1
|
Li Y, Wang X, Sa Y, Li L, Wang W, Yang L, Ding S, Wilson G, Yang Y, Zhang Y, Ma X. A comparative UHPLC-QTOF-MS/MS-based metabolomics approach reveals the metabolite profiling of wolfberry sourced from different geographical origins. Food Chem X 2024; 21:101221. [PMID: 38379804 PMCID: PMC10877177 DOI: 10.1016/j.fochx.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Wolfberry, known as Goji berry, is the fruit of Lycium barbarum L. (LB). As a famous functional food and TCM, the cost and efficacy of LB are closely linked to its geographical origin. The present study aimed to establish an effective method for distinguishing LB from different geographical origins. By employing UHPLC-QTOF-MS/MS combined with multivariate analysis, the metabolite profiling of LB (199 batches) obtained from Ningxia, Gansu, Qinghai, and Xinjiang, was evaluated. The results demonstrated that the method effectively distinguished LB from the four regions, with a total of 148 different metabolites being detected. Subsequent assessment using heat maps, Venn analysis, receiver operating characteristics curves and dot plots revealed 21 of these metabolites exhibited exceptional sensitivity and specificity, with under-curve values approaching 1, thus indicating their potential as biomarkers for LB. These findings strongly support the suitability of UHPLC-QTOF-MS/MS-based metabolomics as an effective approach to identify the source of LB.
Collapse
Affiliation(s)
| | | | | | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| |
Collapse
|
2
|
Yu Z, Xia M, Lan J, Yang L, Wang Z, Wang R, Tao H, Shi Y. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food Funct 2023; 14:2998-3025. [PMID: 36912477 DOI: 10.1039/d2fo03791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Lycium genus, perennial herbs of the Solanaceae family, has been an important source of medicines and nutrient supplements for thousands of years in China, where seven species and three varieties are cultivated. Among these, Lycium barbarum L. and Lycium chinense Mill., two "superfoods", together with Lycium ruthenicum Murr, have been extensively commercialized and studied for their health-related properties. The dried ripe fruits of the genus Lycium are well recognized as functional foods for the management of various ailments including waist and knee pain, tinnitus, impotence, spermatorrhea, blood deficiency and weak eyes since ancient times. Phytochemical studies have reported numerous chemical components in the Lycium genus, categorized as polysaccharides, carotenoids, polyphenols, phenolic acids, flavonoids, alkaloids and fatty acids, and its therapeutic roles in antioxidation, immunomodulation, antitumor treatment, hepatoprotection and neuroprotection have been further confirmed by modern pharmacological studies. As a multi-functional food, the quality control of Lycium fruits has also attracted attention internationally. Despite its popularity in research, limited systematic and comprehensive information has been provided on the Lycium genus. Therefore, herein, we provide an up-to-date review of the distribution, botanical features, phytochemistry, pharmacology and quality control of the Lycium genus in China, which will provide evidence for further in-depth exploration and comprehensive utilization of Lycium, especially its fruits and active ingredients in the healthcare field.
Collapse
Affiliation(s)
- Zhonglian Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiping Lan
- Experiment center for teaching & learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212016, China
| | - Yanhong Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids. Nat Commun 2022; 13:3832. [PMID: 35780230 PMCID: PMC9250511 DOI: 10.1038/s41467-022-31653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed by in planta transient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes from Atropa belladonna without a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyze N-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverse N-demethylated modified tropane alkaloids. Cytochrome P450s drive the structural diversity of plant alkaloids, many of which have biotechnological uses. Here the authors use reverse genetics and metabolomics to identify two Atropa belladonna cytochrome P450s that synthesize pseudotropine-derived alkaloids.
Collapse
|
4
|
Total synthesis of α-1-C-propyl-3,6-di-epi-nojirimycin and polyhydroxyindolizidine alkaloids via regio- and diastereoselective amination of anomeric acetals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
6
|
Jiang ZB, Chen YX, Chen JZ, Lu X, Guo X, Ma BZ, Li CL, Fang X, Tang YH, Ma XL. Exploring Chemical Structures From Cortex Lycii, Based on Manual and Automatic Analysis of the HPLC-Q-TOF-MS Data. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20911255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cortex Lycii, the root barks of Lycium barbarum and L. chinense, known as “di gu pi” in traditional Chinese herbal drugs, is an important ingredient of formulations used for treating a variety of diseases. During the last 3 decades, more than 70 chemical entities have been separated and purified from either the aqueous or aqueous ethyl alcohol extracts of Cortex Lycii. In this study, high-performance liquid chromatography together with quadrupole-time-of-flight mass spectrometry (MS) was employed to explore new analog structures from aqueous ethyl alcohol extracts (50%, v/v), which led us to discover 4 new phenolic amides and a new cyclic peptide. The structure-based manual screening method, on the basis of the analysis of the fragmentation pathway of the previously known compounds, was used to make a preliminary analysis of the negative total ion chromatography and negative extract ion spectra. Three ions at m/ z 472.1, 314.1, and 445.2 were assigned to phenolic amides, and by further analysis of their MS/MS data, the structure of 1, corresponding to one of them ( m/ z 314.1), was illustrated as an analog of the known compound KN1. A parent ion at m/ z 856.1 was assigned to a cyclic peptide analog (2) in the manual analysis procedure. Furthermore, the MS/MS data were profiled on the Global Natural Product Social Molecular Networking (GNPS, https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp ) workflow to weave a visualization molecular network. Three more new analog ions ( m/ z 604.3 [3], 597.3 [4], and 611.3 [5]) were found in the aggregation of KN5 and KN7, and their structures were all determined by comparisons with known compounds. This manual and networking automatic screening method may provide a sensitive and efficient procedure to facilitate the mining of novel trace components.
Collapse
Affiliation(s)
- Zhi-Bo Jiang
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Yong-Xin Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Petroleum Resources, Lanzhou, China
| | - Jing-Zhi Chen
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Xing Lu
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Xin Guo
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Bing-Zhen Ma
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Chong-Long Li
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| | - Xuan Fang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Petroleum Resources, Lanzhou, China
| | | | - Xiao-Li Ma
- Department of Bioengineering, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China
| |
Collapse
|
7
|
|
8
|
Prandi C, Occhiato EG. From synthetic control to natural products: a focus on N-heterocycles. PEST MANAGEMENT SCIENCE 2019; 75:2385-2402. [PMID: 30624033 DOI: 10.1002/ps.5322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Natural products containing a N-heterocycle motif are widespread in nature and medicinal plants, in particular, have proved to be a source of almost unlimited N-derived structures with high molecular diversity. Because of their intrinsic potential for use in both biomedical and agricultural applications, there is a general need for new compounds and for the synthesis of 'natural-inspired' analogues. Importantly, transition of a natural product from discovery to a 'market lead' is associated with an increasingly challenging demand for more of the compound, which cannot be met by isolation from natural plant sources, often due to low extraction yields and uneven availability of the plant source itself. Synthesis remains the most reliable approach to provide valuable products for the market. In this review, a comprehensive overview of our contribution to synthetic access to N-derived natural products is given. Major strengths of the proposed methodologies are discussed critically. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ernesto G Occhiato
- Department of Chemistry 'U. Schiff', Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Bourebaba L, Bedjou F, Röcken M, Marycz K. Nortropane alkaloids as pharmacological chaperones in the rescue of equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome through mitochondrial potentiation, endoplasmic reticulum stress mitigation and insulin resistance alleviation. Stem Cell Res Ther 2019; 10:178. [PMID: 31215461 PMCID: PMC6582509 DOI: 10.1186/s13287-019-1292-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Equine metabolic syndrome (EMS) refers to a cluster of associated abnormalities and metabolic disorders, including insulin resistance and adiposity. The numerous biological properties of mesenchymal stem cells (MSCs), including self-renewal and multipotency, have been the subject of many in-depth studies, for the management of EMS; however, it has been shown that this cell type may be affected by the condition, impairing thus seriously their therapeutic potential. Therefore, an attempt to rescue EMS adipose-derived stem cells (ASCs) with calystegines (polyhydroxylated alkaloids) that are endowed with strong antioxidant and antidiabetic abilities was performed. METHODS ASCs isolated from EMS horses were subsequently treated with various concentrations of total calystegines. Different parameters were then assessed using flow cytometry, confocal as well as SE microscopy, and RT-qPCR. RESULTS Our results clearly demonstrated that calystegines could improve EqASC viability and proliferation and significantly reduce apoptosis, via improvement of mitochondrial potentiation and functionality, regulation of pro- and anti-apoptotic pathways, and suppression of ER stress. Furthermore, nortropanes positively upregulated GLUT4 and IRS transcripts, indicating a possible sensitizing or mimetic effect to insulin. Most interesting finding in this investigation lies in the modulatory effect of autophagy, a process that allows the maintenance of cellular homeostasis; calystegines acted as pharmacological chaperones to promote cell survival. CONCLUSION Obtained data open new perspectives in the development of new drugs, which may improve the metabolic dynamics of cells challenged by MS.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| | - Fatiha Bedjou
- Laboratoire de Biotechnologies végétales et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
10
|
Hunt H, Fraser K, Cave NJ, Gartrell BD, Petersen J, Roe WD. Untargeted metabolic profiling of dogs with a suspected toxic mitochondrial myopathy using liquid chromatography-mass spectrometry. Toxicon 2019; 166:46-55. [PMID: 31102596 DOI: 10.1016/j.toxicon.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
'Go Slow myopathy' (GSM) is a suspected toxic myopathy in dogs that primarily occurs in the North Island of New Zealand, and affected dogs usually have a history of consuming meat, offal or bones from wild pigs (including previously frozen and/or cooked meat). Previous epidemiological and pathological studies on GSM have demonstrated that changes in mitochondrial structure and function are most likely caused by an environmental toxin that dogs are exposed to through the ingestion of wild pig. The disease has clinical, histological and biochemical similarities to poisoning in people and animals from the plant Ageratina altissima (white snakeroot). Aqueous and lipid extracts were prepared from liver samples of 24 clinically normal dogs and 15 dogs with GSM for untargeted liquid chromatography-mass spectrometry. Group-wise comparisons of mass spectral data revealed 38 features that were significantly different (FDR<0.05) between normal dogs and those with GSM in aqueous extracts, and 316 significantly different features in lipid extracts. No definitive cause of the myopathy was identified, but alkaloids derived from several plant species were among the possible identities of features that were more abundant in liver samples from affected dogs compared to normal dogs. Mass spectral data also revealed that dogs with GSM have reduced hepatic phospholipid and sphingolipid concentrations relative to normal dogs. In addition, affected dogs had changes in the abundance of kynurenic acid, various dicarboxylic acids and N-acetylated branch chain amino acids, suggestive of mitochondrial dysfunction.
Collapse
Affiliation(s)
- H Hunt
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K Fraser
- Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - N J Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B D Gartrell
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J Petersen
- Norvet Services Ltd., Okaihau, New Zealand
| | - W D Roe
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Yang Y, An Y, Wang W, Du N, Zhang J, Feng Z, Jiang J, Zhang P. Nine compounds from the root bark of Lycium chinense and their anti-inflammatory activitieslammatory activitiesretain-->. Acta Pharm Sin B 2017; 7:491-495. [PMID: 28752035 PMCID: PMC5518643 DOI: 10.1016/j.apsb.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
Abstract
Two new compounds, named lyciumlignan D (1) and lyciumphenyl propanoid A (2), along with seven known compounds, were isolated from the root bark of Lycium chinense. Their structures were elucidated using spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR, CD), as well as by comparison with those of the literature. Compounds 3-9 were isolated from this genus for the first time. In the in vitro assay, compounds 3, 6, and 7 exhibited stronger anti-inflammatory effects than the positive control curcumin at a concentration of 10 μmol/L.
Collapse
Affiliation(s)
- Yanan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yawen An
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Wang
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Ning Du
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Jinghua Zhang
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Ziming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianshuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peicheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Corresponding author.
| |
Collapse
|
12
|
Abstract
The Lycium genus is widely used as a traditional Chinese medicine and functional food. Many of the chemical constituents of the genus Lycium were reported previously. In this review, in addition to the polysaccharides, we have enumerated 355 chemical constituents and nutrients, including 22 glycerogalactolipids, 29 phenylpropanoids, 10 coumarins, 13 lignans, 32 flavonoids, 37 amides, 72 alkaloids, four anthraquinones, 32 organic acids, 39 terpenoids, 57 sterols, steroids, and their derivatives, five peptides and three other constituents. This comprehensive study could lay the foundation for further research on the Lycium genus.
Collapse
|
13
|
Mulder PP, de Nijs M, Castellari M, Hortos M, MacDonald S, Crews C, Hajslova J, Stranska M. Occurrence of tropane alkaloids in food. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Massimo Castellari
- Institute for Research and Technology in Food and Agriculture (IRTA) Spain
| | - Maria Hortos
- Institute for Research and Technology in Food and Agriculture (IRTA) Spain
| | | | | | - Jana Hajslova
- University of Chemistry and Technology (UCT) Czech Republic
| | | |
Collapse
|
14
|
Guan C, Ji J, Li X, Jin C, Wang G. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. J Genet 2016; 95:875-885. [PMID: 27994186 DOI: 10.1007/s12041-016-0710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cadmium (Cd) is a highly toxic element to plants. Ethylene is an important phytohormone in the regulation of plant growth, development and stress response. Mitogen-activated protein kinase (MAPK) activation has been observed in plants exposed to Cd stress and was suggested to be involved in ethylene biosynthesis. We hypothesized that there may be a link between MAPK cascades and ethylene signalling in Cd-stressed plants. To test this hypothesis, the expression of LcMKK, LchERF and LcGSH1 genes, endogenous ethylene accumulation, GSH content and Cd concentration in Lycium chinense with or without Cd stress treatment were studied. Our results showed that LcMKK gene expression can be induced by the treatment of Cd in L. chinense. The transgenic tobacco expressing 35S::LcMKK showed greater tolerance to Cd stress and enhanced expression of NtERF and NtGSH1 genes, indicating that LcMKK is associated with the enhanced expression level of ERF and GSH synthesis-related genes in tobacco. We also found that endogenous ethylene and GSH content can be induced by Cd stress in L. chinense, and inhibited by cotreatment with PD98059, an inhibitor of MAPK kinase. Evidences presented here suggest that under Cd stress, GSH accumulation occurred at least partially by enhanced LcMKK gene expression and the ethylene signal transduction pathways might be involved in this accumulation.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | | | |
Collapse
|
15
|
Bourebaba L, Saci S, Touguit D, Gali L, Terkmane S, Oukil N, Bedjou F. Evaluation of antidiabetic effect of total calystegines extracted from Hyoscyamus albus. Biomed Pharmacother 2016; 82:337-44. [PMID: 27470371 DOI: 10.1016/j.biopha.2016.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hyoscyamus albus L. (Solanaceae) an old medicinal plant is a rich source of tropane and nortropane alkaloids which confers to this plant a number of very interesting and beneficial therapeutic effects. PURPOSE Calystegines that are polyhydroxylated alkaloids and imino-sugars poccess significant glycosidases inhibitory activities and are therefore good candidats for the treatment of diabetes mellitus. STUDY DESIGN Calystegines extracted from Hyoscyamys albus seeds were tested for teir acute oral toxicity and investigated for their in-vivo antidiabetic effect on Streptozotocine induced diabetes in mice. METHODES Calystegines were extracted from the seeds plant using an Ion exchange column; the remaining extract was then administrated orally to mice at several single doses for acute toxicity assay. A dose of 130mg/kg streptozotocine was injected to mice to induce diabetes mellitus, and diabetic mice were treated orally during 20days with 10mg/kg and 20mg/kg calystegines and 20mg/kg glibenclamide as the reference drug. RESULTS Acute oral toxicity showed that calystegines are not toxic up to a dose of 2000mg/kg with absence of any signs of intoxication and damages in Liver and kidney tissues. The nortropane alkaloids markedly reduced blood glucose levels and lipid parameters of diabetic mice to normal concentrations after 20days of treatment at 10mg/kg and 20mg/kg (p<0.05). Histopathological study of diabetic mice pancreas indicated that calystegines of Hyoscyamus albus have minimized streptozotocine damages on β-cells of islets of langerhans, stimulated β-cells regeneration and improved with this insulin secretion. CONCLUSION The findings of this study suggest that calystegines are potent antidiabetic agents with antihyperglicemic and hypolipidemic effects, and a protective fonction on pancreas in streptozotocin induced diabetes in mice.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie.
| | - Souaad Saci
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Damia Touguit
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Lynda Gali
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Schahinez Terkmane
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Naima Oukil
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Fatiha Bedjou
- Laboratoire de Biotechnologie végétale et d'Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| |
Collapse
|
16
|
Wang HY, Kato A, Kinami K, Li YX, Fleet GWJ, Yu CY. Concise synthesis of calystegines B2 and B3via intramolecular Nozaki-Hiyama-Kishi reaction. Org Biomol Chem 2016; 14:4885-96. [PMID: 27161660 DOI: 10.1039/c6ob00697c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).
Collapse
Affiliation(s)
- Hong-Yao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
17
|
An YW, Zhan ZL, Xie J, Yang YN, Jiang JS, Feng ZM, Ye F, Zhang PC. Bioactive Octahydroxylated C21 Steroids from the Root Bark of Lycium chinense. JOURNAL OF NATURAL PRODUCTS 2016; 79:1024-1034. [PMID: 26982999 DOI: 10.1021/acs.jnatprod.5b01087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lyciumsterols A-K (1-11), 11 new octahydroxylated C21 steroids, were isolated from the root bark of Lycium chinense, along with 15 known compounds. Characterization of these C21 steroids showed the presence of eight hydroxy groups on the C21 steroid skeleton with a (2E,4E)-5-phenyl-2,4-pentadienoate group at C-12 or C-20 and various 2,6-deoxy sugar residues at C-3. The structures of these compounds were elucidated using spectroscopic data interpretation. Compounds 2, 3, and 7 exhibited dose-dependent protective effects on pancreatic islet cells and may help to improve cell viability. In addition, it was found that compounds 7, 8, 9, and 11 exhibited autophagy activation.
Collapse
Affiliation(s)
- Ya-Wen An
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Zhi-Lai Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700, People's Republic of China
| | - Jing Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| |
Collapse
|
18
|
Guan C, Ji J, Jia C, Guan W, Li X, Jin C, Wang G. A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. PLANT CELL REPORTS 2015; 34:871-84. [PMID: 25627256 DOI: 10.1007/s00299-015-1750-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/28/2014] [Accepted: 01/16/2015] [Indexed: 05/20/2023]
Abstract
A GSHS gene, LcGSHS , was cloned from L. chinense for the first time. Evidence is presented here that endogenous SA accumulation maybe important for the regulation of LcGSHS expression level. Glutathione (GSH) plays a pivotal role in heavy metal detoxification. GSH synthetase (GSHS) catalyzes the rate-limiting step of GSH synthesis in plants. Salicylic acid (SA) is one of the important plant hormones, which plays a critical role in triggering plant responses to different stresses such as cadmium (Cd) stress. Until now, little has been done to explore the relationship among the accumulation of endogenous SA, GSHS transcript levels and the GSH content in plants under Cd treatment and we will investigate this link in this study. The chlorophyll content, transcripts level of LcGSHS gene, endogenous SA accumulation, GSH accumulation and Cd concentration in the leaves of Lycium chinense were studied under different treatment conditions. Endogenous SA, LcGSHS transcript expression and GSH content can be induced by Cd treatment in L. chinense, however, reduced by co-treatment with 2-aminoindan-2-phosphonic acid (AIP), an inhibitor of SA biosynthesis. Strong staining was observed in the leaves of Arabidopsis expressing ProLcGSHS::GUS under Cd stress and the staining was reduced by co-treatment with AIP. The transgenic Arabidopsis expressing ProLcGSHS::LcGSHS also showed greater tolerance to Cd stress than wild types. Evidence was presented here that under Cd stress, GSH accumulation occurred via enhanced LcGSHS gene expression and the SA signaling cascade was involved in this accumulation. Furthermore, the overexpression of LcGSHS in transgenic Arabidopsis resulted in greater tolerance to Cd stress than wild-type lines.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Kato A, Zhang ZL, Wang HY, Jia YM, Yu CY, Kinami K, Hirokami Y, Tsuji Y, Adachi I, Nash RJ, Fleet GWJ, Koseki J, Nakagome I, Hirono S. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. J Org Chem 2015; 80:4501-15. [DOI: 10.1021/acs.joc.5b00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Zhao-Lan Zhang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Yao Wang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kyoko Kinami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Hirokami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J. Nash
- Institute
of Biological, Environmental and Rural Sciences, Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W. J. Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Koseki
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Izumi Nakagome
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
20
|
Guan C, Jin C, Ji J, Wang G, Li X. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotechnol Prog 2015; 31:358-68. [PMID: 25589446 DOI: 10.1002/btpr.2046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/25/2014] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) accumulation is very toxic to plants. The presence of Cd may lead to excessive production of reactive oxygen species (ROS), and then cause inhibition of plant growth. The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which has been shown to function as a sensor of alterations in the ER environment. BiP overexpression in plants was shown to increase drought tolerance through inhibition of ROS accumulation. Due to the above relationships, it is likely that there may be a link between Cd stress tolerance, ROS accumulation and the BiP transcript expression in plants. In this study, a BiP gene, LcBiP, from L. chinense was isolated and characterized. Overexpression of LcBiP in tobacco conferred Cd tolerance. Under Cd stress conditions, the transgenic tobacco lines exhibited better chlorophyll retention, less accumulation of ROS, longer root length, more glutathione (GSH) content, and less antioxidant enzyme activity than the wild type. These data demonstrated that LcBiP act as a positive regulator in Cd stress tolerance. It is hypothesized that the improved Cd tolerance of the transgenic tobacco plants may be due to the enhanced ROS scavenging capacity. The enhancement of GSH content might contribute to this ROS scavenging capacity in the transgenic plants. However, the underlying mechanism for BiP-mediated increase in Cd stress tolerance need to be further clarified.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Gao K, Ma D, Cheng Y, Tian X, Lu Y, Du X, Tang H, Chen J. Three New Dimers and Two Monomers of Phenolic Amides from the Fruits of Lycium barbarum and Their Antioxidant Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1067-1075. [PMID: 25603493 DOI: 10.1021/jf5049222] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aims of this study were to complement the current knowledge on the antioxidative composition of alcohol extracts from the fruits of Lycium barbarum and to evaluate their antioxidant activities. Three new dimers of phenolic amides, named lyciumamides A (3), B (4), and C (5), together with two monomers, N-E-coumaroyl tyramine (1) and N-E-feruloyl tyramine (2), were isolated from the fruits for the first time with the help of activity-guided chromatography. Compounds 1-5 were evaluated for their antioxidant activities in scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and inhibiting lipid peroxidation in rat liver microsomes induced by ascorbate/Fe2+, cumine hydroperoxide, or CCl4/reduced form of nicotinamide-adenine dinucleotide phosphate, and the results showed that all of them exhibited strong activities, whereas compounds 1 and 2 were more potent than the reference tert-butyl-4-hydroxyanisole.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
| | - Dongwei Ma
- Shaanxi Ark Pharmaceutical Company Ltd., Xi'an 710075, China
| | - Yan Cheng
- Department of Out-patient, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
| | - Xiangrong Tian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
| | - Yunyang Lu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
| | - Xiaoying Du
- Shaanxi Ark Pharmaceutical Company Ltd., Xi'an 710075, China
| | - Haifeng Tang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University , Xi'an 710032, China
| | - Jianzong Chen
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, China
| |
Collapse
|
22
|
Ulbricht C, Bryan JK, Costa D, Culwell S, Giese N, Isaac R, Nummy K, Pham T, Rapp C, Rusie E, Weissner W, Windsor RC, Woods J, Zhou S. An Evidence-Based Systematic Review of Goji (Lycium spp.) by the Natural Standard Research Collaboration. J Diet Suppl 2014; 12:184-240. [PMID: 24806435 DOI: 10.3109/19390211.2014.904128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An evidence-based systematic review of goji (Lycium spp.) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
23
|
Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Bioorg Med Chem 2014; 22:2435-41. [PMID: 24657053 DOI: 10.1016/j.bmc.2014.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against β-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal β-glucocerebrosidase with Ki value of 3.3 μM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to β-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized β-glucocerebrosidase, and consequently increased intracellular β-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to β-glucocerebrosidase.
Collapse
|
24
|
Chung IM, Ali M, Praveen N, Yu BR, Kim SH, Ahmad A. New polyglucopyranosyl and polyarabinopyranosyl of fatty acid derivatives from the fruits of Lycium chinense and its antioxidant activity. Food Chem 2013; 151:435-43. [PMID: 24423554 DOI: 10.1016/j.foodchem.2013.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022]
Abstract
Four new compounds 3,4-dihydroxy benzoic acid 3-octadecanoyl-4-O-α-L-arabinopyranosyl (2a→1b)-2a-O-α-L-arabinopyranosyl-(2b→1c)-2b-O-α-L-arabinopyranoside (1), 2,6,10-trimethyl-n-dodec-2-en-1-oyl-1-O-α-L-arabinopyranosyl-(2a→1b)-2a-O-α-L-arabinopyranosyl-(2b→1c)-2b-O-α-L-arabinopyranosyl-(2c→1d)-2c-O-α-L-arabinopyranosyl-(2d→1e)-2d-O-α-L-arabinopyranosyl-(2e→1f)-2e-O-α-L-arabinopyranosyl-(2f→1g)-2f-O-α-L-arabinopyranoside (2), n-docos-9,12-dienoyl-α-D-glucopyranosyl-(2a→1b)-2a-O-α-D-glucopyranosyl-(2b→1c)-2b-O-α-D-glucopyranosyl-(2c→1d)-2c-O-α-D-glucopyranosyl-(2d→1e)-2d-O-α-D-glucopyranosyl-(2e→1f)-2e-O-α-D-glucopyranoside (3), β-D-glucopyranosyl-(2a→1b)-2a-O-β-L-arabinopyranosyl-(2b→1c)-2b-O-β-L-arabinopyranosyl-(2c→1d)-2c-O-β-L-arabinopyranosyl-(2d→1e)-2d-O-β-L-arabinopyranosyl-(2e→1f)-2e-O-β-L-arabinopyranoside (4) along with some know compounds, were isolated and identified from a methanol extract Lycium chinense fruits. Their structures were determined of the new compounds using one- and two-dimensional NMR spectroscopies in combination by IR, FAB/MS and HR-FAB/MS. The compounds 1-4 were investigated for the antioxidant potential using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power and the phosphomolybdenum activity and the results demonstrate that the compounds (2 and 3) has potential as a natural antioxidant whereas the compound (4) exhibited moderate activity and the compound (1) exhibited weak antioxidant activity.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, South Korea
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi 110 062, India
| | - Nagella Praveen
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, South Korea
| | - Bo-Ra Yu
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, South Korea
| | - Seung-Hyun Kim
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, South Korea
| | - Ateeque Ahmad
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 143 701, South Korea.
| |
Collapse
|
25
|
|
26
|
Jocković N, Fischer W, Brandsch M, Brandt W, Dräger B. Inhibition of human intestinal α-glucosidases by calystegines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5550-5557. [PMID: 23697377 DOI: 10.1021/jf4010737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calystegines are polyhydroxylated nortropane alkaloids found in Convolvulaceae, Solanaceae, and other plant families. These plants produce common fruits and vegetables. The calystegine structures resemble sugars and suggest interaction with enzymes of carbohydrate metabolism. Maltase and sucrase are α-glucosidases contributing to human carbohydrate degradation in the small intestine. Inhibition of these enzymes by orally administered drugs is one option for treatment of diabetes mellitus type 2. In this study, inhibition of maltase and sucrase by calystegines A3 and B2 purified from potatoes was investigated. In silico docking studies confirmed binding of both calystegines to the active sites of the enzymes. Calystegine A3 showed low in vitro enzyme inhibition; calystegine B2 inhibited mainly sucrose activity. Both compounds were not transported by Caco-2 cells indicating low systemic availability. Vegetables rich in calystegine B2 should be further investigated as possible components of a diet preventing a steep increase in blood glucose after a carbohydrate-rich meal.
Collapse
Affiliation(s)
- Nebojša Jocković
- Institute of Pharmacy, Faculty of Sciences I, Martin-Luther-University Halle-Wittenberg , Hoher Weg 8, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
27
|
Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 2013; 35:515-23. [PMID: 23290321 DOI: 10.1016/j.braindev.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
Chaperone therapy is a newly developed molecular therapeutic approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. Based on early molecular studies during the last decade of the 20th century and early years of the 21st century, mainly on Fabry disease and GM1-gangliosidosis, we found some mutant enzyme proteins were unstable in the cell, and unable to express catalytic activities. Subsequently galactose and other active-site binding substrate analogs were found stabilized and enhance the mutant enzyme activity in culture cells. We concluded that the mutant misfolding enzyme protein and substrate analog competitive inhibitor (chemical chaperone) form a stable complex to be transported to the lysosome, to restore the catalytic activity of mutant enzyme after spontaneous dissociation under the acidic condition. This gene mutation-specific molecular interaction is a paradoxical phenomenon that an enzyme inhibitor in vitro serves as an enzyme stabilizer in situ. First we developed a commercially available compound 1-deoxygalactonojirimycin (DGJ) for Fabry disease, and confirmed the above molecular phenomenon. Currently DGJ has become a new candidate of oral medicine for Fabry disease, generalized vasculopathy involving the kidneys, heart and central nervous system in the middle age. This drug development has reached the phase 3 of human clinical study. Then we found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (GM1-gangliosidosis and Morquio B disease) and β-glucosidase deficiency disorders (phenotypic variations of Gaucher disease), respectively. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice have been used for confirmation of clinical effectiveness, adverse effects and pharmacokinetic studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Computational analysis revealed pH-dependent enzyme-chaperone interactions. Our recent study indicated chaperone activity of a new DGJ derivative, MTD118, for β-galactosidase complementary to NOEV. NOV also showed the chaperone effect toward several β-glucosidase gene mutants in Gaucher disease. Furthermore a commercial expectorant drug ambroxol was found to be a chaperone for β-glucosidase. A few Gaucher patients responded to this drug with remarkable improvement of oculomotor dysfunction and myoclonus. We hope chaperone therapy will become available for some patients with Fabry disease, GM1-gangliosidosis, Gaucher disease, and other lysosomal storage diseases particularly with central nervous system involvement.
Collapse
|
28
|
|
29
|
Chung IM, Ali M, Kim EH, Ahmad A. New tetraterpene glycosides from the fruits of Lycium chinense. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:136-144. [PMID: 23323954 DOI: 10.1080/10286020.2012.756315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two new compounds lyciumtetraterpenic hexaarabinoside (1) and tetraterpenyl hexaarabinoside (2), along with two known compounds, were isolated from the methanol extract of the fruits of Lycium chinense Miller (Solanaceae), and their structures have been elucidated as 6-(1,1,5-trimethyl-5α-hydroxycyclohexanyl)-6'-(1',1',5'-trimethyl-2'β-hydroxycyclohexanyl)-9,13,9',13'-tetramethyloctadec-7,9,11,13,15,7',9',11',13'-nonene-5α-D-arabinopyranosyl(2a → 1b)-β-D-arabinopyranosyl-(2b → 1c)-β-D-arabinopyranosyl-2'-β-D-arabinopyranosyl-(2d → 1e)-α-D-arabinopyranosyl-(2e → 1f)-α-D-arabinopyranoside (1) and 1(6),11(12),13(14),1'(6'),11'(12'),13'(14')-dodecahydro-β-caroten-4β,4'β-diol-4β-L-arabinopyranosyl-(2a → 1b)-β-L-arabinopyranosyl-(2b → 1c)-β-D-arabinopyranosido-4'β-L-arabinopyranosyl-(2d → 1e)-β-L-arabinopyranosyl-(2e → 1f)-β-D-arabinopyranoside (2) on the basis of spectral data analysis and chemical reactions.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul 143-701, South Korea
| | | | | | | |
Collapse
|
30
|
Ishii S. Pharmacological chaperone therapy for Fabry disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:18-30. [PMID: 22241068 PMCID: PMC3278969 DOI: 10.2183/pjab.88.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Fabry disease is an inherited lysosomal storage disorder caused by deficient α-galactosidase A activity. Many missense mutations in Fabry disease often cause misfolded gene products, which leads to their retention in the endoplasmic reticulum by the quality control system; they are then removed by endoplasmic reticulum-associated degradation. We discovered that a potent α-galactosidase A inhibitor, 1-deoxygalactonojirimycin, acts as a pharmacological chaperone to facilitate the proper folding of the mutant enzyme by binding to its active site, thereby improving its stability and trafficking to the lysosomes in mammalian cells. The oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human mutant α-galactosidase A resulted in significant increases in α-galactosidase A activity in various organs, with concomitant reductions in globotriaosylceramide, which contributes to the pathology of Fabry disease. Seventy-eight missense mutations were found to be responsive to 1-deoxygalactonojirimycin. These data indicate that many patients with Fabry disease could potentially benefit from pharmacological chaperone therapy.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Hasama-cho Idaigaoka 1-1, Yufu-shi, Oita 879-5593, Japan.
| |
Collapse
|
31
|
Jung WS, Chung IM, Ali M, Ahmad A. New steroidal glycoside ester and aliphatic acid from the fruits of Lycium chinense. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 14:301-307. [PMID: 22375866 DOI: 10.1080/10286020.2011.653346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two new compounds stigmast-5-en-3β-ol-3-O-β-D-(2'-n-triacontanoyl) glucopyranoside (1) and 19,21-dimethyl triacont-17,22,24,26,28-pentaene-1-oic acid (2), along with the three known compounds n-tetracosanyl octadec-9-enoate (3), β-sitosterol, and β-sitosterol-3-O-β-D-glucoside, have been isolated from the methanol extract of Lycium chinense fruits. The structures of these phytoconstituents have been established on the basis of spectral data analysis and chemical reactions.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Applied Life Science, Konkuk University, Seoul 143-701, South Korea
| | | | | | | |
Collapse
|
32
|
Amézqueta S, Galán E, Fuguet E, Carrascal M, Abián J, Torres JL. Determination of d-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI–Q-MS. Anal Bioanal Chem 2011; 402:1953-60. [DOI: 10.1007/s00216-011-5639-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 11/24/2022]
|
33
|
Chiral pool synthesis of calystegine A3 from 2-deoxyglucose via a Brown allylation. Carbohydr Res 2011; 346:2855-61. [DOI: 10.1016/j.carres.2011.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
|
34
|
Abstract
d-Fagomine is an iminosugar originally isolated from seeds of buckwheat (Fagopyrum sculentumMoench), present in the human diet and now available as a pure crystalline product. We testedd-fagomine for activities connected to a reduction in the risk of developing insulin resistance, becoming overweight and suffering from an excess of potentially pathogenic bacteria. The activities were: intestinal sucrase inhibitionin vitro(rat mucosa and everted intestine sleeves), modulation of postprandial blood glucose in rats, bacterial agglutination and bacterial adhesion to pig intestinal mucosa. When ingested together with sucrose or starch,d-fagomine lowered blood glucose in a dose-dependent manner without stimulating insulin secretion.d-Fagomine reduced the area under the curve (0–120 min) by 20 % (P < 0·01) and shifted the time to maximum blood glucose concentration (Tmax) by 15 min at doses of 1–2 mg/kg body weight when administered together with 1 g sucrose/kg body weight. Moreover,d-fagomine (0·14 mm) agglutinated 60 % of Enterobacteriaceae (Escherichia coli,Salmonella entericaserovar Typhimurium) populations (P < 0·01), while it did not show this effect onBifidobacteriumspp. orLactobacillusspp. At the same concentration,d-fagomine significantly (P < 0·001) inhibited the adhesion of Enterobacteriaceae (95–99 % cells in the supernatant) and promoted the adhesion ofLactobacillus acidophilus(56 % cells in the supernatant) to intestinal mucosa.d-Fagomine did not show any effect on bacterial cell viability. Based on all this evidence,d-fagomine may be used as a dietary ingredient or functional food component to reduce the health risks associated with an excessive intake of fast-digestible carbohydrates, or an excess of potentially pathogenic bacteria.
Collapse
|
35
|
Yao X, Peng Y, Xu LJ, Li L, Wu QL, Xiao PG. Phytochemical and Biological Studies of Lycium Medicinal Plants. Chem Biodivers 2011; 8:976-1010. [DOI: 10.1002/cbdv.201000018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Beniazza R, Desvergnes V, Mehta G, Blanchard N, Robert F, Landais Y. An Approach Toward Homocalystegines and Silyl-homocalystegines. Acid-Mediated Migrations of Acetates in Seven-Membered Ring Systems. J Org Chem 2011; 76:791-9. [DOI: 10.1021/jo101945h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Redouane Beniazza
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France
| | - Valérie Desvergnes
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France
| | - Goverdhan Mehta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Nicolas Blanchard
- Organic, Bioorganic and Macromolecular Chemistry Department, ENSCMu - CNRS - Université de Haute-Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | - Frédéric Robert
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France
| | - Yannick Landais
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la Libération, F-33405 Talence cedex, France
| |
Collapse
|
37
|
Kato A, Wang L, Ishii K, Seino J, Asano N, Suzuki T. Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1. J Biochem 2011; 149:415-22. [PMID: 21217149 DOI: 10.1093/jb/mvq153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic α-mannosidase (Man2C1) has been implicated in non-lysosomal catabolism of free oligosaccharides derived from N-linked glycans accumulated in the cytosol. Suppression of Man2C1 expression reportedly induces apoptosis in various cell lines, but its molecular mechanism remains unclear. Development of a specific inhibitor for Man2C1 is critical to understanding its biological significance. In this study, we identified a plant-derived alkaloid, calystegine B(3), as a potent specific inhibitor for Man2C1 activity. Biochemical enzyme assay revealed that calystegine B(3) was a highly specific inhibitor for Man2C1 among various α-mannosidases prepared from rat liver. Consistent with this in vitro result, an in vivo experiment also showed that treatment of mammalian-derived cultured cells with this compound resulted in drastic change in both structure and quantity of free oligosaccharides in the cytosol, whereas no apparent change was seen in cell-surface oligosaccharides. Calystegine B(3) could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Fushinobu S, Hidaka M, Hayashi AM, Wakagi T, Shoun H, Kitaoka M. Interactions between Glycoside Hydrolase Family 94 Cellobiose Phosphorylase and Glucosidase Inhibitors. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2010_022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
39
|
Rasmussen TS, Koldsø H, Nakagawa S, Kato A, Schiøtt B, Jensen HH. Synthesis of uronic-Noeurostegine – a potent bacterial β-glucuronidase inhibitor. Org Biomol Chem 2011; 9:7807-13. [DOI: 10.1039/c1ob06038d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Chiou WH, Lin GH, Liang CW. Facile Syntheses of Enantiopure 3-Hydroxypiperidine Derivatives and 3-Hydroxypipecolic Acids. J Org Chem 2010; 75:1748-51. [DOI: 10.1021/jo902324h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Hua Chiou
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Gau-Hong Lin
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chih-Wei Liang
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
41
|
Fu R, Du Y, Li ZY, Xu WX, Huang PQ. Asymmetric syntheses of 6-deoxyfagomin, d-deoxyrhamnojirimycin, and d-rhamnono-1,5-lactam. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.09.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
O’Reilly C, O’Brien C, Murphy PV. Synthesis of a constrained polyfunctional bicyclic iminocyclitol scaffold from l-sorbose via a tandem sequence including stereoselective intramolecular Huisgen cycloaddition. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Monrad RN, Pipper CB, Madsen R. Synthesis of Calystegine A3from Glucose by the Use of Ring-Closing Metathesis. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Molyneux RJ, Panter KE. Alkaloids toxic to livestock. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2009; 67:143-216. [PMID: 19827367 DOI: 10.1016/s1099-4831(09)06703-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Russell J Molyneux
- Western Regional Research Center, Agricultural Research Service, USDA, Albany, California, USA.
| | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- Stefan Biastoff
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | | |
Collapse
|
47
|
Mohanty S, Hollinshead J, Jones L, Jones PW, Thomas D, Watson AA, Watson DG, Gray AI, Molyneux RJ, Nash RJ. Annona muricata (Graviola): Toxic or Therapeutic. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The medicinal plant Annona muricata (Annonaceae), also known as Graviola or Soursop, is reported here to contain imino sugar alkaloids. This is the first report of imino sugars in the Annonaceae. Graviola has very broad medicinal claims and is also widely consumed as a food and in drinks in the tropics. The plant produces a wide range of secondary chemicals, some already known to be toxic, but the discovery here of the imino sugars as a new group of chemicals, including the neurotoxin swainsonine, raises questions about the safety of consumption of this plant.
Collapse
Affiliation(s)
- Sambeet Mohanty
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
| | - Jackie Hollinshead
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Laurence Jones
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Paul Wyn Jones
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - David Thomas
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Alison A. Watson
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
| | | | - Robert J. Nash
- Summit (Wales) Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
48
|
Sayago FJ, Fuentes J, Angulo M, Gasch C, Ángeles Pradera M. Stereocontrolled synthesis of iminocyclitols with an ether bridge. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Ciliberti E, Galvani R, Gramazio F, Haddas S, Leonelli F, Passacantilli P, Piancatelli G. Glycals in Organic Synthesis: A Systematic Strategy for the Preparation of Uncommon Piperidine 1,2-Dideoxy-L-azasugars and 2-Deoxy-1,5-anhydro-L-hexitols. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Werner L, Kniežo L, Dvořáková H. Synthesis of analogues of naturally occurring 3-O-(β-d-glucopyranosyl)-fagomine. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.11.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|