1
|
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, Fettucciari K. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024; 13:1103. [PMID: 38994956 PMCID: PMC11240607 DOI: 10.3390/cells13131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
- Santa Maria Della Misericordia Hospital, Gastroenterology & Hepatology Unit, Piazzale Menghini 1, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
2
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun 2017; 506:372-377. [PMID: 29102633 DOI: 10.1016/j.bbrc.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
For the acquisition of the ability to fertilize the egg, mammalian spermatozoa should undergo a series of biochemical transformations in the female reproductive tract, collectively called capacitation. The capacitated sperm can undergo the acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize it. One of the main processes in capacitation involves dynamic cytoskeletal remodeling particularly of actin. Actin polymerization occurs during sperm capacitation and the produced F-actin should be depolymerized prior to the acrosomal exocytosis. In the present review, we describe the mechanisms that regulate F-actin formation during sperm capacitation and the F-actin dispersion prior to the acrosomal exocytosis. During sperm capacitation, the actin severing proteins gelsolin and cofilin are inactive and they undergo activation prior to the acrosomal exocytosis.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
4
|
Breitbart H, Finkelstein M. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation. Asian J Androl 2016; 17:597-600. [PMID: 25966627 PMCID: PMC4492050 DOI: 10.4103/1008-682x.154305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP 2 ) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP 2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP 2 to the cells. Reduction of PIP 2 synthesis inhibits actin polymerization and motility, while increasing PIP 2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP 2 and F-actin. During capacitation there was an increase in PIP 2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP 2 . Stimulation of phospholipase C, by Ca 2 + -ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP 2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
5
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Finkelstein M, Megnagi B, Ickowicz D, Breitbart H. Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev Biol 2013; 381:62-72. [DOI: 10.1016/j.ydbio.2013.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 06/10/2013] [Indexed: 11/24/2022]
|
7
|
Abstract
All bacterial toxins, which globally are hydrophilic proteins, interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Intracellular active toxins follow various trafficking pathways, the sorting of which is greatly dependent on the nature of the receptor, notably lipidic receptor or receptor embedded into a distinct environment such as lipid microdomains. Numerous other toxins act locally on cell membrane. Indeed, phospholipase activity is a common mechanism shared by several membrane-damaging toxins. In addition, many toxins active intracellularly or on cell membrane modulate host cell phospholipid pathways. Unusually, a few bacterial toxins require a lipid post-translational modification to be active. Thereby, lipids are obligate partners of bacterial toxins.
Collapse
Affiliation(s)
- Blandine Geny
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
8
|
Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch 2007; 455:5-18. [PMID: 17520274 DOI: 10.1007/s00424-007-0286-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/02/2007] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol (4,5)-bisphosphate (PIP(2)) is an important lipid mediator that has multiple regulatory functions. There is now increasing evidence that the phosphatidylinositol 4-phosphate 5 kinases (PIP5Ks), which synthesize PIP(2), are regulated spatially and temporally and that they have isoform-specific functions and regulations. This review will summarize the highlights of recent developments in understanding how the three major PIP5K isoforms regulate the actin cytoskeleton and other important cellular processes.
Collapse
Affiliation(s)
- Yuntao S Mao
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9040, USA
| | | |
Collapse
|
9
|
Oude Weernink PA, López de Jesús M, Schmidt M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 374:399-411. [PMID: 17245604 PMCID: PMC2020506 DOI: 10.1007/s00210-007-0131-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/20/2006] [Indexed: 11/12/2022]
Abstract
Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP(2) by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP(2) and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions.
Collapse
Affiliation(s)
| | | | - Martina Schmidt
- />Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
10
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
11
|
Abstract
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.
Collapse
Affiliation(s)
- Mark McDermott
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7090, USA
| | | | | |
Collapse
|
12
|
Oude Weernink PA, Schmidt M, Jakobs KH. Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol 2004; 500:87-99. [PMID: 15464023 DOI: 10.1016/j.ejphar.2004.07.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/18/2022]
Abstract
The membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), plays a critical role in various, apparently very different cellular processes. As precursor for second messengers generated by phospholipase C isoforms and class I phosphoinositide 3-kinases, PIP(2) is indispensable for cellular signaling by membrane receptors. In addition, PIP(2) directly affects the localization and activity of many cellular proteins via specific interaction with unique phosphoinositide-binding domains and thereby regulates actin cytoskeletal dynamics, vesicle trafficking, ion channel activity, gene expression and cell survival. The activity and subcellular localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms, which catalyze the formation of PIP(2), are actively regulated by membrane receptors, by phosphorylation and by small GTPases of the Rho and ARF families. Spatially and temporally organized regulation of PIP(2) synthesis by PIP5K enables dynamic and versatile PIP(2) signaling and represents an important link in the execution of cellular tasks by Rho and ARF GTPases.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
13
|
Weernink PAO, Meletiadis K, Hommeltenberg S, Hinz M, Ishihara H, Schmidt M, Jakobs KH. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. J Biol Chem 2003; 279:7840-9. [PMID: 14681219 DOI: 10.1074/jbc.m312737200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases. Here we show that RhoA and Rac1, as well as Cdc42, but not the Ras-like GTPases, RalA and Rap1A, markedly stimulate PIP(2) synthesis by all three PIP5K isoforms expressed in human embryonic kidney 293 cells, both in vitro and in vivo. RhoA-stimulated PIP(2) synthesis by the PIP5K isoforms was mediated by the RhoA effector, Rho-kinase. Stimulation of PIP5K isoforms by Rac1 and Cdc42 was apparently independent of and additive with RhoA- and Rho-kinase, as shown by studies with C3 transferase and Rho-kinase mutants. RhoA, and to a lesser extent Rac1, but not Cdc42, interacted in a nucleotide-independent form with all three PIP5K isoforms. Binding of PIP5K isoforms to GTP-bound, but not GDP-bound, RhoA could be displaced by Rho-kinase, suggesting a direct and constitutive PIP5K-Rho GTPase binding, which, however, does not trigger PIP5K activation. In summary, our findings indicate that synthesis of PIP(2) by the three PIP5K isoforms is controlled by RhoA, acting via Rho-kinase, as well as Rac1 and Cdc42, implicating that regulation of PIP(2) synthesis has a central position in signaling by these three Rho GTPases.
Collapse
|
14
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
15
|
Divecha N, Roefs M, Halstead JR, D'Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJ, D'Santos C. Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J 2000; 19:5440-9. [PMID: 11032811 PMCID: PMC314009 DOI: 10.1093/emboj/19.20.5440] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 08/22/2000] [Accepted: 08/22/2000] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositides are localized in various intracellular compartments and can regulate a number of intracellular functions, such as cytoskeletal dynamics and membrane trafficking. Phospholipase Ds (PLDs) are regulated enzymes that hydrolyse phosphatidylcholine (PtdCho) to generate the putative second messenger phosphatidic acid (PtdOH). In vitro, PLDs have an absolute requirement for higher phosphorylated inositides, such as phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Whether this lipid is able to regulate the activity of PLD in vivo is contentious. To examine this hypothesis we studied the relationship between PLD and an enzyme critical for the intracellular synthesis of PtdIns(4,5)P(2): phosphatidylinositol 4-phosphate 5-kinase alpha (Type Ialpha PIPkinase). We find that both PLD1 and PLD2 interact with the Type Ialpha PIPkinase and that PLD2 activity in vivo can be regulated solely by the expression of this lipid kinase. Moreover, PLD2 is able to recruit the Type Ialpha PIPkinase to its intracellular location. We show that the physiological requirement of PLD enzymes for PtdIns(4,5)P(2) is critical and that PLD2 activity can be regulated solely by the levels of this key intracellular lipid.
Collapse
Affiliation(s)
- N Divecha
- Department of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Weernink PA, Guo Y, Zhang C, Schmidt M, Von Eichel-Streiber C, Jakobs KH. Control of cellular phosphatidylinositol 4,5-bisphosphate levels by adhesion signals and rho GTPases in NIH 3T3 fibroblasts involvement of both phosphatidylinositol-4-phosphate 5-kinase and phospholipase C. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5237-46. [PMID: 10931209 DOI: 10.1046/j.1432-1327.2000.01599.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The involvement of small GTPases of the Rho family in the control of phosphoinositide metabolism by adhesion signals was examined in NIH 3T3 fibroblasts. Abrogation of adhesion signals by detachment of cells from their substratum resulted in a time-dependent decrease in the cellular level of PtdIns(4,5)P2 by approximately 50%. This effect could be mimicked by treatment of adherent cells with Clostridium difficile toxin B and toxin B-1470, which inhibit specific subsets of Rho and Ras GTPases. Detachment of cells that had been pretreated with the clostridial toxins did not cause a further reduction in PtdIns(4,5)P2 levels, suggesting that the target GTPases are integrated into the control of phosphoinositide levels by adhesion signals. The reduction in PtdIns(4,5)P2 levels could be attributed to reduced activity of the major PtdIns(4, 5)P2-producing enzyme, PtdIns4P 5-kinase. Unexpectedly, both cell detachment and toxin treatment resulted in a twofold to threefold increase in inositol phosphate production in intact cells. In lysates of these cells, in vitro phospholipase C activity was found to be elevated by 30-50%. The effects of cell detachment and toxin treatment on inositol phosphate formation could be mimicked by expression of dominant-negative N17 Rac1. Taken together, these data suggest that adhesion-controlled small GTPases of the Rho family are involved in the regulation of the cellular PtdIns(4,5)P2 levels in NIH 3T3 fibroblasts, by controlling the activities of both PtdIns4P 5-kinase and phospholipase C.
Collapse
Affiliation(s)
- P A Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Germany; Institut für Medizinische Mikrobiologie und Hygiene, Universität Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Oude Weernink PA, Schulte P, Guo Y, Wetzel J, Amano M, Kaibuchi K, Haverland S, Voss M, Schmidt M, Mayr GW, Jakobs KH. Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase. J Biol Chem 2000; 275:10168-74. [PMID: 10744700 DOI: 10.1074/jbc.275.14.10168] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine kinase Rho-kinase was recently identified as a downstream effector of the small GTPase Rho, mediating effects of Rho on the actin cytoskeleton. Also phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) has been implicated in the regulation of actin polymerization. As the synthesis of PI(4,5)P(2) has been suggested to be affected by Rho proteins, we investigated whether Rho-kinase is involved in the control of PI(4,5)P(2) levels. Overexpression of RhoA in HEK-293 cells increased phosphatidylinositol 4-phosphate (PI4P) 5-kinase activity and concomitantly enhanced cellular PI(4,5)P(2) levels, whereas overexpression of the Rho-inactivating C3 transferase decreased both PI4P 5-kinase activity and PI(4,5)P(2) levels. These effects of RhoA could be mimicked by overexpression of wild-type Rho-kinase and of the constitutively active catalytic domain of Rho-kinase, Rho-kinase-CAT. In contrast, a kinase-deficient mutant of Rho-kinase had no effect on PI4P 5-kinase activity. Importantly, the increase in PI4P 5-kinase activity and PI(4,5)P(2) levels by wild-type Rho-kinase, but not by Rho-kinase-CAT, was completely prevented by coexpression of C3 transferase, indicating that the effect of Rho-kinase was under the control of endogenous Rho. In cell lysates, addition of recombinant RhoA and Rho-kinase-CAT stimulated PI4P 5-kinase activity. Finally, the increase in PI(4,5)P(2) levels induced by both Rho-kinase-CAT and RhoA was reversed by the Rho-kinase inhibitor HA-1077. Our data suggest that Rho-kinase is involved in the Rho-controlled synthesis of PI(4,5)P(2) by PI4P 5-kinase.
Collapse
Affiliation(s)
- P A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang Y, Zhang XY, Liu F, Chen HL. Regulation of phospholipase D from human hepatocarcinoma cell line by purine nucleotides and protein kinase A. Mol Cell Biochem 2000; 207:3-8. [PMID: 10888220 DOI: 10.1023/a:1007065408099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The regulation of phosphatidylcholine-specific phospholipase D by purine nucleotides and protein kinase A were studied in vitro using an enzyme preparation partially purified from the membranous fraction of 7721 hepatocarcinoma cells. It was found that the enzyme activity was elevated by low concentrations of some purine nucleotides, but the activating effects were decreased when the concentrations of the nucleotides were higher. The optimal concentrations of GTP, GTPgamma[S], GDP and ATP for maximal activation were 0.1 mM, 5 microM, 1 mM and 1 mM respectively. The activation caused by 1 mM ADP was lower. The enzyme was not activated by 1 mM AMP, but significant activation was observed by the addition of 1 mM cAMP. The latter was mediated by protein kinase A, as a specific inhibitor of protein kinase A abolished the activation. There were synergic effects between ATP and GTP, ATP and PIP2, but not between ATP and GTPgamma[S], or PIP2 and GTPgamma[S]. The activating effects of GTP and ATP were abolished by neomycin, a PIP2 scavenger. These results suggest that phospholipase D is regulated by GTP-binding protein and the presence of PIP2 is required for the activation induced by GTP. Protein kinase A may be another protein kinase in addition to protein kinase C and protein tyrosine kinase which regulate the activity of phospholipase D, when the intracellular concentration of cAMP is increased.
Collapse
Affiliation(s)
- Y Huang
- Key laboratory of Glycoconjugate Research, Ministry of Health and Department of Biochemistry, Shanghai Medical University, People 's Republic of China
| | | | | | | |
Collapse
|
20
|
Houle MG, Bourgoin S. Regulation of phospholipase D by phosphorylation-dependent mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:135-49. [PMID: 10425391 DOI: 10.1016/s1388-1981(99)00090-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rapid production of phosphatidic acid following receptor stimulation has been demonstrated in a wide range of mammalian cells. Virtually every cell uses phosphatidylcholine as substrate to produce phosphatidic acid in a controlled reaction catalyzed by specific PLD isoforms. Considerable effort has been directed at studying the regulation of PLD activities and subsequent work has characterized a family of proteins including PLD1 and PLD2. Whereas both PLD enzymes are dependent on phosphatidylinositol 4, 5-bisphosphate for activity only the PLD1 isoform was strongly stimulated by the small GTPases ARF and RhoA and by protein kinase Calpha as well. A role for tyrosine kinase activities in the membrane recruitment of small GTPases, in the synthesis of phosphatidylinositol 4,5-bisphosphate and tyrosine phosphorylation of PLD1 and PLD2 has been uncovered. However, it still not clear exactly how tyrosine phosphorylation of proteins contributes to PLD activation in cells. Here we review the data linking tyrosine phosphorylation of proteins to the activation of PLD and describe recent finding on the sites and possible mechanisms of action of tyrosine kinases in receptor-mediated PLD activation. Finally, a model illustrating the potential complex interplay linking these signaling events with the activation of PLD is presented.
Collapse
Affiliation(s)
- M G Houle
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Pavillon CHUL, Faculty of Medicine, Université Laval, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
21
|
Abstract
Phospholipase D (PLD) is a widely distributed enzyme that is under elaborate control by hormones, neurotransmitters, growth factors and cytokines in mammalian cells. Protein kinase C (PKC) plays a major role in the regulation of the PLD1 isozyme through interaction with its N-terminus. PKC activates this isozyme by a non-phosphorylation mechanism in vitro, but phosphorylation plays a role in the action of PKC on the enzyme in vivo. Although PLD1 can be phosphorylated by PKC in vitro, it is unclear that this occurs in vivo. Small GTPases of the ADP-ribosylation factor (ARF) and Rho families directly activate PLD1 in vitro and there is evidence that Rho proteins are involved in agonist regulation of PLD1 in vivo. ARF proteins stimulate PLD activity in the Golgi apparatus, but the role of these proteins in agonist regulation of the enzyme is less clear. PLD1 undergoes tyrosine phosphorylation in response to H(2)O(2) treatment of cells. The functional consequence of this phosphorylation and soluble tyrosine kinase(s) involved are presently unknown.
Collapse
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA.
| |
Collapse
|
22
|
Liscovitch M, Czarny M, Fiucci G, Lavie Y, Tang X. Localization and possible functions of phospholipase D isozymes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:245-63. [PMID: 10425399 DOI: 10.1016/s1388-1981(99)00098-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
23
|
Huang Y, Qureshi IA, Chen H. Effects of phosphatidylinositol 4,5-bisphosphate and neomycin on phospholipase D: kinetic studies. Mol Cell Biochem 1999; 197:195-201. [PMID: 10485339 DOI: 10.1023/a:1006930706311] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The kinetics of phosphatidylcholine-specific phospholipase D activated by phosphatidylinositol 4,5-bisphosphate (PIP2) and inhibition by neomycin were studied in an enzyme preparation partially purified from human hepatocarcinoma cell line. It was found that phospholipase D was marginally activated by phosphatidyl-4-phosphate (PIP) and phosphatidylethanolamine (PE). In contrast, it was considerably activated by PIP2 in different concentration of phosphatidylcholine (PC). Sphingomyelin (SM), lysophosphatidylcholine (LPC) and phosphatidylserine (PS) were neither substrates nor inhibitors of the phospholipase D. PIP, induced an allosteric effect on phospholipase D and a negative cooperative effect with respect to phosphatidylcholine as indicated in the Lineweaver-Burk plot. In the absence of PIP2, a straight line was obtained, whereas a downward concave curve was observed in the presence of 25 microM of PIP2. The Hill coefficient and the apparent K(m) of phosphatidylcholine in the presence of 25 microM PIP, were calculated to be 0.631 and 10.79 mM, respectively. PIP2 also increased the maximal velocity (Vmax) of the phospholipase D reaction, suggesting that the affinity of substrate to enzyme was decreased, and the turnover number of the enzyme (kcat) was increased by PIP2. The activation of phospholipase D by PIP2 was dose dependent up to 50 microM of PIP2. The Ka of PIP2 was 15.8 mM. Neomycin, a polycationic glycoside, was shown to be an uncompetitive inhibitor of phospholipase D, and revealed the formation of a neomycin-PIP2 complex. The Ki of neomycin was estimated to be 8.7 mM.
Collapse
Affiliation(s)
- Y Huang
- Key Laboratory of Glycoconjugate Research, Shanghai Medical University, People's Republic of China
| | | | | |
Collapse
|
24
|
Schmidt M, Voss M, Weernink PA, Wetzel J, Amano M, Kaibuchi K, Jakobs KH. A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. J Biol Chem 1999; 274:14648-54. [PMID: 10329658 DOI: 10.1074/jbc.274.21.14648] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of phospholipase D (PLD) by membrane receptors is now recognized as a major signal transduction pathway involved in diverse cellular functions. Rho proteins control receptor signaling to PLD, and these GTPases have been shown to directly stimulate purified recombinant PLD1 enzymes in vitro. Here we report that stimulation of PLD activity, measured in the presence of phosphatidylinositol 4,5-bisphosphate, by RhoA in membranes of HEK-293 cells expressing the m3 muscarinic acetylcholine receptor (mAChR) is phosphorylation-dependent. Therefore, the possible involvement of the RhoA-stimulated serine/threonine kinase, Rho-kinase, was investigated. Overexpression of Rho-kinase and constitutively active Rho-kinase (Rho-kinase-CAT) but not of kinase-deficient Rho-kinase-CAT markedly increased m3 mAChR-mediated but not protein kinase C-mediated PLD stimulation, similar to overexpression of RhoA. Expression of the Rho-inactivating C3 transferase abrogated the stimulatory effect of wild-type Rho-kinase, but not of Rho-kinase-CAT. Recombinant Rho-kinase-CAT mimicked the phosphorylation-dependent PLD stimulation by RhoA in HEK-293 cell membranes. Finally, the Rho-kinase inhibitor HA-1077 largely inhibited RhoA-induced PLD stimulation in membranes as well as PLD stimulation by the m3 mAChR but not by protein kinase C in intact HEK-293 cells. We conclude that Rho-kinase is involved in Rho-dependent PLD stimulation by the G protein-coupled m3 mAChR in HEK-293 cells. Thus, our findings identify Rho-kinase as a novel player in the receptor-controlled PLD signaling pathway.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
El Hadj NB, Popoff MR, Marvaud JC, Payrastre B, Boquet P, Geny B. G-protein-stimulated phospholipase D activity is inhibited by lethal toxin from Clostridium sordellii in HL-60 cells. J Biol Chem 1999; 274:14021-31. [PMID: 10318815 DOI: 10.1074/jbc.274.20.14021] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lethal toxin (LT) from Clostridium sordellii has been shown in HeLa cells to glucosylate and inactivate Ras and Rac and, hence, to disorganize the actin cytoskeleton. In the present work, we demonstrate that LT treatment provokes the same effects in HL-60 cells. We show that guanosine 5'-O-(3-thiotriphosphate)-stimulated phospholipase D (PLD) activity is inhibited in a time- and dose-dependent manner after an overnight treatment with LT. A similar dose response to the toxin was found when PLD activity was stimulated by phorbol 12-myristate 13-acetate via the protein kinase C pathway. The toxin effect on actin organization seemed unlikely to account directly for PLD inhibition as cytochalasin D and iota toxin from Clostridium perfringens E disorganize the actin cytoskeleton without modifying PLD activity. However, the enzyme inhibition and actin cytoskeleton disorganization could both be related to a major decrease observed in phosphatidylinositol 4,5-bisphosphate (PtdIns(4, 5)P2). Likely in a relationship with this decrease, recombinant ADP-ribosylation factor, RhoA, Rac, and RalA were not able to reconstitute PLD activity in LT-treated cells permeabilized and depleted of cytosol. Studies of phosphoinositide kinase activities did not allow us to attribute the decrease in PtdIns(4,5)P2 to inactivation of PtdIns4P 5-kinase. LT was also found to provoke a major inhibition in phosphatidylinositol 3-kinase that could not account for the inhibition of PLD activity because wortmannin, at doses that fully inhibit phosphatidylinositol 3-kinase, had no effect on the phospholipase activity. Among the three small G-proteins, Ras, Rac, and RalA, inactivated by LT and involved in PLD regulation, inactivation of Ral proteins appeared to be responsible for PLD inhibition as LT toxin (strain 9048) unable to glucosylate Ral proteins did not modify PLD activity. In HL-60 cells, LT treatment appeared also to modify cytosol components in relationship with PLD inhibition as a cytosol prepared from LT-treated cells was less efficient than one from control HL-60 cells in stimulating PLD activity. Phosphatidylinositol transfer proteins involved in the regulation of polyphosphoinositides and ADP-ribosylation factor, a major cytosolic PLD activator in HL-60 cells, were unchanged, whereas the level of cytosolic protein kinase Calpha was decreased after LT treatment. We conclude that in HL-60 cells, lethal toxin from C. sordellii, in inactivating small G-proteins involved in PLD regulation, provokes major modifications at the membrane and the cytosol levels that participate in the inhibition of PLD activity. Although Ral appeared to play an essential role in PLD activity, we discuss the role of other small G-proteins inactivated by LT in the different modifications observed in HL-60 cells.
Collapse
Affiliation(s)
- N B El Hadj
- INSERM U332, ICGM, 22 rue Méchain, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Czarny M, Lavie Y, Fiucci G, Liscovitch M. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-182-101. J Biol Chem 1999; 274:2717-24. [PMID: 9915802 DOI: 10.1074/jbc.274.5.2717] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of cellular phospholipase D (PLD) is implicated in vesicular trafficking and signal transduction. Two mammalian PLD forms, designated PLD1 and PLD2, have been cloned, but their cellular localization and function are not fully understood. Here, we report that in HaCaT human keratinocytes, as well as other cell lines, PLD activity is highly enriched in low density, Triton X-100-insoluble membrane domains that contain the caveolar marker protein caveolin-1. Similar to other PLDs, the PLD activity in these membrane domains is stimulated by phosphatidylinositol 4, 5-bisphosphate and is inhibited by neomycin. Immunoblot analysis indicated that caveolin-rich membrane domains do not contain the PLD1 isoform. Stable transfection of mouse PLD2 in Chinese hamster ovary cells greatly increased PLD activity in these domains compared with PLD activity in control Chinese hamster ovary cells transfected with vector alone. PLD activity is enriched in low density Triton-insoluble membrane domains also in U937 promonocytes, even though these cells do not express caveolin-1. In U937 cells, also, PLD1 is largely excluded from low density Triton-insoluble membrane domains. Expression of recombinant caveolin-1 in v-Src-transformed NIH-3T3 cells resulted in up-regulation of PLD activity in the caveolin-containing membrane domains. The caveolin scaffolding peptide (caveolin-182-101) modulated the caveolar PLD activity, causing stimulation at concentration of 1-10 microM and inhibition at concentrations >10 microM. We conclude that a PLD activity, which is likely to represent PLD2, is enriched in low density Triton-insoluble membrane domains. The effects of caveolin-1 expression and of the caveolin scaffolding peptide suggest that in cells that express caveolin-1, PLD may be targeted to caveolae. The possible functions of PLD in the dynamics of caveolae and related domains and in signal transduction processes are discussed.
Collapse
Affiliation(s)
- M Czarny
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
27
|
Guillemain I, Exton JH. Role of rho proteins in agonist regulation of phospholipase D in HL-60 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1405:161-70. [PMID: 9784628 DOI: 10.1016/s0167-4889(98)00107-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rho family GTP-binding proteins have been demonstrated to play a role in the regulation of phospholipase D (PLD) activity. In the present study, we examined the role of Rho proteins in PLD activation in differentiated HL-60 cells using C3 exoenzyme from Clostridium botulinum, which ADP-ribosylates and inactivates Rho proteins. Introduction of C3 exoenzyme into differentiated HL-60 cells by electroporation resulted in complete inhibition of PLD activity stimulated by formyl methionine-leucine-phenylalanine (fMLP) and ATP, two receptor agonists. Phorbol myristate acetate-induced PLD activation was also inhibited in C3 exoenzyme-treated cells, but the inhibition was only partial. GTPgammaS-dependent activation of PLD, measured in the absence or presence of ATP in permeabilized cells, was also partially affected by C3 exoenzyme treatment. Thus, these results indicate that Rho proteins play a key role in receptor-mediated PLD regulation in differentiated HL-60 cells, but play a partial role in the in vivo action of PMA and in vitro action of GTPgammaS on PLD. ATP produced a significant enhancement of the in vitro effect of GTPgammaS on PLD activity, but the effect of ATP was not altered by inhibitors of serine/threonine and tyrosine kinases. However, it was markedly reduced by neomycin and accompanied by an increase in phosphatidylinositol 4,5-bisphosphate (PtdInsP2) synthesis. These data indicate that in permeabilized HL-60 cells, the stimulatory effect of ATP on PLD does not involve protein phosphorylation but is due to an increase in PtdInsP2.
Collapse
Affiliation(s)
- I Guillemain
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
28
|
Rümenapp U, Schmidt M, Olesch S, Ott S, Eichel-Streiber CV, Jakobs KH. Tyrosine-phosphorylation-dependent and rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels. Biochem J 1998; 334 ( Pt 3):625-31. [PMID: 9729471 PMCID: PMC1219732 DOI: 10.1042/bj3340625] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The polyphosphoinositide PtdIns(4,5)P2, best known as a substrate for phospholipase C isozymes, has recently been recognized to be involved in a variety of other cellular processes. The aim of this study was to examine whether the cellular levels of this versatile phospholipid are controlled by tyrosine phosphorylation. The studies were performed in human embryonic kidney (HEK)-293 cells stably expressing the M3 muscarinic acetylcholine receptor. Inhibition of tyrosine phosphatases by pervanadate induced an up-to-approx.-2. 5-fold increase in the total cellular level of PtdIns(4,5)P2, which was both time- and concentration-dependent. In contrast, the tyrosine kinase inhibitors, genistein and tyrphostin 23, caused a rapid and specific fall in the cellular PtdIns(4,5)P2 level and prevented the stimulatory effect of pervanadate on PtdIns(4,5)P2 formation. Inactivation of Rho proteins by Clostridium difficile toxin B caused a similar fall in the HEK-293 cell PtdIns(4,5)P2 level, which was not altered by additional genistein treatment. Furthermore, toxin B treatment abolished the pervanadate-induced increase in PtdIns(4,5)P2 levels. As PtdIns(4,5)P2 is an essential stimulatory cofactor for phospholipase D (PLD) enzymes, we finally examined the effects of the agents regulating PtdIns(4,5)P2 levels on PLD activity in HEK-293 cells. Inhibition of tyrosine phosphatases by pervanadate caused an increase in PLD activity, which was susceptible to genistein and tyrphostin 23, and which was abolished by prior treatment with toxin B. In conclusion, the data presented indicate that the cellular level of the multifunctional phospholipid, PtdIns(4,5)P2, in HEK-293 cells is controlled by a tyrosine-kinase-dependent mechanism and that this process apparently involves Rho proteins, as found similarly for tyrosine-phosphorylation-induced PLD activation.
Collapse
Affiliation(s)
- U Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Hippenstiel S, Kratz T, Krüll M, Seybold J, von Eichel-Streiber C, Suttorp N. Rho protein inhibition blocks protein kinase C translocation and activation. Biochem Biophys Res Commun 1998; 245:830-4. [PMID: 9588200 DOI: 10.1006/bbrc.1998.8525] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small GTP-binding proteins of the Ras and Rho family participate in various important signalling pathways. Large clostridial cytotoxins inactivate GTPases by UDP-glucosylation. Using Clostridium difficile toxin B-10463 (TcdB) for inactivation of Rho proteins (RhoA/Rac/Cdc42) and Clostridium sordellii lethal toxin-1522 (TcsL) for inactivation of Ras-proteins (Ras/Rac/Ral, Rap) the role of these GTPases in protein kinase C (PKC) stimulation was studied. Phorbol-myristate-acetate (PMA) induced a rapid PKC translocation to and activation in the particulate cell fraction as determined by PKC-activity measurements and Western blots for PKC alpha. These effects were blocked by TcdB inhibiting Rho proteins in endothelial cells, but not in TcsL-treated cells (i.e., cells without Ras activity), suggesting that Rho GTPases (RhoA and/or Cdc42) are the most likely GTP-binding proteins responsible for PKC activation. The Rho requirement for PKC activation/translocation was also verified for human epithelial cells and for lipopolysaccharide-stimulated endothelial cells. In summary, the data presented indicate that Rho protein inhibition blocked PKC translocation/activation in endothelial and epithelial cells.
Collapse
Affiliation(s)
- S Hippenstiel
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Schmidt M, Voss M, Thiel M, Bauer B, Grannass A, Tapp E, Cool RH, de Gunzburg J, von Eichel-Streiber C, Jakobs KH. Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridium difficile toxin B-1470 in HEK-293 cells. Restoration by Ral GTPases. J Biol Chem 1998; 273:7413-22. [PMID: 9516439 DOI: 10.1074/jbc.273.13.7413] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of m3 muscarinic acetylcholine receptor (mAChR), stably expressed in human embryonic kidney (HEK)-293 cells, leads to phospholipase D (PLD) stimulation, a process apparently involving Rho GTPases, as shown by studies with Clostridium botulinum C3 exoenzyme and Clostridium difficile toxin B (TcdB). Direct activation of protein kinase C (PKC) by phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), also induces PLD stimulation, which is additive to the mAChR action and which is only poorly sensitive to inactivation of Rho proteins by TcdB. To study whether Ras-like GTPases are involved in PLD regulation, we studied the effects of the TcdB variant TcdB-1470 and Clostridium sordellii lethal toxin (TcsL), known to inactivate Rac and some members of the Ras protein family, on PLD activities. TcdB-1470 and TcsL did not affect basal PLD activity and PLD stimulation by mAChR or direct G protein activation. In contrast, PMA-induced PLD stimulation was inhibited by TcdB-1470 and TcsL in a time- and concentration-dependent manner, without alteration in immunologically detectable PKC isozyme levels. In membranes of HEK-293 cells pretreated with TcdB-1470 or TcsL, basal and stable GTP analog-stimulated PLD activities measured with exogenous phosphatidylcholine, in the presence or absence of phosphatidylinositol 4,5-bisphosphate, were not altered. In contrast, pretreatment with TcdB-1470 and TcsL, but not TcdB, strongly reduced PMA-stimulated PLD activity. The addition of recombinant Rac1, serving as glucosylation substrate for TcdB, TcsL, and TcdB-1470, did not restore PLD stimulation by PMA. Furthermore, PMA-stimulated PLD activity, suppressed by prior treatment with TcdB-1470 or TcsL, was not rescued by the addition of recombinant Ras (RasG12V) or Rap proteins, acting as glucosylation substrates for TcsL only (Ras) or TcdB-1470 and TcsL (Rap). In contrast, the addition of recombinant Ral proteins (RalA and RalB), glucosylation substrates for TscL and TcdB-1470, but not for TcdB, to membranes of TcdB-1470- or TcsL-treated cells fully restored PLD stimulation by PMA without altering the strict MgATP dependence of PMA-induced PLD stimulation. RalA-mediated restoration of PMA-stimulated PLD activity in membranes of TcsL-treated cells was not enhanced by coaddition of RasG12V. In conclusion, the data presented indicate that TcdB-1470 and TcsL selectively interfere with phorbol ester stimulation of PLD and suggest an essential role of Ral proteins in PKC signaling to PLD in HEK-293 cells.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
We have recently cloned a cDNA encoding a phospholipase D (PLD) from rat brain and named it rPLD1. It shows 90% amino acid identity with the human PLD isoform hPLD1b. We have expressed rPLD1 as a histidine-tagged fusion protein in insect (Sf9) cells using the expression vector pBlueBacHis and purified the recombinant protein to homogeneity by Ni2+-agarose affinity chromatography. Phosphatidylinositol 4,5-P2 and phosphatidylinositol 3,4,5-P3 activated the PLD equipotently, but other acidic phospholipids were ineffective. The activity of rPLD1 was dependent on both Mg2+ and Ca2+. It was specific for phosphatidylcholine and showed a broad dependence on pH with optimum activity at pH 6.5-7.5. The enzyme was inhibited by oleate and activated by the small G proteins ARF3 and RhoA in the presence of guanosine 5'-3-O-(thio)triphosphate. Protein kinase C (PKC)-alpha and -betaII, but not PKC-gamma, -delta, -epsilon, or -zeta, activated rPLD1 in a manner that was stimulated by phorbol ester but did not require ATP. Neither synergistic interactions between ARF3 and RhoA nor between these G proteins and PKC-alpha or -betaII were observed. Recombinant PKC-alpha and -betaII phosphorylated purified rPLD1 to high stoichiometry in vitro, and the phosphorylated PLD exhibited a mobility shift upon electrophoresis. Phosphorylation of the PLD by PKC was correlated with inhibition of its catalytic activity. rPLD1 bound to concanavalin A-Sepharose beads, and its electrophoretic mobility was altered by treatment with endoglycosidase F. The amount of PLD bound to the beads was decreased in a concentration-dependent manner when tunicamycin was added to the Sf9 expression system. Tunicamycin also decreased membrane localization of rPLD1. These results suggest that rPLD1 is a glycosylated protein and that it is negatively regulated by phosphorylation by PKC in vitro.
Collapse
Affiliation(s)
- D S Min
- Department of Molecular Physiology and Biophysics, and Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
32
|
Abstract
Rho and Rac small GTPases associate with type-I phosphatidylinositol 4-phosphate 5-kinase to regulate the production of phosphatidylinositol 4,5-bisphosphate. This lipid appears to mediate some of the effects of Rho and Rac on the actin cytoskeleton. The genes for several type-I phosphatidylinositol 4-phosphate 5-kinases have been cloned recently but it is not known which one interacts with Rho and/or Rac. Rho family GTPases also interact with phosphatidylinositol 3-kinase, though this kinase can be either upstream or downstream of the GTPases depending upon the system.
Collapse
Affiliation(s)
- X D Ren
- Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
33
|
Marshansky V, Bourgoin S, Londoño I, Bendayan M, Maranda B, Vinay P. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 1997; 18:2661-76. [PMID: 9580051 DOI: 10.1002/elps.1150181423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preparation of kidney proximal tubules in suspension allows the study of receptor-mediated endocytosis, protein reabsorption, and traffic of endosomal vesicles. The study of tubular protein transport in vitro coupled with that of the function of endosomal preparation offers a unique opportunity to investigate a receptor-mediated endocytosis pathway under physiological and pathological conditions. We assume that receptor-mediated endocytosis of albumin in kidney proximal tubules in situ and in vitro can be regulated, on the one hand, by the components of the acidification machinery (V-type H+-ATPase, Cl(-)-channel and Na+/H+-exchanger), giving rise to formation and dissipation of a proton gradient in endosomal vesicles, and, on the other hand, by small GTPases of the ADP-ribosylation factor (Arf)-family. In this paper we thus analyze the recent advances of the studies of cellular and molecular mechanisms underlying the identification, localization, and function of the acidification machinery (V-type H+-ATPase, Cl(-)-channel) as well as Arf-family small GTPases and phospholipase D in the endocytotic pathway of kidney proximal tubules. Also, we explore the possible functional interaction between the acidification machinery and Arf-family small GTPases. Finally, we propose the hypothesis of the regulation of translocation of Arf-family small GTPases by an endosomal acidification process and its role during receptor-mediated endocytosis in kidney proximal tubules. The results of this study will not only enhance our understanding of the receptor-mediated endocytosis pathway in kidney proximal tubules under physiological conditions but will also have important implications with respect to the functional consequences under some pathological circumstances. Furthermore, it may suggest novel targets and approaches in the prevention and treatment of various diseases (cystic fibrosis, Dent's disease, diabetes and autosomal dominant polycystic kidney disease).
Collapse
Affiliation(s)
- V Marshansky
- Centre de Recherche L.-C. Simard, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Rümenapp U, Schmidt M, Wahn F, Tapp E, Grannass A, Jakobs KH. Characteristics of protein-kinase-C- and ADP-ribosylation-factor-stimulated phospholipase D activities in human embryonic kidney cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:407-14. [PMID: 9346296 DOI: 10.1111/j.1432-1033.1997.00407.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phospholipase D (PLD) activity in human embryonic kidney (HEK) cells is stimulated by phorbol-ester-activated protein kinase C (PKC) and by membrane receptors, the latter apparently acting via the GTP-binding proteins, ADP-ribosylation factor (ARF) and Rho. In the present study, performed in cell-free preparations, we have characterized and compared the regulation of HEK cell PLD activity by the stable GTP analogue, guanosine 5'-O-[gamma-thio]triphosphate (GTP[S]), and the phorbol ester, phorbol 12-myristate 13-acetate (PMA). In digitonin-permeabilized HEK cells, prelabeled with [3H]oleic acid, GTP[S] and PMA caused an approximately threefold concentration-dependent increase in the formation of [3H]phosphatidylethanol, measured in the presence of ethanol. Neomycin, which is known to complex with the PLD cofactor, phosphatidylinositol 4,5-bisphosphate, decreased basal and GTP[S]- or PMA-stimulated PLD activities with similar sensitivity. GDP and its analogue, guanosine 5'-O-[beta-thio]diphosphate, inhibited the stimulatory effect of GTP[S], whereas the PMA response was prevented by the nonselective PKC inhibitor, staurosporine, but not vice versa. PLD stimulation by GTP[S], but not by PMA, was markedly reduced upon cytosol depletion and reconstituted by purified recombinant ARF1. In HEK cell membranes, addition of purified recombinant ARNO, a guanine-nucleotide-exchange factor for ARF1. potentiated the GTP[S]-stimulated PLD activity. PLD stimulation by PMA in HEK cell membranes required MgATP and was largely prevented by the selective PKC inhibitors Goe 6976 and bisindolylmaleimide I. Immunoblot analysis demonstrated that both conventional PKC (alpha, beta, gamma) and atypical PKC isozymes (zeta, tau) were present in HEK cell membranes. The results indicate that phorbol ester stimulation of PLD activity in HEK cells apparently occurs by a phosphorylation-dependent mechanism involving membrane-associated PKC isozymes but not ARF proteins, the major targets of GTP[S]' action.
Collapse
Affiliation(s)
- U Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
36
|
Schmidt M, Rümenapp U, Keller J, Lohmann B, Jakobs KH. Regulation of phospholipase C and D activities by small molecular weight G proteins and muscarinic receptors. Life Sci 1997; 60:1093-100. [PMID: 9121352 DOI: 10.1016/s0024-3205(97)00052-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of small molecular weight guanine nucleotide-binding proteins (G proteins) of the Rho family in muscarinic acetylcholine receptor (mAChR) signaling to phospholipase C (PLC) and phospholipase D (PLD) was studied in human embryonic kidney (HEK) cells, stably expressing the human m3 receptor subtype. Evidence for the involvement of Rho proteins in m3 mAChR signaling to both phospholipases is based on findings obtained with Clostridium (C.) difficile toxin B and C. botulinum C3 exoenzyme, both of which specifically, although by different mechanisms, inactivate Rho family G proteins. Toxin B potently inhibited both the mAChR-stimulated PLC and PLD activities in intact cells as well as the stimulation of both phospholipases by the stable GTP analog GTPgammaS in permeabilized cells, the latter effect being mimicked by C3 exoenzyme. In contrast, PLC and PLD activities, measured in the presence of exogenous phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], a substrate and cofactor for PLC and PLD, respectively, were not altered. These data suggested that the Rho-inactivating toxins inhibit stimulation of PLC and PLD by reducing the cellular level of PtdIns(4,5)P2, which was indeed found with both toxin B and C3 exoenzyme. In agreement with a crucial role of cellular PtdIns(4,5)P2 supply for PLC signaling, we observed that short-term agonist (carbachol) treatment of HEK cells caused a long-lasting increase in PtdIns(4,5)P2 level, accompanied by a potentiation of receptor- and G protein-stimulated inositol phosphate formation. Finally, studies with tyrosine kinase and tyrosine phosphatase inhibitors strongly suggest that PtdIns(4,5)P2 synthesis and mAChR-stimulated PLD activity in HEK cells apparently also involve a tyrosine phosphorylation-dependent mechanism(s). Thus, m3 mAChR signaling to PLC and PLD in HEK cells requires the concerted action of various intracellular components, most notably the complex regulation of PtdIns(4,5)P2 synthesis.
Collapse
Affiliation(s)
- M Schmidt
- Institut für Pharmakologie, Universität GH Essen, Germany
| | | | | | | | | |
Collapse
|