linkages. Significant progress has been made possible by dramatic improvements in NMR techniques and advances in computational chemistry and technology. Transferred nuclear Overhauser effects have been used to infer the conformations of carbohydrate ligands bound to protein receptors such as antibodies, lectins and enzymes. The increased use of combined NMR spectroscopic and computational protocols has resulted in insights into the dynamics of glycan chains.
Collapse
Affiliation(s)
- T Peters
- Medical University of Luebeck, Institute of Chemistry, Germany.
| | | |
Collapse
|
43
|
Espinosa JF, Javier Cañada F, Asensio JL, Dietrich H, Martín-Lomas M, Schmidt RR, Jiménez-Barbero J. Unterschiede zwischen den Konformationen von O- und C-Glycosiden im proteingebundenen Zustand: Ricin B, ein Galactose-bindendes Protein, erkennt unterschiedliche Konformationen von C-Lactose und dessen O-Analogon. Angew Chem Int Ed Engl 1996. [DOI: 10.1002/ange.19961080310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|