1
|
Bandorowicz-Pikula J, Buchet R, Cañada FJ, Clémancey M, Groves P, Jiménez-Barbero J, Lancelin JM, Marcillat O, Pikula S, Sekrecka-Belniak A, Strzelecka-Kiliszek A. Characterization of caged compounds binding to proteins by NMR spectroscopy. Biochem Biophys Res Commun 2010; 400:447-51. [PMID: 20804737 DOI: 10.1016/j.bbrc.2010.08.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Photolysable caged ligands are used to investigate protein function and activity. Here, we investigate the binding properties of caged nucleotides and their photo released products to well established but evolutionary and structurally unrelated nucleotide-binding proteins, rabbit muscle creatine kinase (RMCK) and human annexin A6 (hAnxA6), using saturation transfer difference NMR spectroscopy. We detect the binding of the caged nucleotides and discuss the general implications on interpreting data collected with photolysable caged ligands using different techniques. Strategies to avoid non-specific binding of caged compound to certain proteins are also suggested.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02093 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sen B, Chakraborty A, Datta R, Bhattacharyya D, Datta AK. Reversal of ADP-mediated aggregation of adenosine kinase by cyclophilin leads to its reactivation. Biochemistry 2006; 45:263-71. [PMID: 16388602 DOI: 10.1021/bi0518489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclophilins have been implicated in several important cellular functions. Our earlier results showed that reactivation of adenosine kinase (AdK) by CyP (LdCyP) from the parasitic protozoa Leishmania donovani is accompanied with disaggregation of the enzyme [Chakraborty, A., et al. (2002) J. Biol. Chem. 277, 47451-47460; Chakraborty, A., et al. (2004) Biochemistry 43, 11862-11872]. However, it remained to be known why the enzyme displayed progressive inhibition during the time-dependent reaction and what LdCyP does to prevent and/or reverse the inhibition. Herein, we demonstrate that one of its reaction products, ADP but not AMP, facilitates the formation of AdK aggregates, leading to its inactivation. Further studies revealed that LdCyP reactivates the enzyme by withdrawing the ADP inhibition. To investigate the molecular mechanism, the intrinsic tryptophan fluorescence and polarization of AdK were monitored in the presence of either LdCyP or ADP and in combination thereof. Whereas in the presence of LdCyP the tryptophan fluorescence emission maxima of AdK exhibited a red shift, ADP had a quenching effect. However, both the red shift and quenching became less noticeable when one (W234) of the two tryptophan residues of AdK was altered, indicating W234 fluorescence is relatively more sensitive to both LdCyP and ADP binding. Kinetic measurements indicated that LdCyP-facilitated reactivation of AdK is accompanied with a concomitant increase in the KD of ADP but not of AMP. Interestingly, addition of myokinase (MK) and pyruvate kinase (PK) along with phosphoenolpyruvate, either singly or in conjunction, to the AdK reaction mixture led to its reactivation. The effect of PK but not of MK could be substituted by CyP and vice versa. Taken together, the results suggest that LdCyP-induced reactivation occurs due to conformational reorientation of AdK in a manner that decreases the affinity of the enzyme for ADP with consequent relief from the ADP-mediated aggregation.
Collapse
Affiliation(s)
- Banibrata Sen
- Leishmania Group, Division of Infectious Diseases, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
3
|
Zhang L, Buchet R, Azzar G. Interactions of caged-ATP and photoreleased ATP with alkaline phosphatase. Biochem Biophys Res Commun 2005; 328:591-4. [PMID: 15694389 DOI: 10.1016/j.bbrc.2005.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 11/20/2022]
Abstract
Photolytic release of ATP from inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP (NPE-caged ATP) provides a means to reveal molecular interactions between nucleotide and enzyme by using infrared spectroscopy. Reaction-induced infrared difference spectra of bovine intestinal alkaline phosphatase (BIAP) and of NPE-caged ATP revealed small structural alterations on the peptide backbone affecting one or two amino-acid residues. After photorelease of ATP, the substrate could be hydrolyzed sequentially by the enzyme producing three Pi, adenosine, and the photoproduct nitrosoacetophenone. It was concluded that NPE-caged ATP could bind to BIAP prior to the photolytic cleavage of ATP and that Pi could interact with BIAP after photolysis of NPE-caged ATP and hydrolysis, yielding infrared spectra with distinct structure changes of BIAP. This suggests that the molecular mechanism of ATP hydrolysis by BIAP involved small structural adjustments of the peptide backbone in the vicinity of the active site during ATP hydrolysis which continued during Pi binding.
Collapse
Affiliation(s)
- Le Zhang
- Université Claude Bernard Lyon 1, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
4
|
Zhang L, Buchet R, Azzar G. Phosphate binding in the active site of alkaline phosphatase and the interactions of 2-nitrosoacetophenone with alkaline phosphatase-induced small structural changes. Biophys J 2005; 86:3873-81. [PMID: 15189884 PMCID: PMC1304289 DOI: 10.1529/biophysj.103.034116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To monitor structural changes during the binding of Pi to the active site of mammalian alkaline phosphatase in water medium, reaction-induced infrared spectroscopy was used. The interaction of Pi with alkaline phosphatase was triggered by a photorelease of ATP from the inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP. After photorelease, ATP was sequentially hydrolyzed by alkaline phosphatase giving rise to adenosine and three Pi. Although a phosphodiesterase activity was detected prior the photorelease of ATP, it was possible to monitor the structural effects induced by Pi binding to alkaline phosphatase. Interactions of Pi with alkaline phosphatase were evidenced by weak infrared changes around 1631 and at 1639 cm(-1), suggesting a small distortion of peptide carbonyl backbone. This result indicates that the motion required for the formation of the enzyme-phosphate complex is minimal on the part of alkaline phosphatase, consistent with alkaline phosphatase being an almost perfect enzyme. Photoproduct 2-nitrosoacetophenone may bind to alkaline phosphatase in a site other than the active site of bovine intestinal alkaline phosphatase and than the uncompetitive binding site of L-Phe in bovine intestinal alkaline phosphatase, affecting one-two amino acid residues.
Collapse
Affiliation(s)
- Le Zhang
- Universite Claude Bernard Lyon I, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
5
|
Brown AE, Grossman SH. The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:166-177. [PMID: 15540275 DOI: 10.1002/arch.20026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The kinetic mechanism and evaluation of several potential inhibitors of purified arginine kinase from the cockroach (Periplanta americana) were investigated. This monomeric phosphagen kinase is important in maintaining ATP levels during the rapid energy demands of muscle required for contraction and motility. Analysis reveals the following dissociation constants (mM) for the binary complex: E.Arg P-->E+Arg P, K=1.0; E.Arg-->E+Arg, K=0.45; E.MgATP-->E+MgATP, K=0.17; E.MgADP-->E+MgADP, K=0.12; and the ternary complex: Arg P.E.MgADP-->E.MgADP+Arg P, K=0.94; Arg.E.MgATP-->E.MgATP+Arg, K=0.49; MgATP.Enz.Arg-->E.Arg+MgATP, K=0.14; MgADP.E.Arg P-->E.Arg P+MgADP, K=0.09. For a particular substrate, the ratio of the dissociation constants for the binary to ternary complex is close to one, indicating little, if any, cooperativity in substrate binding for the rapid equilibrium, random addition mechanism. The time course of the arginine kinase reaction exhibits a pronounced curvature, which, as described for enzyme from other sources, is attributed to formation of an inhibitory catalytic dead-end complex, MgADP.E.Arg. The curvature is accentuated by the addition of monovalent anions, including borate, thiocyanate, and, most notably, nitrite and nitrate. This effect is attributed to stabilization of the dead-end complex through formation of a transition state analog. However, the substantial decrease in initial velocity (92%) caused by nitrate is due to an additional inhibitory effect, further characterized as non-competitive inhibition (Ki=8.0 mM) with the substrate L-arginine. On the other hand, borate inhibition of the initial velocity is only 30% with significant subsequent curvature, suggesting that this anion functions as an inhibitor mainly by formation of a transition state analog. However, some component of the borate inhibition appears to be mediated by an apparent partial competitive inhibition with L-arginine. D-arginine is not a substrate for arginine kinase from the cockroach, but is an effective competitive inhibitor with a Ki=0.31 mM. L-Canavanine is a weak substrate for arginine kinase (Km=6.7 mM) with a Vmax for the pure enzyme that is approximately one-third that of L-arginine. However, initial velocity experiments of substrate mixtures suggest that competition between L-canavanine and L-arginine may not be a simple summation effect and may involve a structural modification. Sensitivity of arginine kinase activity to D-arginine as well as nitrate and borate anions, coupled with the fact that L-arginine is an essential amino acid for the cockroach, suggest that arginine kinase could be a useful chemotherapeutic target for the control of cockroach proliferation.
Collapse
Affiliation(s)
- Ashli E Brown
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
6
|
Bandorowicz-Pikula J, Kirilenko A, van Deursen R, Golczak M, Kühnel M, Lancelin JM, Pikula S, Buchet R. A putative consensus sequence for the nucleotide-binding site of annexin A6. Biochemistry 2003; 42:9137-46. [PMID: 12885247 DOI: 10.1021/bi034359m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction-induced infrared difference spectroscopy (RIDS) has been used to investigate the nature of interactions of human annexin A6 (ANXA6) with nucleotides. RIDS results for ANXA6, obtained after the photorelease of GTP-gamma-S, ATP, or P(i) from the respective caged compounds, were identical, suggesting that the interactions between the nucleotide and ANXA6 were dominated by the phosphate groups. Phosphate-induced structural changes in ANXA6 were small and affected only seven or eight amino acid residues. The GTP fluorescent analogue, 2'(3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP), quenched tryptophan fluorescence of ANXA6 when bound to the protein. A binding stoichiometry of 1 mol of nucleotide/mol ANXA6 was established with a K(D) value of 2.8 microM for TNP-GTP. The bands observed on RIDS of ANXA6 halves (e.g., N-terminal half, ANXA6a, and C-terminal half, ANXA6b) were similar to those of the whole molecule. However, their amplitudes were smaller by a factor of 2 compared to those of whole ANXA6. TNP-GTP bound to both fragments of ANXA6 with a stoichiometry of 0.5 mol/mol. However, the binding affinities of ANXA6a and ANXA6b differed from that of ANXA6. Simulated molecular modeling revealed a nucleotide-binding site which was distributed in two distinct domains. Residues K296, Y297, K598, and K644 of ANXA6 were less than 3 A from the bound phosphate groups of either GTP or ATP. The presence of two identical sequences in ANXA6 with the F-X-X-K-Y-D/E-K-S-L motif, located in the middle of ANXA6, at residues 293-301 (within ANXA6a) and at 641-649 (within ANXA6b), suggested that the F-X-X-K-Y-D/E-K-S-L motif was the putative sequence in ANXA6 for nucleotide binding.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Du Z, Wang X. Effects of zinc on the activity and conformational changes of arginine kinase and its intermediate. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:359-66. [PMID: 12895293 DOI: 10.5483/bmbrep.2003.36.4.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of zinc on arginine kinase and its collapsed-state intermediate were studied. Both arginine kinase and the collapsed-state intermediate were inactivated in the presence of zinc, following a biphasic kinetic course. The corresponding apparent rate constants of inactivation at different zinc concentrations and conformational changes in the presence of 0.5 mM zinc were obtained. The conformational changes of arginine kinase and the collapsed-state intermediate were followed by fluorescence spectra and circular dichroism spectra. Comparison of the results for arginine kinase and the collapsed-state intermediate showed that the collapsed-state intermediate was more susceptible to zinc, which indicated that the collapsed-state intermediate was more flexible and unstable than arginine kinase. The special structure of arginine kinase might explain these diverse phenomena.
Collapse
Affiliation(s)
- Zhaodong Du
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
8
|
Butler BC, Hanchett RH, Rafailov H, MacDonald G. Investigating structural changes induced by nucleotide binding to RecA using difference FTIR. Biophys J 2002; 82:2198-210. [PMID: 11916875 PMCID: PMC1302013 DOI: 10.1016/s0006-3495(02)75566-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nucleotide binding to RecA results in either the high-DNA affinity form (Adenosine 5'-triphosphate (ATP)-bound) or the more inactive protein conformation associated with a lower affinity for DNA (Adenosine 5'-diphosphate (ADP)-bound). Many of the key structural differences between the RecA-ATP and RecA-ADP bound forms have yet to be elucidated. We have used caged-nucleotides and difference FTIR in efforts to obtain a comprehensive understanding of the molecular changes induced by nucleotide binding to RecA. The photochemical release of nucleotides (ADP and ATP) from biologically inactive precursors was used to initiate nucleotide binding to RecA. Here we present ATP hydrolysis assays and fluorescence studies suggesting that the caged nucleotides do not interact with RecA before photochemical release. Furthermore, we now compare difference spectra obtained in H2O and D2O as our first attempt at identifying the origin of the vibrations influenced by nucleotide binding. The infrared data suggest that unique alpha-helical, beta structures, and side chain rearrangements are associated with the high- and low-DNA affinity forms of RecA. Difference spectra obtained over time isolate contributions arising from perturbations in the nucleotide phosphates and have provided further information about the protein structural changes involved in nucleotide binding and the allosteric regulation of RecA.
Collapse
Affiliation(s)
- Blaine C Butler
- Department of Chemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | | | |
Collapse
|
9
|
Hagemann H, Marcillat O, Buchet R, Vial C. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies. Biochemistry 2000; 39:9251-6. [PMID: 10924118 DOI: 10.1021/bi000009d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two distinct methods were used to investigate the role of Trp residues during Mg-ADP binding to cytosolic creatine kinase (CK) from rabbit muscle: (1) Raman spectroscopy, which is very sensitive to the environment of aromatic side-chain residues, and (2) reaction-induced infrared difference spectroscopy (RIDS) and photolabile substrate (ADP[Et(PhNO(2))]), combined with site-directed mutagenesis on the four Trp residues of CK. Our Raman results indicated that the environment of Trp and of Tyr were not affected during Mg-ADP binding to CK. Analysis of RIDS of wild-type CK, inactive W227Y, and active W210,217,272Y mutants suggested that Trp227 was not involved in the stacking interactions. Results are consistent with Trp227 being essential to prevent water molecules from entering in the active site [as suggested by Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994) Protein Sci. 3, 1058-1068] and that another Trp could in addition help to steer the nucleotide in the binding site, although it is not essential for the activity of CK. Raman and infrared spectra indicated that Mg-ADP binding does not involve large secondary structure changes. Only 3-4 residues absorbing in the amide I region are directly implicated in the Mg-ADP binding (corresponding to secondary structure changes less than 1%), suggesting that movement of protein domains due to Mg-nucleotide binding do not promote large secondary structure changes.
Collapse
Affiliation(s)
- H Hagemann
- Département de Chimie Physique, Université de Genève, Sciences II, Genève 4, Switzerland
| | | | | | | |
Collapse
|
10
|
Abstract
Protein conformational changes triggered by molecule binding are increasingly investigated by infrared spectroscopy often using caged compounds. Several examples of molecule-protein recognition studies are given, which focus on nucleotide binding to proteins. The investigation of enzyme mechanisms is illustrated in detail using the Ca(2+)-ATPase of the sarcoplasmic reticulum membrane as an example. It is shown that infrared spectroscopy provides valuable information on general aspects of enzyme function as well as on molecular details of molecule-protein interactions and the mechanism of catalysis.
Collapse
Affiliation(s)
- A Barth
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Haus 74, D-60590, Frankfurt am Main, Germany.
| | | |
Collapse
|
11
|
von Germar F, Barth A, Mäntele W. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. Biophys J 2000; 78:1531-40. [PMID: 10692337 PMCID: PMC1300750 DOI: 10.1016/s0006-3495(00)76705-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the vibrational spectrum of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding were recorded in H(2)O and (2)H(2)O at -7 degrees C and pH 7.0. The reaction cycle was triggered by the photochemical release of nucleotides (ATP, ADP, and AMP-PNP) from a biologically inactive precursor (caged ATP, P(3)-1-(2-nitrophenyl) adenosine 5'-triphosphate, and related caged compounds). Infrared absorbance changes due to ATP release and two steps of the Ca(2+)-ATPase reaction cycle, ATP binding and phosphorylation, were followed in real time. Under the conditions used in our experiments, the rate of ATP binding was limited by the rate of ATP release (k(app) congruent with 3 s(-1) in H(2)O and k(app) congruent with 7 s(-1) in (2)H(2)O). Bands in the amide I and II regions of the infrared spectrum show that the conformation of the Ca(2+)-ATPase changes upon nucleotide binding. The observation of bands in the amide I region can be assigned to perturbations of alpha-helical and beta-sheet structures. According to similar band profiles in the nucleotide binding spectra, ATP, AMP-PNP, and ADP induce similar conformational changes. However, subtle differences between ATP and AMP-PNP are observed; these are most likely due to the protonation state of the gamma-phosphate group. Differences between the ATP and ADP binding spectra indicate the significance of the gamma-phosphate group in the interactions between the Ca(2+)-ATPase and the nucleotide. Nucleotide binding affects Asp or Glu residues, and bands characteristic of their protonated side chains are observed at 1716 cm(-1) (H(2)O) and 1706 cm(-1) ((2)H(2)O) and seem to depend on the charge of the phosphate groups. Bands at 1516 cm(-1) (H(2)O) and 1514 cm(-1) ((2)H(2)O) are tentatively assigned to a protonated Tyr residue affected by nucleotide binding. Possible changes in Arg, Trp, and Lys absorption and in the nucleoside are discussed. The spectra are compared with those of nucleotide binding to arginine kinase, creatine kinase, and H-ras P21.
Collapse
Affiliation(s)
- F von Germar
- Institut für Biophysik, Johann Wolfgang Goethe Universität Frankfurt, D-60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Bandorowicz-Pikuła J, Wrzosek A, Danieluk M, Pikula S, Buchet R. ATP-Binding site of annexin VI characterized by photochemical release of nucleotide and infrared difference spectroscopy. Biochem Biophys Res Commun 1999; 263:775-9. [PMID: 10512756 DOI: 10.1006/bbrc.1999.1449] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural changes induced by nucleotide binding to porcine liver annexin VI (AnxVI) were probed by reaction-induced difference spectroscopy (RIDS). Photorelease of the nucleotide from ATP[Et(PhNO2)] produced RIDS of AnxVI characterized by reproducible changes in the amide I region. The magnitude of the infrared change was comparable to RIDS of other ATP-binding proteins, such as Ca(2+)-ATPase and creatine and arginine kinases. Analysis of RIDS revealed the existence of ATP-binding site(s) (K(d) < 1 microM) within the AnxVI molecule, comprising five to six amino acid residues located in the C-terminal portion of the protein molecule. The binding stoichiometry of ATP:AnxVI was determined as 1:1 (mol/mol). ATP, in the presence of Ca2+, induced changes in protein secondary structure reflected by a 5% decrease in alpha-helix content of the protein in favor of unordered structure. Such changes may influence the affinity of AnxVI for Ca2+ and modulate its interaction with membranes.
Collapse
Affiliation(s)
- J Bandorowicz-Pikuła
- Department of Cellular Biochemistry, Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | | | | | | | | |
Collapse
|
13
|
Szewczyk A, Pikuła S. Adenosine 5'-triphosphate: an intracellular metabolic messenger. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:333-53. [PMID: 9711292 DOI: 10.1016/s0005-2728(98)00094-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Szewczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
14
|
Affiliation(s)
- Marianne L. McKelvy
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Thomas R. Britt
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Bradley L. Davis
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - J. Kevin Gillie
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - Felicia B. Graves
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| | - L. Alice Lentz
- Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720
| |
Collapse
|
15
|
Raimbault C, Clottes E, Leydier C, Vial C, Buchet R. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1197-208. [PMID: 9288948 DOI: 10.1111/j.1432-1033.1997.01197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conformational changes induced by nucleotide binding to native creatine kinase (CK) from rabbit muscle and to proteinase-K-digested (nicked) CK, were investigated by infrared spectroscopy. Photochemical release of ATP from ATP[Et(PhNO2)] in the presence of creatine and native CK produced reaction-induced difference infrared spectra (RIDS) of CK related to structural changes of the enzyme that paralleled the reversible phosphoryl transfer from ATP to creatine. Similarly the photochemical release of ADP from ADP[Et(PhNO2)] in the presence of phosphocreatine and native CK allowed us to follow the backward reaction and its corresponding RIDS. Infrared spectra of native CK indicated that carboxylate groups of Asp or Glu, and some carbonyl groups of the peptide backbone are involved in the enzymatic reaction. Native and proteinase nicked CK have similar Stokes' radii, tryptophan fluorescence, fluorescence fraction accessible to iodide, and far-ultraviolet CD spectra, indicating that native and modified enzymes have the same quaternary structures. However, infrared data showed that the binding site of the gamma-phosphate group of the nucleotide was affected in nicked CK compared with that of the native CK. Furthermore, the infrared absorptions associated with ionized carboxylate groups of Asp or Glu amino acid residues were different in nicked CK and in native CK.
Collapse
Affiliation(s)
- C Raimbault
- Laboratoire de Physico-Chimie Biologique, Université Claude Bernard-Lyon I, UFR de Chimie-Biochimie, Villeurbanne, France
| | | | | | | | | |
Collapse
|