1
|
Dong F, Lojko P, Bazzone A, Bernhard F, Borodina I. Transporter function characterization via continuous-exchange cell-free synthesis and solid supported membrane-based electrophysiology. Bioelectrochemistry 2024; 159:108732. [PMID: 38810322 DOI: 10.1016/j.bioelechem.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Functional characterization of transporters is impeded by the high cost and technical challenges of current transporter assays. Thus, in this work, we developed a new characterization workflow that combines cell-free protein synthesis (CFPS) and solid supported membrane-based electrophysiology (SSME). For this, membrane protein synthesis was accomplished in a continuous exchange cell-free system (CECF) in the presence of nanodiscs. The resulting transporters expressed in nanodiscs were incorporated into proteoliposomes and assayed in the presence of different substrates using the surface electrogenic event reader. As a proof of concept, we validated this workflow to express and characterize five diverse transporters: the drug/H+-coupled antiporters EmrE and SugE, the lactose permease LacY, the Na+/H+ antiporter NhaA from Escherichia coli, and the mitochondrial carrier AAC2 from Saccharomyces cerevisiae. For all transporters kinetic parameters, such as KM, IMAX, and pH dependency, were evaluated. This robust and expedite workflow (e.g., can be executed within only five workdays) offers a convenient direct functional assessment of transporter protein activity and has the ability to facilitate applications of transporters in medical and biotechnological research.
Collapse
Affiliation(s)
- Fang Dong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Pawel Lojko
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | | | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
2
|
Wang Z, Zhou H, Cheng Y, An L, Yan D, Chao H, Wu J. Novel small multidrug resistance protein Tmt endows the Escherichia coli with triphenylmethane dyes bioremediation capability. Biotechnol Lett 2024; 46:627-639. [PMID: 38662307 DOI: 10.1007/s10529-024-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/26/2024]
Abstract
Dye contamination in printing and dyeing wastewater has long been a major concern due to its serious impact on both the environment and human health. In the quest for bioremediation of these hazardous dyes, biological resources such as biodegradation bacteria and enzymes have been investigated in severely polluted environments. In this context, the triphenylmethane transporter gene (tmt) was identified in six distinct clones from a metagenomic library of the printing and dyeing wastewater treatment system. Escherichia coli expressing tmt revealed 98.1% decolorization efficiency of triphenylmethane dye malachite green within 24 h under shaking culture condition. The tolerance to malachite green was improved over eightfold in the Tmt strain compared of the none-Tmt expressed strain. Similarly, the tolerance of Tmt strain to other triphenylmethane dyes like crystal violet and brilliant green, was improved by at least fourfold. Site-directed mutations, including A75G, A75S and V100G, were found to reinforce the tolerance of malachite green, and double mutations of these even further improve the tolerance. Therefore, the tmt has been demonstrated to be a specific efflux pump for triphenylmethane dyes, particularly the malachite green. By actively pumping out toxic triphenylmethane dyes, it significantly extends the cells tolerance in a triphenylmethane dye-rich environment, which may provide a promising strategy for bioremediation of triphenylmethane dye pollutants in the environments.
Collapse
Affiliation(s)
- Zhou Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Haoqiang Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yilan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Lijin An
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Dazhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Hongjun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Jing Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
3
|
Moser C, Muhle-Goll C. Cell-free protein production of a gamma secretase homolog. Protein Expr Purif 2024; 215:106407. [PMID: 38000778 DOI: 10.1016/j.pep.2023.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Cleavage of the transmembrane domain (TMD) of amyloid-β precursor protein (APP) by γ-secretase, an intramembrane aspartyl protease, generates Aβ peptides of various lengths that form plaques in the brains of Alzheimer's disease patients. Although the debate has not been finally resolved whether these plaques trigger the onset of Alzheimer's or are side products, disease-related mutations suggest their implication in the etiology of the dementia. These occur both in presenilin, the catalytic subunit of γ-secretase, and in the TMD of APP. Despite two seminal cryo-electron microscopy structures that show the complex of γ-secretase with its substrates APP and Notch, the mechanism of γ-secretase is not yet fully understood. Especially on which basis it selects its substrates is still an enigma. The presenilin homolog PSH from the archaeon Methanoculleus marisnigri JR1 (MCMJR1) is catalytically active without accessory proteins in contrast to γ-secretase making it an excellent model for studies of the basic cleavage process. We here focused on the cell-free expression of PSH screening a range of conditions. Cleavage assays to verify the activity show that not only the yield, but mainly the activity of the protease depends on the careful selection of expression conditions. Optimal results were found for a cell-free expression at relatively low temperature, 20 °C, employing cell lysates prepared from E. coli Rosetta cells. To speed up protein preparation for immediate functional assays, a crude purification protocol was developed. This allows to produce ready-made PSH in a fast and efficient manner in less than two days.
Collapse
Affiliation(s)
- Celine Moser
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein- Leopoldshafen, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein- Leopoldshafen, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Cho S, Lee H, Han YH, Park TS, Seo SW, Park TH. Design of an effective small expression tag to enhance GPCR production in E. coli-based cell-free and whole cell expression systems. Protein Sci 2023; 32:e4839. [PMID: 37967042 PMCID: PMC10682694 DOI: 10.1002/pro.4839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in sensory, immune, and tumor metastasis processes, making them valuable targets for pharmacological and sensing applications in various industries. However, most GPCRs have low production yields in Escherichia coli (E. coli) expression systems. To overcome this limitation, we introduced AT10 tag, an effective fusion tag that could significantly enhance expression levels of various GPCRs in E. coli and its derived cell-free protein synthesis (CFPS) system. This AT10 tag consisted of an A/T-rich gene sequence designed via optimization of translation initiation rate. It is translated into a short peptide sequence of 10 amino acids at the N-terminus of GPCRs. Additionally, effector proteins could be utilized to suppress cytotoxicity caused by membrane protein expression, further boosting GPCR production in E. coli. Enhanced expression of various GPCRs using this AT10 tag is a promising approach for large-scale production of functional GPCRs in E. coli-based CFPS and whole cell systems, enabling their potential utilization across a wide range of industrial applications.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Yong Hee Han
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tae Shin Park
- Receptech Research Institute, Receptech Inc.SiheungRepublic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Levin R, Löhr F, Karakoc B, Lichtenecker R, Dötsch V, Bernhard F. E. coli "Stablelabel" S30 lysate for optimized cell-free NMR sample preparation. JOURNAL OF BIOMOLECULAR NMR 2023; 77:131-147. [PMID: 37311907 PMCID: PMC10406690 DOI: 10.1007/s10858-023-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of 15N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative "Stablelabel" containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in "Stablelabel" lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Betül Karakoc
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
- MAG-LAB, 1030 Vienna, Austria
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
6
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Deich C, Gaut NJ, Sato W, Engelhart AE, Adamala KP. New Aequorea Fluorescent Proteins for Cell-Free Bioengineering. ACS Synth Biol 2023; 12:1371-1376. [PMID: 37018763 DOI: 10.1021/acssynbio.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Commun Biol 2022; 5:1202. [DOI: 10.1038/s42003-022-04175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractStructural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.
Collapse
|
9
|
Levin R, Köck Z, Martin J, Zangl R, Gewering T, Schüler L, Moeller A, Dötsch V, Morgner N, Bernhard F. Cotranslational assembly of membrane protein/nanoparticles in cell-free systems. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184017. [PMID: 35921875 DOI: 10.1016/j.bbamem.2022.184017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins. We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Zoe Köck
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - René Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | | | - Leah Schüler
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Arne Moeller
- University of Osnabrück, 49076 Osnabrück, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany.
| |
Collapse
|
10
|
Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Int J Mol Sci 2022; 23:ijms23073823. [PMID: 35409183 PMCID: PMC8998559 DOI: 10.3390/ijms23073823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.
Collapse
Affiliation(s)
- Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
- Correspondence:
| |
Collapse
|
11
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
12
|
Mezhyrova J, Mörs K, Glaubitz C, Dötsch V, Bernhard F. Applications of Cell-Free Synthesized Membrane Protein Precipitates. Methods Mol Biol 2022; 2406:245-266. [PMID: 35089562 DOI: 10.1007/978-1-0716-1859-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-free protein expression systems are new core platforms for membrane protein synthesis. Expression in the presence of supplied artificial hydrophobic environments such as nanomembranes or micelles allows the co-translational solubilization and folding of membrane proteins. In the absence of hydrophobic compounds, the synthesized membrane proteins quantitatively precipitate, while frequently still retaining a significant part of folded structural elements. This so-called precipitate-forming cell-free (P-CF) expression mode is a very effective and reliable approach for numerous applications. Even from complex membrane proteins such as G-protein coupled receptors or large transporters, significant amounts of such precipitates can be synthesized within few hours. The precipitates can be solubilized in detergents or reconstituted into membranes for subsequent structural or functional analysis. Harsh denaturation and refolding procedures as known from the treatment of bacterial inclusion bodies are usually not required.This strategy is particularly interesting for applications requiring large amounts of membrane protein or fast access to a sample. It is further an excellent tool for the production of membrane protein antigens suitable for antibody generation. The purification of the precipitates in downstream processing is streamlined as only few proteins from the cell-free lysate may co-precipitate with the synthesized membrane protein. For most applications, a one-step affinity chromatography by taking advantage of small purification tags attached to the membrane protein target is sufficient. We give an overview on current applications of P-CF precipitates and describe the underlying techniques in detail. We furthermore provide protocols for the successful crystallization and NMR analysis of P-CF synthesized membrane proteins exemplified with the diacylglycerol kinase (DAGK). In addition, we describe the functional characterization of a P-CF synthesized large eukaryotic transporter.
Collapse
Affiliation(s)
- Julija Mezhyrova
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Karsten Mörs
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Clemens Glaubitz
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
14
|
Imbert L, Lenoir-Capello R, Crublet E, Vallet A, Awad R, Ayala I, Juillan-Binard C, Mayerhofer H, Kerfah R, Gans P, Miclet E, Boisbouvier J. In Vitro Production of Perdeuterated Proteins in H 2O for Biomolecular NMR Studies. Methods Mol Biol 2021; 2199:127-149. [PMID: 33125648 DOI: 10.1007/978-1-0716-0892-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cell-free synthesis is an efficient strategy to produce in large scale protein samples for structural investigations. In vitro synthesis allows for significant reduction of production time, simplification of purification steps and enables production of both soluble and membrane proteins. The cell-free reaction is an open system and can be performed in presence of many additives such as cofactors, inhibitors, redox systems, chaperones, detergents, lipids, nanodisks, and surfactants to allow for the expression of toxic membrane proteins or intrinsically disordered proteins. In this chapter we present protocols to prepare E. coli S30 cellular extracts, T7 RNA polymerase, and their use for in vitro protein expression. Optimizations of the protocol are presented for preparation of protein samples enriched in deuterium, a prerequisite for the study of high-molecular-weight proteins by NMR spectroscopy. An efficient production of perdeuterated proteins is achieved together with a full protonation of all the amide NMR probes, without suffering from residual protonation on aliphatic carbons. Application to the production of the 468 kDa TET2 protein assembly for NMR investigations is presented.
Collapse
Affiliation(s)
- Lionel Imbert
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
- CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), University of Grenoble Alpes, Grenoble, France
| | - Rachel Lenoir-Capello
- CNRS, Laboratoire des biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, Paris, France
| | | | - Alicia Vallet
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Rida Awad
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Isabel Ayala
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Celine Juillan-Binard
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
- CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), University of Grenoble Alpes, Grenoble, France
| | - Hubert Mayerhofer
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | | | - Pierre Gans
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Emeric Miclet
- CNRS, Laboratoire des biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, Paris, France
| | - Jerome Boisbouvier
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France.
| |
Collapse
|
15
|
Pacull EM, Sendker F, Bernhard F, Scheidt HA, Schmidt P, Huster D, Krug U. Integration of Cell-Free Expression and Solid-State NMR to Investigate the Dynamic Properties of Different Sites of the Growth Hormone Secretagogue Receptor. Front Pharmacol 2020; 11:562113. [PMID: 33324203 PMCID: PMC7723455 DOI: 10.3389/fphar.2020.562113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cell-free expression represents an attractive method to produce large quantities of selectively labeled protein for NMR applications. Here, cell-free expression was used to label specific regions of the growth hormone secretagogue receptor (GHSR) with NMR-active isotopes. The GHSR is a member of the class A family of G protein-coupled receptors. A cell-free expression system was established to produce the GHSR in the precipitated form. The solubilized receptor was refolded in vitro and reconstituted into DMPC lipid membranes. Methionines, arginines, and histidines were chosen for 13C-labeling as they are representative for the transmembrane domains, the loops and flanking regions of the transmembrane α-helices, and the C-terminus of the receptor, respectively. The dynamics of the isotopically labeled residues was characterized by solid-state NMR measuring motionally averaged 1H-13C dipolar couplings, which were converted into molecular order parameters. Separated local field DIPSHIFT experiments under magic-angle spinning conditions using either varying cross polarization contact times or direct excitation provided order parameters for these residues showing that the C-terminus was the segment with the highest motional amplitude. The loop regions and helix ends as well as the transmembrane regions of the GHSR represent relatively rigid segments in the overall very flexible receptor molecule. Although no site resolution could be achieved in the experiments, the previously reported highly dynamic character of the receptor concluded from uniformly 13C labeled receptor samples could be further specified by this segmental labeling approach, leading to a more diversified understanding of the receptor dynamics under equilibrium conditions.
Collapse
Affiliation(s)
- Emelyne M Pacull
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Franziska Sendker
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ulrike Krug
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
17
|
Mozumder S, Bej A, Srinivasan K, Mukherjee S, Sengupta J. Comprehensive structural modeling and preparation of human 5-HT 2A G-protein coupled receptor in functionally active form. Biopolymers 2019; 111:e23329. [PMID: 31469412 DOI: 10.1002/bip.23329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
The serotonin 2A receptor (5-HT2A R) is an important member of the G-protein coupled receptor (GPCR) family involved in an array of neuromodulatory functions. Although the high-resolution structures of truncated versions of GPCRs, captured in ligand-bound conformational states, are available, the structures lack several functional regions, which have crucial roles in receptor response. Here, in order to understand the structure and dynamics of the ligand-free form of the receptor, we have performed meticulous modeling of the 5-HT2A R with the third intracellular loop (ICL3). Our analyses revealed that the ligand-free ground state structure of 5-HT2A R has marked distinction with ligand-bound conformations of 5-HT2 subfamily proteins and exhibits extensive backbone flexibility across the loop regions, suggesting the importance of purifying the receptor in its native form for further studies. Hence, we have standardized a strategy that efficiently increases the expression of 5-HT2A R by infecting Sf9 cells with a very low multiplicity of infection of baculovirus in conjunction with production boost additive and subsequently, purify the full-length receptor. Furthermore, we have optimized the selective over-expression of glycosylated and nonglycosylated forms of the receptor merely by switching the postinfection growth time, a method that has not been reported earlier.
Collapse
Affiliation(s)
- Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Krishnamoorthi Srinivasan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Löhr F, Gebel J, Henrich E, Hein C, Dötsch V. Towards complete polypeptide backbone NH assignment via combinatorial labeling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:50-63. [PMID: 30959416 DOI: 10.1016/j.jmr.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Combinatorial selective isotope labeling is a valuable tool to facilitate polypeptide backbone resonance assignment in cases of low sensitivity or extensive chemical shift degeneracy. It involves recording of 15N-HSQC and 2D HN-projections of triple-resonance spectra on a limited set of samples containing different combinations of labeled and unlabeled amino acid types. Using labeling schemes in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes - individually as well as simultaneously - usually yields abundant amino-acid type information of consecutive residues i and i - 1. Although this results in a large number of anchor points that can be used in the sequential assignment process, for most amide signals the exact positioning of the corresponding residue the polypeptide sequence still relies on matching intra- and interresidual 13C chemical shifts obtained from 3D spectra. An obvious way to obtain more sequence-specific assignments directly with combinatorial labeling would be to increase the number of samples. This is, however, undesirable because of increased sample preparation efforts and costs. Irrespective of the number of samples, unambiguous assignments cannot be accomplished for i - 1/i pairs that are not unique in the sequence. Here we show that the ambiguity for non-unique pairs can be resolved by including information about the labeling state of residues i + 1 and i - 2. Application to a 35-residue peptide resulted in complete assignments of all detectable signals in the 15N HSQC which, due to its repetitive sequence and 13C chemical shift degeneracies, was difficult to achieve by other means. For a medium-sized protein (165 residues, rotational correlation time 8.2 ns) the improved protocol allowed the extent of backbone amide assignment to be expanded to 88% solely using a suite of 2D 1H-15N correlated spectra.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
19
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
20
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Keller T, Gorboulev V, Mueller TD, Dötsch V, Bernhard F, Koepsell H. Rat Organic Cation Transporter 1 Contains Three Binding Sites for Substrate 1-Methyl-4-phenylpyridinium per Monomer. Mol Pharmacol 2018; 95:169-182. [DOI: 10.1124/mol.118.113498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 01/11/2023] Open
|
22
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
24
|
Schoborg JA, Hershewe JM, Stark JC, Kightlinger W, Kath JE, Jaroentomeechai T, Natarajan A, DeLisa MP, Jewett MC. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol Bioeng 2017; 115:739-750. [PMID: 29178580 DOI: 10.1002/bit.26502] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, or the attachment of sugar moieties (glycans) to proteins, is important for protein stability, activity, and immunogenicity. However, understanding the roles and regulations of site-specific glycosylation events remains a significant challenge due to several technological limitations. These limitations include a lack of available tools for biochemical characterization of enzymes involved in glycosylation. A particular challenge is the synthesis of oligosaccharyltransferases (OSTs), which catalyze the attachment of glycans to specific amino acid residues in target proteins. The difficulty arises from the fact that canonical OSTs are large (>70 kDa) and possess multiple transmembrane helices, making them difficult to overexpress in living cells. Here, we address this challenge by establishing a bacterial cell-free protein synthesis platform that enables rapid production of a variety of OSTs in their active conformations. Specifically, by using lipid nanodiscs as cellular membrane mimics, we obtained yields of up to 420 μg/ml for the single-subunit OST enzyme, "Protein glycosylation B" (PglB) from Campylobacter jejuni, as well as for three additional PglB homologs from Campylobacter coli, Campylobacter lari, and Desulfovibrio gigas. Importantly, all of these enzymes catalyzed N-glycosylation reactions in vitro with no purification or processing needed. Furthermore, we demonstrate the ability of cell-free synthesized OSTs to glycosylate multiple target proteins with varying N-glycosylation acceptor sequons. We anticipate that this broadly applicable production method will advance glycoengineering efforts by enabling preparative expression of membrane-embedded OSTs from all kingdoms of life.
Collapse
Affiliation(s)
- Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - James E Kath
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | | | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.,Department of Microbiology, Cornell University, Ithaca, New York
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
25
|
Wang J, Liu Y, Zhang J, Han Z, Wang W, Liu Y, Wei D, Huang W. Cell-free expression, purification, and characterization of the functional β2-adrenergic receptor for multianalyte detection of β-agonists. BIOCHEMISTRY (MOSCOW) 2017; 82:1346-1353. [DOI: 10.1134/s0006297917110128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wei P, Wang Q, Hang B, Shi F, Cai J, Huang L, Xu Z. High-level cell-free expression and functional characterization of a novel aquaporin from Photobactetrium profundum SS9. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng 2017; 114:2328-2338. [PMID: 28574582 PMCID: PMC5599999 DOI: 10.1002/bit.26346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Viola Spahn
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Christoph Stein
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| |
Collapse
|
28
|
Hein C, Löhr F, Schwarz D, Dötsch V. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study. Biopolymers 2017; 107. [PMID: 28035667 DOI: 10.1002/bip.23013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial 15 N-, 13 Cα -, and 13 C'-selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell-free expression system, a scheme that involves 15 N, 1-13 C, 2-13 C, fully 15 N/13 C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time-shared triple-resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non-proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide 1 H and 15 N resonances need to be obtained, even in cases where sensitivity is the limiting factor.
Collapse
Affiliation(s)
- Christopher Hein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Daniel Schwarz
- Merck KGaA, Discovery Pharmacology, Global Research and Development, Darmstadt, 64293, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| |
Collapse
|
29
|
Fogeron ML, Badillo A, Penin F, Böckmann A. Wheat Germ Cell-Free Overexpression for the Production of Membrane Proteins. Methods Mol Biol 2017; 1635:91-108. [PMID: 28755365 DOI: 10.1007/978-1-4939-7151-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to their hydrophobic nature, membrane proteins are notoriously difficult to express in classical cell-based protein expression systems. Often toxic, they also undergo degradation in cells or aggregate in inclusion bodies, making delicate issues further solubilization and renaturation. These are major bottlenecks in their structural and functional analysis. The wheat germ cell-free (WGE-CF) system offers an effective alternative not only to classical cell-based protein expression systems but also to other cell-free systems for the expression of membrane proteins. The WGE-CF indeed allows the production of milligram amounts of membrane proteins in a detergent-solubilized, homogenous, and active form. Here, we describe the method to produce a viral integral membrane protein, which is the non-structural protein 2 (NS2) of hepatitis C virus, in view of structural studies by solid-state NMR in a native-like lipid environment.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France.
| |
Collapse
|
30
|
Uyeda A, Nakayama S, Kato Y, Watanabe H, Matsuura T. Construction of an in Vitro Gene Screening System of the E. coli EmrE Transporter Using Liposome Display. Anal Chem 2016; 88:12028-12035. [DOI: 10.1021/acs.analchem.6b02308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsuko Uyeda
- Department of Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shintaro Nakayama
- Department of Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Yasuhiko Kato
- Department of Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Malik N, Kumar A. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state. JOURNAL OF BIOMOLECULAR NMR 2016; 66:21-35. [PMID: 27586017 DOI: 10.1007/s10858-016-0054-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled (13)C,(15)N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.
Collapse
Affiliation(s)
- Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
32
|
Cell-Free Synthesis of Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27165320 DOI: 10.1007/978-3-319-27216-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cell-free protein synthesis based on E. coli cell extracts has been described for the first time more than 50 years ago. To date, cell-free synthesis is widely used for the preparation of toxic proteins, for studies of the translation process and its regulation as well as for the incorporation of artificial or labeled amino acids into a polypeptide chain. Many efforts have been directed towards establishing cell-free expression as a standard method for gene expression, with limited success. In this chapter we will describe the state-of-the-art of cell-free expression, extract preparation methods and recent examples for successful applications of cell-free synthesis of macromolecular complexes.
Collapse
|
33
|
Soranzo T, Cortès S, Gilde F, Kreir M, Picart C, Lenormand JL. Functional characterization of p7 viroporin from hepatitis C virus produced in a cell-free expression system. Protein Expr Purif 2015; 118:83-91. [PMID: 26477501 DOI: 10.1016/j.pep.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA). Fourier transformed infrared spectroscopy (FTIR) experiments further showed that when p7 was inserted into synthetic liposomes, the protein displayed a native-like conformation similar to p7 obtained from other sources. Photoactivable amino acid analogs used for p7 protein synthesis enabled oligomerization state analysis in liposomes by cross-linking. Therefore, these findings emphasize the quality of the cell-free produced p7 proteoliposomes which can benefit the field of the hepatitis C virus (HCV) protein production and characterization and also provide tools for the development of new inhibitors to reinforce our therapeutic arsenal against HCV.
Collapse
Affiliation(s)
- Thomas Soranzo
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France; TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France
| | - Sandra Cortès
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Flora Gilde
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraβe 9, 80636, Munich, Germany
| | - Catherine Picart
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Jean-Luc Lenormand
- TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France.
| |
Collapse
|
34
|
Fogeron ML, Paul D, Jirasko V, Montserret R, Lacabanne D, Molle J, Badillo A, Boukadida C, Georgeault S, Roingeard P, Martin A, Bartenschlager R, Penin F, Böckmann A. Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus. Protein Expr Purif 2015; 116:1-6. [PMID: 26325423 DOI: 10.1016/j.pep.2015.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 01/14/2023]
Abstract
Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Vlastimil Jirasko
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Denis Lacabanne
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France; RD-Biotech, Recombinant Protein Unit, Besançon, France
| | - Célia Boukadida
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Sonia Georgeault
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France; INSERM U966, Universite François Rabelais and CHRU de Tours, Tours, France
| | - Annette Martin
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| |
Collapse
|
35
|
Sengur-Tasdemir R, Aydin S, Turken T, Genceli EA, Koyuncu I. Biomimetic Approaches for Membrane Technologies. SEPARATION AND PURIFICATION REVIEWS 2015. [DOI: 10.1080/15422119.2015.1035443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Löhr F, Tumulka F, Bock C, Abele R, Dötsch V. An extended combinatorial 15N, 13Cα, and 13C' labeling approach to protein backbone resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2015; 62:263-79. [PMID: 25953311 DOI: 10.1007/s10858-015-9941-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 05/07/2023]
Abstract
Solution NMR studies of α-helical membrane proteins are often complicated by severe spectral crowding. In addition, hydrophobic environments like detergent micelles, isotropic bicelles or nanodiscs lead to considerably reduced molecular tumbling rates which translates into line-broadening and low sensitivity. Both difficulties can be addressed by selective isotope labeling methods. In this publication, we propose a combinatorial protocol that utilizes four different classes of labeled amino acids, in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in (15)N or (13)C isotopes individually as well as simultaneously. This results in eight different combinations of dipeptides giving rise to cross peaks in (1)H-(15)N correlated spectra. Their differentiation is achieved by recording a series of HN-detected 2D triple-resonance spectra. The utility of this new scheme is demonstrated with a homodimeric 142-residue membrane protein in DHPC micelles. Restricting the number of selectively labeled samples to three allowed the identification of the amino-acid type for 77 % and provided sequential information for 47 % of its residues. This enabled us to complete the backbone resonance assignment of the uniformly labeled protein merely with the help of a 3D HNCA spectrum, which can be collected with reasonable sensitivity even for relatively large, non-deuterated proteins.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
37
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
38
|
Norred SE, Caveney PM, Retterer ST, Boreyko JB, Fowlkes JD, Collier CP, Simpson ML. Sealable femtoliter chamber arrays for cell-free biology. J Vis Exp 2015:52616. [PMID: 25867144 PMCID: PMC4401254 DOI: 10.3791/52616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g., global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) device contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Here we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques used in cellular systems to characterize CFPS gene circuits and their interactions with the cell-free environment.
Collapse
Affiliation(s)
- Sarah Elizabeth Norred
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Patrick M Caveney
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Scott T Retterer
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jonathan B Boreyko
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Jason D Fowlkes
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville
| | | | - Michael L Simpson
- Bredesen Center, University of Tennessee, Knoxville; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; Department of Materials Science and Engineering, University of Tennessee, Knoxville;
| |
Collapse
|
39
|
Lin MT, Fukazawa R, Miyajima-Nakano Y, Matsushita S, Choi SK, Iwasaki T, Gennis RB. Escherichia coli Auxotroph Host Strains for Amino Acid-Selective Isotope Labeling of Recombinant Proteins. Methods Enzymol 2015; 565:45-66. [DOI: 10.1016/bs.mie.2015.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
41
|
Löhr F, Laguerre A, Bock C, Reckel S, Connolly PJ, Abdul-Manan N, Tumulka F, Abele R, Moore JM, Dötsch V. Time-shared experiments for efficient assignment of triple-selectively labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:81-95. [PMID: 25442777 PMCID: PMC4254601 DOI: 10.1016/j.jmr.2014.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 05/20/2023]
Abstract
Combinatorial triple-selective labeling facilitates the NMR assignment process for proteins that are subject to signal overlap and insufficient signal-to-noise in standard triple-resonance experiments. Aiming at maximum amino-acid type and sequence-specific information, the method represents a trade-off between the number of selectively labeled samples that have to be prepared and the number of spectra to be recorded per sample. In order to address the demand of long measurement times, we here propose pulse sequences in which individual phase-shifted transients are stored separately and recombined later to produce several 2D HN(CX) type spectra that are usually acquired sequentially. Sign encoding by the phases of (13)C 90° pulses allows to either select or discriminate against (13)C' or (13)C(α) spins coupled to (15)N. As a result, (1)H-(15)N correlation maps of the various isotopomeric species present in triple-selectively labeled proteins are deconvoluted which in turn reduces problems due to spectral overlap. The new methods are demonstrated with four different membrane proteins with rotational correlation times ranging from 18 to 52 ns.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Christoph Bock
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Sina Reckel
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | - Franz Tumulka
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Rupert Abele
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
42
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
|
44
|
Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 2014; 9:e96635. [PMID: 24804975 PMCID: PMC4013096 DOI: 10.1371/journal.pone.0096635] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 11/22/2022] Open
Abstract
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Robert B. Quast
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Corina Schulze
- Beuth Hochschule für Technik Berlin - University of Applied Sciences Berlin, Life Sciences and Technology, Berlin, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| |
Collapse
|
45
|
Nozawa A, Tozawa Y. Incorporation of adenine nucleotide transporter, Ant1p, into proteoliposomes facilitates ATP translocation and activation of encapsulated luciferase. J Biosci Bioeng 2014; 118:130-3. [PMID: 24656877 DOI: 10.1016/j.jbiosc.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
We prepared functional luciferase and membrane-integrated form of adenine nucleotide transporter (Ant1p) with a wheat germ cell-free system. The reconstituted Ant1p showed transport activity of ATP/AMP exchange across the membrane. Here we demonstrate that activity of the luciferase entrapped in the Ant1p-proteoliposomes is controllable by the external supply of ATP.
Collapse
Affiliation(s)
- Akira Nozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Yuzuru Tozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan. tozawa.yuzuru.mx.@ehime-u.ac.jp
| |
Collapse
|
46
|
Hein C, Henrich E, Orbán E, Dötsch V, Bernhard F. Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christopher Hein
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erik Henrich
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erika Orbán
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| |
Collapse
|
47
|
Lindert S, Maslennikov I, Chiu EJC, Pierce LC, McCammon JA, Choe S. Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits. Biochem Biophys Res Commun 2014; 445:724-33. [PMID: 24525125 DOI: 10.1016/j.bbrc.2014.01.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
Abstract
About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such "omics" approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Joint Center for Biosciences, 301-B, Songdo Smart Valley 214, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Ellis J C Chiu
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Levi C Pierce
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; NSF Center for Theoretical Biological Physics, National Biomedical Computation Resource, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Joint Center for Biosciences, 301-B, Songdo Smart Valley 214, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea; Drug Discovery Collaboratory, Carlsbad, CA 92008, USA.
| |
Collapse
|
48
|
Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL. Production of membrane proteins using cell–free expression systems. Expert Rev Proteomics 2014; 4:79-90. [PMID: 17288517 DOI: 10.1586/14789450.4.1.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.
Collapse
Affiliation(s)
- Lavinia Liguori
- University Joseph Fourier, HumProTher Laboratory, GREPI, CHU-Grenoble, 38043 Grenoble, France.
| | | | | | | | | |
Collapse
|
49
|
Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis. Methods Mol Biol 2014; 1118:189-203. [PMID: 24395417 DOI: 10.1007/978-1-62703-782-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell-free protein synthesis (CFPS) offers a fast and inexpensive means to incorporate unnatural amino acids (UAAs) site specifically into proteins. This enables engineering of proteins and allows production of protein-based probes for analysis of their interactions with other molecules. Using dialysis Escherichia coli CFPS system in combination with aminoacyl-tRNA synthetase and suppressor tRNA evolved from Methanocaldococcus jannaschii high expression yield of proteins with site specifically incorporated UAAs can be achieved. Typically the target protein can be prepared at concentrations of about 1 mg/mL, which is generally sufficient for subsequent applications.
Collapse
|
50
|
Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:141-154. [PMID: 24013930 DOI: 10.1007/s10858-013-9774-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His10-tag and containing a codon optimized AT-rich sequence.
Collapse
Affiliation(s)
- Franz Tumulka
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|