1
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Gourdine JPF, Brush MH, Vasilevsky NA, Shefchek K, Köhler S, Matentzoglu N, Munoz-Torres MC, McMurry JA, Zhang XA, Robinson PN, Haendel MA. Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery. Database (Oxford) 2019; 2019:baz114. [PMID: 31735951 PMCID: PMC6859258 DOI: 10.1093/database/baz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases.
Collapse
Affiliation(s)
- Jean-Philippe F Gourdine
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- OHSU Library, Oregon Health & Science University Library, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Matthew H Brush
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Nicole A Vasilevsky
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
| | - Kent Shefchek
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Sebastian Köhler
- Monarch Initiative, monarchinitiative.org
- Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Nicolas Matentzoglu
- Monarch Initiative, monarchinitiative.org
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Monica C Munoz-Torres
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Julie A McMurry
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Xingmin Aaron Zhang
- Monarch Initiative, monarchinitiative.org
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter N Robinson
- Monarch Initiative, monarchinitiative.org
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Melissa A Haendel
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Monarch Initiative, monarchinitiative.org
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Otto VI, Schürpf T, Folkers G, Cummings RD. Sialylated complex-type N-glycans enhance the signaling activity of soluble intercellular adhesion molecule-1 in mouse astrocytes. J Biol Chem 2004; 279:35201-9. [PMID: 15201278 DOI: 10.1074/jbc.m404947200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) occurs as both a membrane and a soluble, secreted glycoprotein (sICAM-1). ICAM-1 on endothelial cells mediates leukocyte adhesion by binding to leukocyte function associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1). Recombinant mouse sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2) in mouse astrocytes by a novel LFA-1- and Mac-1-independent mechanism. Here we showed that N-glycan structures of sICAM-1 influence its ability to induce MIP-2 production. sICAM-1 expressed in Chinese hamster ovary (CHO) cells was a more potent inducer of MIP-2 production than sICAM-1 expressed in HEK 293 cells, suggesting that posttranslational modification of sICAM-1 could influence its signaling activity. To explore the roles of glycosylation in sICAM-1 activity, we expressed sICAM-1 in mutant CHO cell lines differing in glycosylation, including Lec2, Lec8, and Lec1 as well as in CHO cells cultured in the presence of the alpha-mannosidase-I inhibitor kifunensine. Signaling activity of sICAM-1 lacking sialic acid was reduced 3-fold compared with sICAM-1 from CHO cells. The activity of sICAM-1 lacking both sialic acid and galactose was reduced 12-fold, whereas the activity of sICAM-1 carrying only high mannose-type N-glycans was reduced 12-26-fold. sICAM-1 glycoforms carrying truncated glycans retained full ability to bind to LFA-1 on leukocytes. Thus, sialylated and galactosylated complex-type N-glycans strongly enhanced the ability of sICAM-1 to induce MIP-2 production in astrocytes but did not alter its binding to LFA-1 on leukocytes. Glycosylation could therefore serve as a means to regulate specifically the signaling function of sICAM-1 in vivo.
Collapse
Affiliation(s)
- Vivianne I Otto
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
4
|
Legaigneur P, Breton C, El Battari A, Guillemot JC, Auge C, Malissard M, Berger EG, Ronin C. Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 2001; 276:21608-17. [PMID: 11279145 DOI: 10.1074/jbc.m100860200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human beta1,4-galactoside alpha2,6-sialyltransferase I (ST6GalI) recognition of glycoprotein acceptors has been investigated using various soluble forms of the enzyme deleted to a variable extent in the N-terminal half of the polypeptide. Full-length and truncated forms of the enzyme have been investigated with respect to their specificity for a variety of desialylated glycoproteins of known complex glycans as well as related proteins with different carbohydrate chains. Differences in transfer efficiency have been observed between membrane and soluble enzymatic forms, indicating that deletion of the transmembrane fragment induces loss of acceptor preference. No difference in substrate recognition could be observed when soluble enzymes of similar peptide sequence were produced in yeast or mammalian cells, confirming that removal of the membrane anchor and heterologous expression do not alter enzyme folding and activity. When tested on free oligosaccharides, soluble ST6GalI displayed full ability to sialylate free N-glycans as well as various N-acetyllactosaminyl substrates. Progressive truncation of the N terminus demonstrated that the catalytic domain can proceed with sialic acid transfer with increased efficiency until 80 amino acids are deleted. Fusion of the ST6GalI catalytic domain to the N-terminal half of an unrelated transferase (core 2 beta1,6-N-acetylglucosaminyltransferase) further showed that a chimeric form of broad acceptor specificity and high activity could also be engineered in vivo. These findings therefore delineate a peptide region of approximately 50 amino acids within the ST6GalI stem region that governs both the preference for glycoprotein acceptors and catalytic activity, thereby suggesting that it may exert a steric control on the catalytic domain.
Collapse
Affiliation(s)
- P Legaigneur
- CNRS UPR 9024, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hearn MT, Gomme PT. Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit 2000; 13:223-78. [PMID: 10992290 DOI: 10.1002/1099-1352(200009/10)13:5<223::aid-jmr501>3.0.co;2-l] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this review article, the reader is introduced to recent advances in our knowledge on a subset of the cystine knot superfamily of homo- and hetero-dimeric proteins, from the perspective of the endocrine glycoprotein hormone family of proteins: follitropin (FSH), Iutropin (LH), thyrotropin. (TSH) and chorionic gonadotropin (CG). Subsequent papers will address the structure-function behaviour of other members of this increasingly significant family of proteins, including various members of the transforming growth factor-beta (TGF-beta) family of proteins, the activins, inhibins, bone morphogenic growth factor, platelet derived growth factor-beta, nerve growth factor and more than 35 other proteins with similar topological features. In the present review article, specific emphasis has been placed on advances with the glycoprotein hormones (GPHs) that have facilitated greater insight into their physiological functions, molecular structures and most importantly the basis of the molecular recognition events that lead to the formation of hetero-dimeric structures as well as their specific and selective recognition by their corresponding receptors and antibodies. Thus, this review article focuses on the structural motifs involved in receptor recognition and the current techniques available to identify these regions, including the role of immunological methodology, peptide fragment design and synthesis and mutagenesis to delineate their structure-function relationships and molecular recognition behaviour.
Collapse
Affiliation(s)
- M T Hearn
- Centre for Bioprocess Technology, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
6
|
Schmauser B, Kilian C, Reutter W, Tauber R. Sialoforms of dipeptidylpeptidase IV from rat kidney and liver. Glycobiology 1999; 9:1295-305. [PMID: 10561454 DOI: 10.1093/glycob/9.12.1295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dipeptidylpeptidase IV (DPP IV, CD26), a serine-type exo- and endopeptidase found in the cell surface membrane of many tissues, was employed as a model membrane glycoprotein to study the expression of sialoforms on cell surface glycoproteins. Native, enzymatically active DPP IV was purified from plasma membranes of kidney and liver by lectin affinity chromatography in conjunction with crown ether anion exchange chromatography. The enzyme was gradient-eluted in continuous fractions, all showing a single polypeptide band of about 100 kDa when separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing, denaturing conditions. Analysis of the purified DPP IV by isoelectric focusing (IEF) showed that it consists of several polypeptides of different isoelectric points (IP) ranging from 5.5 to 7.0. In vitro- desialylation of the enzyme and subsequent isoelectric focusing revealed that the differences in isoelectric points were due to differences in the degree of sialylation. Differences in the degree of sialylation between the fractions were also demonstrated by SDS-PAGE under nonreducing and nondenaturing conditions. Increased sialylation of the enzyme as demonstrated by isoelectric focusing resulted in increased migration velocity in nonreducing and nondenaturing SDS-polyacrylamide gels. In vitro -desialylation of the enzyme and its resialylation confirmed that sialylation was responsible for this extraordinary migration behavior. The native enzyme was predominantly sialylated via alpha 2, 6-linkage, as shown by lectin affinity blotting employing Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). These findings demonstrate that a distinct membrane glycoprotein may exist in various sialoforms, distinguished from each other by a different number of sialic acid residues. Moreover, these sialoforms can be individually purified by crown ether anion exchange chromatography.
Collapse
Affiliation(s)
- B Schmauser
- Institut für Molekularbiologie und Biochemie der Freien Universität Berlin, Arnimallee 22, D-14195 Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
7
|
Kobata A, Takeuchi M. Structure, pathology and function of the N-linked sugar chains of human chorionic gonadotropin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:315-26. [PMID: 10571021 DOI: 10.1016/s0925-4439(99)00060-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human chorionic gonadotropin (hCG) contains five acidic N-linked sugar chains, which are derived from three neutral oligosaccharides by sialylation. Each of the two subunits (hCGalpha and hCGbeta) of hCG contain two glycosylated Asn residues. Glycopeptides, each containing a single glycosylated Asn, were obtained by digestion of hCGalpha with trypsin, and of hCGbeta with chymotrypsin and lysyl endopeptidase. Comparative study of the sugar chains of the four glycopeptides revealed the occurrence of site-directed glycosylation. Studies of the sugar chains of hCGs, purified from urine of patients with various trophoblastic diseases, revealed that choriocarcinoma hCGs contain sialylated or non-sialylated forms of eight neutral oligosaccharides. In contrast, hCGs from invasive mole patients contain sialyl derivatives of five neutral oligosaccharides. The structural characteristics of the five neutral oligosaccharides, detected in choriocarcinoma hCGs but not in normal placental hCGs, indicate that N-acetylglucosaminyltransferase IV (GnT-IV) is abnormally expressed in the malignant cells. This supposition was confirmed by molecular biological study of GnT-IV in placenta and choriocarcinoma cell lines. The appearance of tumor-specific sugar chains in hCG has been used to develop a diagnostic method of searching for malignant trophoblastic diseases. In addition, a summary of the current knowledge concerning the functional role of N-linked sugar chains in the expression of the hormonal activity of hCG has been presented.
Collapse
Affiliation(s)
- A Kobata
- Tokyo Metropolitan Institute of Gerontology, Japan
| | | |
Collapse
|
8
|
Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998; 33:151-208. [PMID: 9673446 DOI: 10.1080/10409239891204198] [Citation(s) in RCA: 523] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosaccharides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.
Collapse
|
9
|
Zimmermann A. Growth pattern and NGF-dependent survival of dorsal root ganglia neurons of distinct glyco-phenotype. JOURNAL OF NEUROBIOLOGY 1998; 34:193-207. [PMID: 9485046 DOI: 10.1002/(sici)1097-4695(19980215)34:3<193::aid-neu1>3.0.co;2-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-surface glyco-phenotypes of dorsal root ganglia (DRG) neurons were specified with monoclonal antibodies (mABs) D1 and E1. D1 demarcated sensory afferents in skin but not muscle target. More than 90% of the drg neurons supported by nerve growth factor (NGF) in vitro were D1 positive (D1+). A fraction of these D1+ neurons, those of small to intermediate soma size, coexpressed a PNGase-sensitive glycoepitope E1, defined by mAB E1. In situ and in vitro, E1+/D1+ and E1-/D1+ neurons and nerve fibers were affiliated. After separation of the two glyco-phenotypes, NGF-dependent survival of E1-/D1+ neurons was no longer observed. Two interrelated concepts emerge from these findings: (a) NGFs survival functions for cutaneous sensory neurons are in part indirect and appear to be based on interneuronal cooperation for survival; and (b) interneuronal survival dependencies are likely to be a decisive factor governing nerve fiber assemblages.
Collapse
Affiliation(s)
- A Zimmermann
- Biochemistry Laboratories, Cellular Development Group, Zentralinstitut für Seelische Gesundheit, Postfach, Mannheim, Germany
| |
Collapse
|
10
|
Hokke CH, van den Eijnden DH. Enzyme-assisted synthesis of Asn-linked diantennary oligosaccharides occurring on glycodelin A. Carbohydr Res 1997; 305:463-8. [PMID: 9648264 DOI: 10.1016/s0008-6215(97)10096-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The preparation of a series of sialylated and fucosylated N,N'-diacetyllactosediamine-type diantennary glycopeptides is reported. By sequential enzymatic action of jack bean beta-galactosidase, snail beta 4-N-acetyl-galactosaminyltransferase, bovine colostrum alpha 6-sialyltransferase and human milk alpha 3-fucosyltransferase, a diantennary glycopeptide obtained from asialo fibrinogen was converted at a 5-mumol scale to a series of structures occurring on the glycoprotein glycodelin A, which potentially inhibit human sperm-egg binding.
Collapse
Affiliation(s)
- C H Hokke
- Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Altmann F. More than silk and honey--or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconj J 1997; 14:643-6. [PMID: 9298698 DOI: 10.1023/a:1018548812675] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F Altmann
- Institut für Chemie der Universität fuer Bodenkultur Wien.
| |
Collapse
|
12
|
Aoki N, Matsuda T, Sakiyama T, Iwatsuki K, Furukawa K. Species-specific beta-N-acetylgalactosaminylation of serum IgG proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:207-13. [PMID: 9101715 DOI: 10.1016/s0304-4165(96)00094-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lectin blot analysis of bovine, goat, human, rabbit and mouse serum immunoglobulin G (IgG) samples revealed that Wisteria floribunda agglutinin (WFA) binds to the heavy chains of bovine, goat and human serum IgG proteins but not those of the rabbit and mouse proteins. WFA-positive light chain bands were also detected in bovine, goat and human serum IgG samples only after the filters were treated with Arthrobacter ureafaciens sialidase. The WFA-binding to these IgG proteins was abolished by treatment of the filter with sialidase and then beta-N-acetylhexosaminidase or N-glycanase prior to incubation with the lectin. WFA-agarose column chromatography of the oligosaccharides released by hydrazinolysis from the IgG samples followed by reduction with NaB3H4 revealed that 0.15, 0.09 and 0.07% of the total oligosaccharides from bovine, goat and human serum IgG samples bind to the column, respectively. Partial characterization of WFA-positive bovine IgG oligosaccharides by Bio-Gel P-4 column chromatography suggested that the major oligosaccharide is of non-fucosylated biantennary complex-type. These results indicate that beta-N-acetylgalactosaminylation occurs to N-linked sugar chains of heavy and light chains of IgG proteins in a species-specific manner.
Collapse
Affiliation(s)
- N Aoki
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
13
|
Jones DH, Barber KR, Grant CW. Minor influence of sialic acid on conformation of a membrane-bound oligosaccharide recognition site. Biochemistry 1996; 35:4803-11. [PMID: 8664270 DOI: 10.1021/bi952964m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Wideline 2H NMR spectroscopy was used to assess the conformational and orientational effects of N-acetylneuraminic acid (NeuAc) (sialic acid) as a component of a particular oligosaccharide chain at a bilayer membrane surface. For this purpose, three glycosphingolipids, sharing a neutral core tetrasaccharide and differing only in the number of sialic acid residues, were compared. The starting compound was GD1A, which has terminal sialic acid attached to the second and fourth sugars of its neutral tetrasaccharide core. GD1A was probe-labeled in a non-perturbing fashion on both of these sialic acid residues and on its single GalNAc residue by replacement of -COCH3 with -COCD3 giving [(d3NeuAc)2,d3-GalNAc]GA1a. This represents the most complex glycolipid to have been studied by 2H NMR spectroscopy at a bilayer membrane surface. The sialic acid residue on the fourth sugar from the membrane was subsequently removed to produce the glycolipid [d3NeuAc,d3GalNAc]GM1, deuterated at the two remaining amino sugars. The neutral glycolipid [d3GalNAc]asialo-GM1 was then generated by removal of the second sialic acid residue, leaving an uncharged species deuterated at one (internal) oligosaccharide chain site (GalNAc). The effect of sialic acid was futher examined by selective deuteration of GM1 and asialo-GM1 at C6 of the terminal Gal residue, giving [d2Gal]GM1 and [d2Gal]asialo-GM1. Spectra of the three glycosphingolipids were compared at 7.7 mol % in unsoncicated fluid bilayers of 1-palmitoyl-2-oleoylphosphatidylcholine containing 23 mol % cholesterol. For liposomes suspend in buffered salt solutions with 2 mM Ca2+, 2H NMR spectra demonstrated the presence of well defined average conformation for each oligosaccharide chain. This preferred average conformation persisted over a wide temperature range, consistent with there being a single major oligosaccharide conformer in each case. Spectral features arising from both deuterated amino sugar (GalNAc) of asialo-GM1 could be identified, little changed, in spectra of GM1 and GD1A. Similarly, deuterons in the terminal Gal residue of asialo-Gm1 produced the same spectrum seen for this residue in GM1. Our findings indicate that certain major conformational and orientational features of this complex oligosaccharide recognition site are preserved, within maximum angular deviation + or -5 degrees or less upon addition or removal of a sialic acid residue.
Collapse
Affiliation(s)
- D H Jones
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|