1
|
Mannose-Binding Lectin: Biologic Characteristics and Role in the Susceptibility to Infections and Ischemia-Reperfusion Related Injury in Critically Ill Neonates. J Immunol Res 2017; 2017:7045630. [PMID: 28246614 PMCID: PMC5299167 DOI: 10.1155/2017/7045630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
The mannose-binding lectin (MBL) is a member of the collectin family, belonging to the innate immunity system. Genetic, biologic, and clinical properties of MBL have been widely investigated throughout the last decades, although some interesting aspects of its potential clinical relevance are still poorly understood. Low circulating concentrations of MBL have been associated with increased risk of infection and poor neurologic outcome in neonates. On the other hand, an excessive and uncontrolled inflammatory response by the neonatal intestine after the exposure to luminal bacteria, leading to an increased production of MBL, may be involved in the onset of necrotizing enterocolitis. The purpose of the present review is to summarize the current knowledge about genetic and biologic characteristics of MBL and its role in the susceptibility to infections and to ischemia-reperfusion related tissue injuries to better explore its clinical relevance during the perinatal period and the possible future therapeutic applications.
Collapse
|
2
|
Farrar CA, Asgari E, Schwaeble WJ, Sacks SH. Which pathways trigger the role of complement in ischaemia/reperfusion injury? Front Immunol 2012; 3:341. [PMID: 23181062 PMCID: PMC3500775 DOI: 10.3389/fimmu.2012.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/25/2012] [Indexed: 01/04/2023] Open
Abstract
Investigations into the role of complement in ischemia/reperfusion (I/R) injury have identified common effector mechanisms that depend on the production of C5a and C5b-9 through the cleavage of C3. These studies have also defined an important role for C3 synthesized within ischemic kidney. Less clear however is the mechanism of complement activation that leads to the cleavage of C3 in ischemic tissues and to what extent the potential trigger mechanisms are organ dependent - an important question which informs the development of therapies that are more selective in their ability to limit the injury, yet preserve the other functions of complement where possible. Here we consider recent evidence for each of the three major pathways of complement activation (classical, lectin, and alternative) as mediators of I/R injury, and in particular highlight the role of lectin molecules that increasingly seem to underpin the injury in different organ models and in addition reveal unusual routes of complement activation that contribute to organ damage.
Collapse
Affiliation(s)
- Conrad A. Farrar
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Elham Asgari
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| | - Wilhelm J. Schwaeble
- Department of Infection, Immunity, and Inflammation, Leicester UniversityLeicester, UK
| | - Steven H. Sacks
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at Guy’s, King’s College and St Thomas’ HospitalsLondon, UK
| |
Collapse
|
3
|
|
4
|
Núñez EGF, Teodoro R, Wiecek DP, da Silva NG, Martinelli JR, de Oliveira Filho RS. Size and specificity of radiopharmaceuticals for sentinel lymph node detection. Acta Radiol 2011; 52:774-8. [PMID: 21558148 DOI: 10.1258/ar.2011.100506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Biological performance of radiotracers for sentinel node detection analyzed in the light of molecular design and dimension is not widely available. PURPOSE To evaluate the effect of dextran molecular size and the presence of tissue-binding units (mannose) within the model of (99m)Tc-carbonyl conjugate for sentinel lymph node detection. MATERIAL AND METHODS Four dextran conjugates with and without mannose in the chemical backbone were included. All polymers were radiolabeled using the precursor [(99m)Tc(OH(2))(3)(CO)(3)](+). Radiolabeling conditions targeted the best radiochemical purity and specific activity for each radiopharmaceutical, and partition coefficients were also defined. Lymphoscintigraphy and ex-vivo biodistribution in popliteal lymph node, liver and kidneys were performed in Wistar rats. The effects of molecular weight and mannose presence were assessed by a two-level factorial design. RESULTS Radiochemical purity was indirectly related to molecular weight and presence of mannose in the polymer structure. All products were able to detect popliteal lymph node, however, uptake was strongly influenced by use of mannose (4-fold higher). Excretion was similarly modulated by differences in molecular weight. Mannose-enhanced lymph node uptake and higher molecule size in the range under study benefitted lymphoscintigraphic performance. CONCLUSION Screening of radiopharmaceuticals for lymphoscintigraphy might improve with attention to the mentioned physico-chemical features of the molecule.
Collapse
Affiliation(s)
| | | | | | - Natanael Gomes da Silva
- Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo
| | - Jose Roberto Martinelli
- Center of Materials Science and Technology, Institute of Energetic and Nuclear Research, Sao Paulo
| | | |
Collapse
|
5
|
Hirano M, Ma BY, Kawasaki N, Oka S, Kawasaki T. Role of interaction of mannan-binding protein with meprins at the initial step of complement activation in ischemia/reperfusion injury to mouse kidney. Glycobiology 2011; 22:84-95. [PMID: 21835783 DOI: 10.1093/glycob/cwr107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney. However, the initial step of the complement activation has not been studied extensively. We previously identified both meprins α and β, highly glycosylated zinc metalloproteases, localized on kidney proximal tubules as endogenous MBP ligands. In the present study, we demonstrated that serum-type MBP (S-MBP) and C3b were co-localized with meprins on both the cortex and the medulla in the renal I/R-operated mouse kidney. S-MBP was indicated to interact with meprins in vivo in the I/R-operated mouse kidney and was shown to initiate the complement activation through the interaction with meprins in vitro. Taken together, the present study strongly suggested that the binding of S-MBP to meprins triggers the complement activation through the lectin pathway and may cause the acute renal failure due to I/R on kidney transplantation and hemorrhagic shock.
Collapse
Affiliation(s)
- Makoto Hirano
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
6
|
Sidorova NN, Kurchashova SY, Yarahmedov TY, Ziganshin RH, Kuimov AN. Poly(ADP-ribosyl)ation of mannose-binding lectin out of human kidney cells. Mol Cell Biochem 2011; 352:231-8. [PMID: 21380727 DOI: 10.1007/s11010-011-0758-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/17/2011] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin was identified as a substrate of tankyrase 2, an enzyme that catalyzes poly(ADP-ribosyl)ation. The endogenous tankyrase 2 was isolated out of cytoplasm of human embryonic kidney cells. It was bound to a soluble complex of at least two other proteins; they were identified using specific antibodies and other approaches as keratin 1 and mannose-binding lectin. Using immunoblot analysis and radioactive labeling, we detected tankyrase-2-dependent poly(ADP-ribosyl)ation of mannose-binding lectin. In the presence of NAD(+), the complex of keratin 1 and lectin was dissociated, what was recorded during elution of its separate components out of affinity columns and by decrease of their apparent molecular masses during gel-filtration. Tankyrase 2 also inhibited the carbohydrate-binding function of the lectin. The latter effect was observed using mannose-binding lectin out of human serum, which is free from keratin 1. As a result of tankyrase-2 activity, the lectin lost its affinity to mannan-agarose. The discovery of this new biochemical mechanism justifies further analysis of its physiological and medical significance.
Collapse
Affiliation(s)
- Natalie N Sidorova
- A N Belozersky Institute, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Bulla R, De Seta F, Radillo O, Agostinis C, Durigutto P, Pellis V, De Santo D, Crovella S, Tedesco F. Mannose-binding lectin is produced by vaginal epithelial cells and its level in the vaginal fluid is influenced by progesterone. Mol Immunol 2010; 48:281-6. [PMID: 20728220 DOI: 10.1016/j.molimm.2010.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/20/2010] [Accepted: 07/25/2010] [Indexed: 11/30/2022]
Abstract
Mannose-binding lectin (MBL) is a recognition molecule of the complement (C) system and binds to carbohydrate ligands present on a wide range of pathogenic bacteria, viruses, fungi, and parasites. MBL has been detected in the cervico-vaginal cavity where it can provide a first-line defence against infectious agents colonizing the lower tract of the reproductive system. Analysis of the cervico-vaginal lavage (CVL) obtained from 11 normal cycling women at different phases of the menstrual cycle revealed increased levels of MBL in the secretive phase. Part of this MBL derives from the circulation as indicated by the presence of transferrin in CVL tested as a marker of vascular and tissue permeability. The local synthesis of MBL is suggested by the finding that its level is substantially higher than that of transferrin in the secretive phase. The contribution of endometrium is negligible since the MBL level did not change before and after hysterectomy. RT-PCR and in situ RT-PCR analysis showed that the vaginal tissue, and in particular the basal layer of the epithelium, is a source of MBL which binds to the basal membrane and to cells of the outer layers of the epithelium. In conclusion, we have shown that MBL detected in CVL derives both from plasma as result of transudation and from local synthesis and its level is progesterone dependent increasing in the secretive phase of the menstrual cycle.
Collapse
Affiliation(s)
- R Bulla
- Department of Life Sciences, University of Trieste, via Valerio 28, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Konishi M, Nishitani C, Mitsuzawa H, Shimizu T, Sano H, Harimaya A, Fujii N, Himi T, Kuroki Y. Alloiococcus otitidis is a ligand for collectins and Toll-like receptor 2, and its phagocytosis is enhanced by collectins. Eur J Immunol 2006; 36:1527-36. [PMID: 16708401 DOI: 10.1002/eji.200535542] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alloiococcus otitidis has been found to be associated with otitis media with effusion. In this study we investigated whether TLR2 and collectins, surfactant protein A (SP-A) and mannose-binding lectin (MBL), interacted with A. otitidis. Both SP-A and MBL bound to A. otitidis in a Ca(2+)-dependent manner. A. otitidis induced IL-8 secretion from U937 cells and NF-kappaB activation in TLR2-transfected HEK293 cells. However, the cells transfected with the mutant TLR2(P681H) did not respond to A. otitidis. In addition, A. otitidis co-sedimented a recombinant soluble form of the extracellular TLR2 domain, indicating direct binding of the bacterium to TLR2. SP-A and MBL augmented the phagocytosis of A. otitidis by J774A.1 cells. The collectin-stimulated phagocytosis of A. otitidis was significantly attenuated when fucoidan and polyinosinic acid were co-incubated. Immunoblotting analysis revealed that MBL was present in the middle ear effusion from patients with otitis media. These results demonstrate that A. otitidis is a ligand for the collectins and TLR2, and that the collectins enhance the phagocytosis of A. otitidis by macrophages, suggesting important roles of the collectins and TLR2 in the innate immunity of the middle ear against A. otitidis infection.
Collapse
Affiliation(s)
- Masanori Konishi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bak-Romaniszyn L, Cedzyński M, Szemraj J, St Swierzko A, Zeman K, Kałuzyński A, Płaneta-Małecka I. Mannan-binding lectin in children with chronic gastritis. Scand J Immunol 2006; 63:131-5. [PMID: 16476012 DOI: 10.1111/j.1365-3083.2005.01719.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The involvement of mannan-binding lectin (MBL) insufficiency in the pathogenesis of chronic gastritis (CG) in children was investigated. Blood samples were collected from 78 paediatric patients suffering from CG associated with Helicobacter pylori infection (group Hp(+)) and from 41 with the disease not associated with such an infection (group Hp(-)). Control group consisted of 77 children. The frequency of mbl-2 gene mutations and serum protein concentrations did not differ significantly in both groups as compared with controls. An expression of mbl-2 gene in gastric biopsies of CG patients was demonstrated. It was found to be stronger in H. pylori-infected children. The results presented in this paper suggest that MBL deficit/dysfunction probably does not contribute to an increased risk of CG (both associated and not associated with H. pylori infection) in children. However, MBL opsonic effect and/or the lectin pathway of complement activation may be taken into account as possible host defence mechanisms in gastric patients.
Collapse
Affiliation(s)
- L Bak-Romaniszyn
- Department of Paediatrics, Preventive Cardiology and Clinical Immunology, Medical University of Łódź, Łódź, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The innate host defence molecule mannose-binding lectin (MBL) has attracted great interest as a potential candidate for passive immunotherapy to prevent infection. MBL is a multimeric lectin that recognizes a wide array of pathogens independently of specific antibody, and initiates the lectin pathway of complement activation. The basic structural unit is a triple helix of MBL peptides, which aggregate into complement-fixing higher-order structures (tetramers, pentamers and hexamers). The gene encoding MBL, MBL2, contains several common polymorphisms that influence transcription and assembly of the molecule into multimers. MBL2 coding alleles associated with low blood levels are present in up to 40% of Caucasoids, with up to 8% having genotypes associated with profound reduction in circulating MBL levels. Low-producing MBL2 variants and low MBL levels are associated with increased susceptibility to and severity of a variety of infective illnesses, particularly when immunity is already compromised--for example, in infants and young children, patients with cystic fibrosis, and after chemotherapy and transplantation. These observations suggest that administration of recombinant or purified MBL may be of benefit in clinical settings where MBL deficiency is associated with a high burden of infection. This review provides a background to MBL biology and disease associations, and identifies the exciting therapeutic possibilities of MBL replacement.
Collapse
Affiliation(s)
- D L Worthley
- Department of Gastroenterology, Flinders Medical Centre, South Australia, Australia
| | | | | |
Collapse
|
11
|
Downing I, Koch C, Kilpatrick DC. Immature dendritic cells possess a sugar-sensitive receptor for human mannan-binding lectin. Immunology 2003; 109:360-4. [PMID: 12807481 PMCID: PMC1782979 DOI: 10.1046/j.1365-2567.2003.01675.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Revised: 04/02/2003] [Accepted: 04/24/2003] [Indexed: 11/20/2022] Open
Abstract
Mannan-binding lectin (MBL) is a collectin synthesized by the liver and secreted into the bloodstream. It has a receptor for microbial structures in its C-type lectin domain and a separate receptor(s) located within its collagen-like region for autologous phagocytic cells. Here we demonstrate that human peripheral blood adherent cells (monocytes) and monocyte-derived dendritic cells are a source of MBL, and that a novel calcium-dependent and sugar-specific MBL receptor is up-regulated in immature (CD1a-positive) dendritic cells. These findings suggest a previously unsuspected autologous function for MBL, perhaps a regulatory role within the immune system.
Collapse
Affiliation(s)
- Ian Downing
- Cell Therapy Group, S.N.B.T.S. National Science Laboratory, Edinburgh, UK
| | | | | |
Collapse
|
12
|
Zhang H, Patel SA, Kandil E, Mueller CM, Lin YY, Zenilman ME. Pancreatic elastase is proven to be a mannose-binding protein--implications for the systemic response to pancreatitis. Surgery 2003; 133:678-88. [PMID: 12796737 DOI: 10.1067/msy.2003.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mannose-binding proteins (MBPs) have been isolated from serum, liver, lung, and kidney and are believed to play an important role in first-line host defense during acute phase inflammatory response. Because of the inflammatory nature of pancreatitis, we postulate that the pancreas produces endogenous MBP. METHODS Pancreatic juice, from both human and rat, was collected by pancreatic duct cannulation and subjected to mannose-Sepharose affinity chromatography to isolate pancreatic MBP (pMBP). Protein eluates from the mannose-Sepharose column were analyzed using reverse-phase high-performance liquid chromatography, sodium dodeclysulfate-polyacrylamide gel electrophoresis, and, subsequently, by N-terminal protein sequencing. Western blot analysis was used to identify the pMBP, and reverse transcriptionase-polymerase chain reaction was used to examine its mRNA expression. Complement lysis was measured using red blood cells coated with yeast mannan. Tumor necrosis factor (TNF)-alpha mRNA expression in macrophages was measured using RNase protection assay. RESULTS A 30-kd MBP was isolated from both human and rat pancreatic juice and a rat acinar cell line. Genetic analysis (using RT-PCR with known MBP primers) and protein analysis (using Western blot with a known anti-MBP antibody) suggest that the pMBP is different from any previously described MBP. Protein sequencing analysis of pMBP generated an N-terminus sequence of 12 residues, indicating that pMBP is human pancreatic elastase III. Western blot analysis using an anti-elastase antibody confirms that the pMBP is a pancreatic elastase. Exposure of macrophages to pancreatic elastase resulted in an increased mRNA level of TNF-alpha, a potent proinflammatory cytokine in acute-phase response. Addition of mannan to pancreatic elastase further upregulated the TNF-alpha response. CONCLUSION We isolated an MBP from the pancreas and identified it as pancreatic elastase. We characterized it as having properties different from that of any previously known MBP. We showed that pMBP or pancreatic elastase is involved in the activation of macrophages, and that this activation is potentiated by mannan. We postulate that the mannose-binding properties of pancreatic elastase identify this enzyme as a candidate catalyst for both pancreatic and systemic inflammation.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Surgery, State University of New York Downstate Medical Center, Brooklyn 11203, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wagner S, Lynch NJ, Walter W, Schwaeble WJ, Loos M. Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1462-5. [PMID: 12538708 DOI: 10.4049/jimmunol.170.3.1462] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannose-binding lectin (MBL), a member of the collectin family, binds to carbohydrate structures on the surfaces of micro-organisms and may serve as a recognition molecule of the lectin pathway of complement activation. In rodents two forms, MBL-A and MBL-C, were described and shown to be products of two related, but uncoupled, genes. The liver is the main source of MBL biosynthesis. For rat MBL-A, expression has also been described in the kidney. Here we report that the two forms of murine MBL are differentially expressed in a number of nonhepatic tissues. Real-time RT-PCR revealed that the liver is the major site of expression for both MBL genes. Lower copy numbers were found in kidney, brain, spleen, and muscle. In testis, only the MBL-A gene is expressed, whereas MBL-C is exclusively expressed in small intestine. Using in situ hybridization and immunohistochemistry, we demonstrate that both MBLs are synthesized by hepatocytes and show MBL expression in cells of the monocyte/macrophage lineage. In the kidney MBL-A, but not MBL-C, was found to be synthesized. Vice versa, only MBL-C biosynthesis was detected in endothelial cells of the small intestine. The latter finding may support the view that MBL-C, as part of the innate immune system, may be a counterpart of secretory IgA of the acquired immune system in preventing, for example, microbial invasion and colonization. Our findings demonstrate that MBL-A and MBL-C are differentially expressed, implying distinct biological roles for both recognition molecules of the murine lectin pathway of complement.
Collapse
Affiliation(s)
- Swen Wagner
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
14
|
Uemura K, Saka M, Nakagawa T, Kawasaki N, Thiel S, Jensenius JC, Kawasaki T. L-MBP is expressed in epithelial cells of mouse small intestine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6945-50. [PMID: 12471128 DOI: 10.4049/jimmunol.169.12.6945] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mannan-binding proteins (L-MBP and S-MBP, also denoted MBL-C and MBL-A), mainly produced in liver and existing in liver and serum, play important roles in the innate immunity against a variety of pathogens. Total RNA from mouse tissues were screened for MBP mRNA by RT-PCR. In addition to liver, S-MBP mRNA was detected in lung, kidney, and testis, and L-MBP mRNA was detected in kidney, thymus, and small intestine. Quantitative RT-PCR revealed that the small intestine is a predominant site of extrahepatic expression of L-MBP. Western blotting with polyclonal Abs against rat L-MBP demonstrated this protein in Triton X-100 extracts of the small intestine obtained from mice that had undergone systemic perfusion. Immunohistochemical staining with an mAb against mouse L-MBP and in situ hybridization revealed that L-MBP is selectively expressed in some villous epithelial cells of the small intestine. These findings suggest that L-MBP plays a role in mucosal innate immunity.
Collapse
Affiliation(s)
- Kazuhide Uemura
- Department of Biological Chemistry, Core Research for Science and Technology Project, Japan Science and Technology Corp., Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The collectins are oligomeric molecules composed of C-type lectin domains attached to collagen regions via alpha-coiled neck regions. Five members of the collectins have been characterized. Mannan-binding lectin (MBL), conglutinin and collectin-43 (CL-43) are serum proteins produced by the liver. Lung surfactant protein A (SP-A) and lung surfactant protein D (SP-D) are mainly found in the lung, where they are synthesized by alveolar type II cells and secreted to the alveolar surface. The collectins are believed to play an important role in innate immunity. They bind oligosaccharides on the surface of a variety of microbial pathogens. After binding of the collectins to the microbial surface effector mechanisms such as agglutination, neutralizing or opsonization of the microorganisms for phagocytosis are initiated. SP-A and SP-D stimulate chemotaxis of phagocytes and once bound to the phagocytes, the production of oxygen radicals can be induced. In the case of MBL the opsonization can be further enhanced by complement activation via the MBLectin pathway while conglutinin interacts with the complement system by binding to the complement degradation product iC3b. A number of receptors and binding molecules interacting with the collectins are found on the membrane or in association with the membrane of various cells responsible for phagocytosis and clearance of microorganisms. This paper focus on the structural aspects of the collectins and the receptors for collectins.
Collapse
Affiliation(s)
- S Hansen
- Dept. of Medical Microbiology, Odense University, Denmark
| | | |
Collapse
|
16
|
Vorup-Jensen T, Jensenius JC, Thiel S. MASP-2, the C3 convertase generating protease of the MBLectin complement activating pathway. Immunobiology 1998; 199:348-57. [PMID: 9777418 DOI: 10.1016/s0171-2985(98)80039-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mannan-binding lectin (MBL) activates the complement system through cleavage of C4 and C2. Until recently it was thought that only one serine protease in complex with MBL (MBL-associated serine protease, MASP) mediates complement activation, but with the finding of a second MBL-associated serine protease, MASP-2, the activation process appears more elaborate, possibly resembling that of the C1 complex. The two MASPs share the domain organisation of C1r and C1s and it may be speculated that interaction between the two MASPs is required for complement activation in the same manner as with the C1 proteases. We have demonstrated that MASP-2 is a C4 cleaving component of the MBL/MASP complex. By analogy, one may thus speculate that, upon binding of MBL to carbohydrate, MASP-1 autoactivates and then activates MASP-2, but there is as yet no evidence for this. The components of C1 are present in serum in approximately equimolar amounts, whereas MASP-1 is in large excess over MBL. Pairwise comparison of the four proteases shows the primary structures to be approximately 40% identical. Phylogenetic analysis indicates that MASP-2 is closer to C1r and C1s than is MASP-1, but no particular association between MASP-2 and the C4 cleaving enzyme, C1s, can be deduced from sequence comparison.
Collapse
Affiliation(s)
- T Vorup-Jensen
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | |
Collapse
|