2
|
Chakrabarty P, Li A, Ladd TB, Strickland MR, Koller EJ, Burgess JD, Funk CC, Cruz PE, Allen M, Yaroshenko M, Wang X, Younkin C, Reddy J, Lohrer B, Mehrke L, Moore BD, Liu X, Ceballos-Diaz C, Rosario AM, Medway C, Janus C, Li HD, Dickson DW, Giasson BI, Price ND, Younkin SG, Ertekin-Taner N, Golde TE. TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer's disease. J Exp Med 2018; 215:2247-2264. [PMID: 30158114 PMCID: PMC6122970 DOI: 10.1084/jem.20180484] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid β (Aβ) accumulation in a mouse model of Alzheimer-type Aβ pathology. sTLR5Fc binds to oligomeric and fibrillar Aβ with high affinity, forms complexes with Aβ, and blocks Aβ toxicity. Oligomeric and fibrillar Aβ modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aβ-selective class of biotherapy in AD.
Collapse
Affiliation(s)
- Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew Li
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Michael R Strickland
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Emily J Koller
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | | | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Mariya Yaroshenko
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Curtis Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Joseph Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Leonie Mehrke
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Brenda D Moore
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Xuefei Liu
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Awilda M Rosario
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | | | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|
3
|
Samgina TY, Vorontsov EA, Gorshkov VA, Hakalehto E, Hanninen O, Zubarev RA, Lebedev AT. Composition and antimicrobial activity of the skin peptidome of Russian brown frog Rana temporaria. J Proteome Res 2012; 11:6213-22. [PMID: 23121565 DOI: 10.1021/pr300890m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nano-HPLC-ESI-OrbiTrap study involving HCD and ETD spectra has been carried out to clarify the composition of the skin peptidome of brown Russian frogs Rana temporaria. This approach allowed determinantion of 76 individual peptides, increasing 3-fold the identified portion of the peptidome in comparison to that obtained earlier with FTICR MS. A search for the new bradykinin related peptides (BRPs) was carried out by reconstructing mass chromatograms based on the ion current of characteristic b- and y-ions. Several peptides were reported in the secretion of R. temporaria for the first time. The overall antibacterial activity of the skin secretion in general and of one individual peptide (Brevinin 1Tb) was determined using PMEU Spectrion (Portable Microbe Enrichment Unit) technology. The inhibitory effects of these peptides on Staphylococcus aureus and Salmonella enterica Serovar typhimutium were equal in scale to that reported for some antibiotics.
Collapse
Affiliation(s)
- T Yu Samgina
- Organic chemistry Department, Moscow State University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
4
|
Pesola J, Vaarala O, Heitto A, Hakalehto E. Use of portable enrichment unit in rapid characterization of infantile intestinal enterobacterial microbiota. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910600903367810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jouni Pesola
- Institute of Clinical Medicine, Pediatrics, University of Kuopio, Kuopio
- Department of Pediatrics, Kuopio University Hospital, Kuopio
| | - Outi Vaarala
- National Institute for Health and Welfare, Helsinki
| | - Anneli Heitto
- Department of Biosciences, University of Kuopio, Kuopio
| | - Elias Hakalehto
- Department of Biosciences, University of Kuopio, Kuopio
- Finnoflag Oy, Kuopio and Siilinjärvi, Finland
| |
Collapse
|
5
|
Hakalehto E, Hell M, Bernhofer C, Heitto A, Pesola J, Humppi T, Paakkanen H. Growth and gaseous emissions of pure and mixed small intestinal bacterial cultures: Effects of bile and vancomycin. ACTA ACUST UNITED AC 2009; 17:45-53. [PMID: 19682874 DOI: 10.1016/j.pathophys.2009.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Simultaneous cultivations in anaerobiosis, aerobiosis and with microaerobic gas mixture were used to clarify the bile (oxgall) effects on the pure and mixed cultures of enterobacterial strains in simulations in Portable Microbe Enrichment Unit (PMEU) linked with ChemPro100i((R)) gas detector. The effects of vancomycin were evaluated in aerobic cultures. Growth and metabolic activity of cultures were also followed by measuring sugar consumption, pH alterations, and colony counts on BD CHROMagar Orientation plates. Results showed that the two fermentatively different strains of facultative anaerobes, Escherichia coli E 17 and Klebsiella mobilis ATCC 13048 grew in balance regardless of oxygen level, bile acid concentration or other components of the mixed cultures, Bacillus cereus or Staphylococcus aureus. When the evaporations of the mixed cultures of E. coli, K. mobilis and S. aureus were compared with the emissions of the corresponding pure cultures by ChemPro100i((R)) gas sensing detector, the pure cultures of bile resistant E. coli and K. mobilis produced more gaseous components than the mixed culture indicating that these organisms cooperate and use the substrate more effectively together than separately. A survey of the aseptic bacterial isolations from the bile tract in a big University Hospital, (Salzburg, Austria) during 3 years, showed that these bacterial groups dominated. Only 13.24% of the 287 patient samples were sterile, and around 180 strains of both E. coli and Klebsiella/Enterobacter groups were found amongst 973 isolates from 249 patients (together 35.57%). Enterococcus sp. accounted for 246 isolates being the largest group of strains (24.25% of all the isolates). In anaerobiosis it was shown that Klebsiella neutralized the acids produced in the mixed acid fermentation of the E. coli. The ethanol produced from both groups evaporated in the gas stream of the PMEU culturing step and its formation also removes excess acidity from the cultures. The synergistic behaviour and symbiotic function between E. coli and Klebsiella/Enterobacter strains is suggested.
Collapse
Affiliation(s)
- Elias Hakalehto
- Department of Biosciences, University of Kuopio, P.O.B. 1627, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Hakalehto E, Pesola J, Heitto L, Närvänen A, Heitto A. Aerobic and anaerobic growth modes and expression of type 1 fimbriae in Salmonella. ACTA ACUST UNITED AC 2007; 14:61-9. [PMID: 17434297 DOI: 10.1016/j.pathophys.2007.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to clarify the growth rates of facultatively anaerobic Salmonella enterica serovar Enteritidis strain in aerobic and anaerobic conditions and the expression of type 1 fimbriae in relation to the growth phases. The cultivation was carried out in a Portable Microbe Enrichment Unit (PMEU) where in same conditions one can grow the cells in parallel by modifying, e.g. aerobiosis only. The results obtained show that although the anaerobic metabolism is generally believed to be a slower producer of biomass or metabolites, in these circumstances S. enterica serovar Enteritidis strain gave comparable growth rates in anaerobiosis with nitrogenation as in aerobic cultures with constant aeration. Fimbrial antigens were produced in the beginning of logarithmic phase of the growth cycle both in the aerobic and anaerobic conditions. The fimbria remained in the presence of oxygen. This capability is possibly used for the intrusion of oxygen containing tissues of host body by the invading pathogens. In conclusion S. enterica serovar Enteritidis strain suspensions grow equally well in constant nitrogenation and aeration, and fimbria were produced in both conditions, during the early logarithmic phase but they prevailed in the presence of aeration.
Collapse
Affiliation(s)
- Elias Hakalehto
- Department of Chemistry, University of Kuopio, P.O.B. 1627, FI-70211 Kuopio, Finland; Finnoflag Ltd., P.O.B. 262, FI-70101 Kuopio, Finland
| | | | | | | | | |
Collapse
|
8
|
Chaban B, Deneer H, Dowgiert T, Hymers J, Ziola B. The flagellin gene and protein from the brewing spoilage bacteria Pectinatus cerevisiiphilus and Pectinatus frisingensis. Can J Microbiol 2005; 51:863-74. [PMID: 16333346 DOI: 10.1139/w05-076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flagellin genes from the anaerobic Gram-negative beer-spoilage bacteria Pectinatus cerevisiiphilus and Pectinatus frisingensis were sequenced and the flagellin proteins initially characterized. Protein microsequencing led to the design of two degenerate PCR primers that allowed the P. cerevisiiphilus flagellin gene to be partially sequenced. A combination of PCR and Bubble PCR was then used to sequence the flagellin genes of three isolates from each species. Cloning and gene expression, followed by immunoblotting, confirmed the gene identities as flagellin. Analysis of the gene sequences revealed proteins similar to other bacterial flagellins, including lengths of 446 or 448 amino acids, putative sigma 28 promoters, and a termination loop. Antibody binding studies with isolated flagella correlated with gene sequence comparisons, with both indicating that the P. cerevisiiphilus isolates studied are very similar but that the P. frisingensis isolates show greater variation. Purified flagellins were found to be glycosylated, probably through an O linkage. Phylogenetic analysis revealed greater diversity within the flagellin sequences than within the 16S rRNA genes. Despite the Gram-negative morphology of Pectinatus, this genus proved most closely related to Gram-positive Firmicutes.Key words: beer spoilage, Firmicutes, flagellin, glycosylation, Pectinatus cerevisiiphilus, Pectinatus frisingensis, phylogenetics, taxonomy.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
9
|
Santa H, Ylisirniö M, Hassinen T, Laatikainen R, Peräkylä M. Stability and amino acid preferences of type VIII reverse turn: the most common turn in peptides? Protein Eng Des Sel 2002; 15:651-7. [PMID: 12364579 DOI: 10.1093/protein/15.8.651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Free energies of the alpha(r)beta and betabeta conformations of 14 tetrapeptides, based on the sequence SALN and protein X-ray structures, were calculated using molecular dynamics simulations and MM-PBSA calculations. The alphaalpha conformations of five of the tetrapeptides were also studied. SALN has been earlier shown by molecular dynamics simulations and NMR spectroscopy to have a tendency to form an alpha(r)beta turn. The gas-phase energy of the molecular mechanical force field (CHARMM), the electrostatic and non-polar solvation free energies and solute entropies were used to explain the free energy differences of the alphaalpha, betabeta and alpha(r)beta conformations of the peptides. The alpha(r)beta conformation of SALN and SATN was predicted to be slightly more stable than the extended conformation (betabeta), in agreement with experimental results. The SALN mutants SAIN, SAVN, SATN, SSIN and MSHV, were also predicted to be potential alpha(r)beta turn-forming peptides. We report also revised positional potentials for the type VIII turn, based on a non-homologous set of protein structures. This protein databank analysis confirms the main results of the earlier analyses and reveals several new amino acid residues with a significant positional preference. The results of this work led us to suggest that the alpha(r)beta turn may be the most common turn type in peptides. Such turns may be readily formed in aqueous solution and thereby play important roles in the protein folding process by serving as an initiation point for structure formation.
Collapse
Affiliation(s)
- Harri Santa
- Department of Chemistry, University of Kuopio, P.O. Box 1627, Finland
| | | | | | | | | |
Collapse
|
10
|
Santa H, Peräkylä M, Laatikainen R. Folding of alpha(r)beta and epsilonbeta reverse turns; a nanosecond molecular dynamics simulation of the hexapeptide MSALNT and the octapeptide NMSALNTL in water. J Biomol Struct Dyn 1999; 16:1033-41. [PMID: 10333173 DOI: 10.1080/07391102.1999.10508312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Folding of the hexapeptide MSALNT and the octapeptide NMSALNTL were investigated using 2.8 ns molecular dynamics (MD) simulations in aqueous solution. In the simulation, the central sequence SALN of the hexapeptide folded rapidly within 200 ps into an alpha(r)beta turn conformation (type VIII conformation) and remained in this conformation for the rest of the trajectory. The sequence SALN of the octapeptide needed 2 ns to fold via epsilonbeta conformations into a similar conformation. The results join the sequences into a growing group of sequences which have a tendency to form secondary structures and thereby to direct protein folding. The structures of the reverse turn conformations were in accordance with the experimental results (Hakalehto et al., Eur J. Biochem. 250, 19-29 (1997)). The main driving force of folding seems to be the hydrophobic interaction between the side chains of Ala and Leu at the i+1 and i+2 positions of the beta-turn.
Collapse
Affiliation(s)
- H Santa
- University of Kuopio, Department of Chemistry, Finland.
| | | | | |
Collapse
|