1
|
Drosophila carrying epilepsy-associated variants in the vitamin B6 metabolism gene PNPO display allele- and diet-dependent phenotypes. Proc Natl Acad Sci U S A 2022; 119:2115524119. [PMID: 35217610 PMCID: PMC8892510 DOI: 10.1073/pnas.2115524119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Both genetic and environmental factors contribute to epilepsy. Understanding their contributions and interactions helps disease management. However, it is often challenging to study gene–environment interaction in humans due to their heterogeneous genetic background and less controllable environmental factors. The fruit fly, Drosophila melanogaster, has been proven to be a powerful model to study human diseases, including epilepsy. We generated knock-in flies carrying different epilepsy-associated pyridox(am)ine 5′-phosphate oxidase (PNPO) alleles and studied the developmental, behavioral, electrophysiological, and fitness effects of each mutant allele under different dietary conditions. We showed that phenotypes in knock-in flies are allele and diet dependent, providing clues for timely and specific diet interventions. Our results offer biological insights into mechanisms underlying phenotypic variations and specific therapeutic strategies. Pyridox(am)ine 5′-phosphate oxidase (PNPO) catalyzes the rate-limiting step in the synthesis of pyridoxal 5′-phosphate (PLP), the active form of vitamin B6 required for the synthesis of neurotransmitters gamma-aminobutyric acid (GABA) and the monoamines. Pathogenic variants in PNPO have been increasingly identified in patients with neonatal epileptic encephalopathy and early-onset epilepsy. These patients often exhibit different types of seizures and variable comorbidities. Recently, the PNPO gene has also been implicated in epilepsy in adults. It is unclear how these phenotypic variations are linked to specific PNPO alleles and to what degree diet can modify their expression. Using CRISPR-Cas9, we generated four knock-in Drosophila alleles, hWT, hR116Q, hD33V , and hR95H, in which the endogenous Drosophila PNPO was replaced by wild-type human PNPO complementary DNA (cDNA) and three epilepsy-associated variants. We found that these knock-in flies exhibited a wide range of phenotypes, including developmental impairments, abnormal locomotor activities, spontaneous seizures, and shortened life span. These phenotypes are allele dependent, varying with the known biochemical severity of these mutations and our characterized molecular defects. We also showed that diet treatments further diversified the phenotypes among alleles, and PLP supplementation at larval and adult stages prevented developmental impairments and seizures in adult flies, respectively. Furthermore, we found that hR95H had a significant dominant-negative effect, rendering heterozygous flies susceptible to seizures and premature death. Together, these results provide biological bases for the various phenotypes resulting from multifunction of PNPO, specific molecular and/or genetic properties of each PNPO variant, and differential allele–diet interactions.
Collapse
|
2
|
Zhang L, Li X, Zhang J, Xu G. Prognostic Implication and Oncogenic Role of PNPO in Pan-Cancer. Front Cell Dev Biol 2022; 9:763674. [PMID: 35127701 PMCID: PMC8814662 DOI: 10.3389/fcell.2021.763674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Pyridoxine 5′-phosphate oxidase (PNPO) is a key enzyme in the metabolism of vitamin B6 and affects the tumorigenesis of ovarian and breast cancers. However, the roles of PNPO in other types of cancer remain unknown.Methods: The expression of PNPO was interpreted by The Cancer Genome Atlas (TCGA) database and Genotype Tissue-Expression (GTEX) database. Analysis of PNPO genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and human multiple organ tissue arrays. PNPO with drug sensitivity analysis was performed from the CellMiner database. The correlations between PNPO expression and survival outcomes, clinical features, DNA mismatch repair system (MMR), microsatellite instability (MSI), tumor mutation burden (TMB), and immune-associated cell infiltration were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was applied to elucidate the biological function of PNPO in pan-cancer.Results: The differential analysis showed that the level of PNPO mRNA expression was upregulated in 21 tumor types compared with normal tissues, which was consistent with its protein expression in most cancer types. The abnormal expression of PNPO could predict the survival outcome of patients with esophageal carcinoma (ESCA), kidney renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), ovarian serous cystadenocarcinoma (OV), and uveal melanoma (UVM). Furthermore, the most frequent mutation type of PNPO genomic was amplified. Moreover, the aberrant PNPO expression was related to MMR, MSI, TMB, and drug sensitivity in various types of cancer. The expression of PNPO was related to the infiltration levels of various immune-associated cells in pan-cancer by ESTIMATE algorithm and TIMER database mining.Conclusion: Our results suggest that PNPO is a potential molecular biomarker for predicting patient prognosis, drug sensitivity, and immunoreaction in pan-cancer.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- *Correspondence: Guoxiong Xu, ; Lingyun Zhang,
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Guoxiong Xu, ; Lingyun Zhang,
| |
Collapse
|
3
|
Bunik V, Aleshin V, Nogues I, Kähne T, Parroni A, Contestabile R, Salvo ML, Graf A, Tramonti A. Thiamine‐dependent regulation of mammalian brain pyridoxal kinase
in vitro
and
in vivo. J Neurochem 2022; 161:20-39. [DOI: 10.1111/jnc.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov University 119048 Moscow Russia
| | - Vasily Aleshin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Sechenov University 119048 Moscow Russia
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems Italian National Research Council Via Salaria Km. 29 300–00015 Monterotondo Scalo
| | - Thilo Kähne
- Institute of Exptl. Internal Medicine Otto‐von‐Guericke‐Universität Magdeburg 39120 Magdeburg Germany
| | - Alessia Parroni
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Martino Luigi Salvo
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Anastasia Graf
- Moscow Institute of Physics and Technology 123098 Moscow Russia
- Faculty of Biology Lomonosov Moscow State University 19991 Moscow Russia
| | - Angela Tramonti
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
- Istitute of Molecular Biology and Pathology Italian National Research Council P.le A. Moro 5 ‐ 00185 Rome Italy
| |
Collapse
|
4
|
Hadtstein F, Vrolijk M. Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Adv Nutr 2021; 12:1911-1929. [PMID: 33912895 PMCID: PMC8483950 DOI: 10.1093/advances/nmab033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Vitamin B-6 in the form of pyridoxine (PN) is commonly used by the general population. The use of PN-containing supplements has gained lots of attention over the past years as they have been related to the development of peripheral neuropathy. In light of this, the number of reported cases of adverse health effects due to the use of vitamin B-6 have increased. Despite a long history of study, the pathogenic mechanisms associated with PN toxicity remain elusive. Therefore, the present review is focused on investigating the mechanistic link between PN supplementation and sensory peripheral neuropathy. Excessive PN intake induces neuropathy through the preferential injury of sensory neurons. Recent reports on hereditary neuropathy due to pyridoxal kinase (PDXK) mutations may provide some insight into the mechanism, as genetic deficiencies in PDXK lead to the development of axonal sensory neuropathy. High circulating concentrations of PN may lead to a similar condition via the inhibition of PDXK. The mechanism behind PDXK-induced neuropathy is unknown; however, there is reason to believe that it may be related to γ-aminobutyric acid (GABA) neurotransmission. Compounds that inhibit PDXK lead to convulsions and reductions in GABA biosynthesis. The absence of central nervous system-related symptoms in PDXK deficiency could be due to differences in the regulation of PDXK, where PDXK activity is preserved in the brain but not in peripheral tissues. As PN is relatively impermeable to the blood-brain barrier, PDXK inhibition would similarly be confined to the peripheries and, as a result, GABA signaling may be perturbed within peripheral tissues, such as sensory neurons. Perturbed GABA signaling within sensory neurons may lead to excitotoxicity, neurodegeneration, and ultimately, the development of peripheral neuropathy. For several reasons, we conclude that PDXK inhibition and consequently disrupted GABA neurotransmission is the most plausible mechanism of toxicity.
Collapse
Affiliation(s)
- Felix Hadtstein
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
5
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Barile A, Nogués I, di Salvo ML, Bunik V, Contestabile R, Tramonti A. Molecular characterization of pyridoxine 5'-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy. Sci Rep 2020; 10:13621. [PMID: 32788630 PMCID: PMC7424515 DOI: 10.1038/s41598-020-70598-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023] Open
Abstract
Defects of vitamin B6 metabolism are responsible for severe neurological disorders, such as pyridoxamine 5'-phosphate oxidase deficiency (PNPOD; OMIM: 610090), an autosomal recessive inborn error of metabolism that usually manifests with neonatal-onset severe seizures and subsequent encephalopathy. At present, 27 pathogenic mutations of the gene encoding human PNPO are known, 13 of which are homozygous missense mutations; however, only 3 of them have been characterised with respect to the molecular and functional properties of the variant enzyme forms. Moreover, studies on wild type and variant human PNPOs have so far largely ignored the regulation properties of this enzyme. Here, we present a detailed characterisation of the inhibition mechanism of PNPO by pyridoxal 5'-phosphate (PLP), the reaction product of the enzyme. Our study reveals that human PNPO has an allosteric PLP binding site that plays a crucial role in the enzyme regulation and therefore in the regulation of vitamin B6 metabolism in humans. Furthermore, we have produced, recombinantly expressed and characterised several PNPO pathogenic variants responsible for PNPOD (G118R, R141C, R225H, R116Q/R225H, and X262Q). Such replacements mainly affect the catalytic activity of PNPO and binding of the enzyme substrate and FMN cofactor, leaving the allosteric properties unaltered.
Collapse
Affiliation(s)
- Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Isabel Nogués
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 00015, Monterotondo, Rome, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Department of Biochemistry, Sechenov University, Trubetskaya, 8/2, Moscow, 119991, Russia
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy. .,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
7
|
Keller N, Mendoza-Ferreira N, Maroofian R, Chelban V, Khalil Y, Mills PB, Boostani R, Torbati PN, Karimiani EG, Thiele H, Houlden H, Wirth B, Karakaya M. Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism. Neuromuscul Disord 2020; 30:583-589. [DOI: 10.1016/j.nmd.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
|
8
|
Chi W, Iyengar ASR, Albersen M, Bosma M, Verhoeven-Duif NM, Wu CF, Zhuang X. Pyridox (am) ine 5'-phosphate oxidase deficiency induces seizures in Drosophila melanogaster. Hum Mol Genet 2020; 28:3126-3136. [PMID: 31261385 DOI: 10.1093/hmg/ddz143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.
Collapse
Affiliation(s)
- Wanhao Chi
- Committee on Genetics, Genomics and Systems Biology.,Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Atulya S R Iyengar
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Monique Albersen
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Marjolein Bosma
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Chen PY, Tu HC, Schirch V, Safo MK, Fu TF. Pyridoxamine Supplementation Effectively Reverses the Abnormal Phenotypes of Zebrafish Larvae With PNPO Deficiency. Front Pharmacol 2019; 10:1086. [PMID: 31616300 PMCID: PMC6764245 DOI: 10.3389/fphar.2019.01086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal epileptic encephalopathy (NEE), as a result of pyridoxine 5′-phosphate oxidase (PNPO) deficiency, is a rare neural disorder characterized by intractable seizures and usually leads to early infant death. The clinical phenotypes do not respond to antiepileptic drugs but are alleviated in most cases by giving large doses of pyridoxal 5′-phosphate (PLP). PLP is the active form of vitamin B6 participating in more than 100 enzymatic pathways. One of the causes of NEE is pathogenic mutations in the gene for human PNPO (hPNPO). PNPO is a key enzyme in converting pyridoxine (PN), the common dietary form of vitamin B6, and some other B6 vitamers to PLP. More than 25 different mutations in hPNPO, which result in reduced catalytic activity, have been described for PNPO-deficiency NEE. To date, no animal model is available to test new therapeutic strategies. In this report, we describe using zebrafish with reduced activity of Pnpo as an animal model. Knocking down zPnpo resulted in developmental anomalies including brain malformation and impaired locomotor activity, similar to the clinical features of PNPO-deficiency NEE. Other anomalies include a defective circulation system. These anomalies were significantly alleviated by co-injecting either zpnpo or hPNPO mRNAs. As expected from clinical observations in humans, supplementing with PLP improved the morphological and behavioral anomalies. PN only showed marginal positive effects, and only in a few anomalies. Remarkably, pyridoxamine (PM), another dietary form of vitamin B6, showed rescue effects even at a lower concentration than PLP, presenting a possible new therapeutic treatment for PNPO-deficiency NEE. Finally, GABA, a neurotransmitter whose biosynthesis depends on a PLP-dependent enzyme, showed some positive rescue effect. These results suggest zebrafish to be a promising PNPO-deficiency model for studying PLP homeostasis and drug therapy in vivo.
Collapse
Affiliation(s)
- Po-Yuan Chen
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Tu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Verne Schirch
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Tzu-Fun Fu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Lactoferrin Induces the Synthesis of Vitamin B6 and Protects HUVEC Functions by Activating PDXP and the PI3K/AKT/ERK1/2 Pathway. Int J Mol Sci 2019; 20:ijms20030587. [PMID: 30704032 PMCID: PMC6387185 DOI: 10.3390/ijms20030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
As a nutritional active protein in foods, multiple studies of the biological activities of lactoferrin had been undertaken, including antioxidant, antiviral, anti-inflammatory, antitumor, antibiosis, and antiparasitic effects, while the mechanism related with its protection of cardiovascular system remained elusive. In the present work, the effect of lactoferrin on the viability of HUVECs (human umbilical vein endothelial cells) was detected to select the proper doses. Moreover, transcriptomics detection and data analysis were performed to screen out the special genes and the related pathways. Meanwhile, the regulation of lactoferrin in the functional factors thromboxane A2 (TXA2) and prostacyclin (PGI2) was detected. Then, the small interfering RNA (SiRNA) fragment of the selected gene pyridoxal phosphatase (PDXP) was transfected into HUVECs to validate its role in protecting HUVECs function. Results showed that lactoferrin inhibited the expression of TXA2 and activated expression of PGI2, as well as activated expression of PDXP, which significantly up-regulated the synthesis of vitamin B6 (VB6) and the phosphoinositide 3-kinase (PI3K)/ serine/threonine-protein kinase (AKT)/ extracellular regulated protein kinases (ERK) 1/2 pathway. For the first time, we revealed that lactoferrin could induce the synthesis of VB6 and protect HUVECs function through activating PDXP gene and the related pathway.
Collapse
|
11
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
12
|
Functional identification of the proximal promoter region of human pyridoxine 5′-phosphate oxidase gene. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Pyridoxine 5'-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis 2017; 8:3214. [PMID: 29238081 PMCID: PMC5870590 DOI: 10.1038/s41419-017-0050-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Pyridoxine 5'-phosphate oxidase (PNPO) is an enzyme that converts pyridoxine 5'-phosphate into pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 implicated in several types of cancer. However, the role of PNPO and its regulatory mechanism in epithelial ovarian cancer (EOC) are unknown. In the present study, PNPO expression in human ovarian tumour tissue and its association with the clinicopathological features of patients with EOC were examined. Further, the biological function of PNPO in EOC cells and in xenograft was evaluated. We demonstrated for the first time that PNPO was overexpressed in human EOC. Knockdown of PNPO induced EOC cell apoptosis, arrested cell cycle at G2/M phase, decreased cell proliferation, migration and invasion. Xenografts of PNPO-shRNA-expressing cells into the nude mouse attenuated tumour growth. PNPO at mRNA and protein levels in EOC cells was decreased after transforming growth factor-β1 (TGF-β1) treatment. The inhibitory effect of TGF-β1 on PNPO expression was abolished in the presence of SB-431542, a TGF-β type I receptor kinase inhibitor. Moreover, we found that TGF-β1-mediated PNPO expression was at least in part through the upregulation of miR-143-3p. These data indicate a mechanism underlying PNPO regulation by the TGF-β signalling pathway. Furthermore, PLP administration reduced PNPO expression and decreased EOC cell proliferation, suggesting a feedback loop between PLP and PNPO. Thus, our findings reveal that PNPO can serve as a novel tissue biomarker of EOC and may be a potential target for therapeutic intervention.
Collapse
|
14
|
Wilson MP, Footitt EJ, Papandreou A, Uudelepp ML, Pressler R, Stevenson DC, Gabriel C, McSweeney M, Baggot M, Burke D, Stödberg T, Riney K, Schiff M, Heales SJR, Mills KA, Gissen P, Clayton PT, Mills PB. An LC-MS/MS-Based Method for the Quantification of Pyridox(am)ine 5'-Phosphate Oxidase Activity in Dried Blood Spots from Patients with Epilepsy. Anal Chem 2017; 89:8892-8900. [PMID: 28782931 PMCID: PMC5588098 DOI: 10.1021/acs.analchem.7b01358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | - Apostolos Papandreou
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Mari-Liis Uudelepp
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | - Tommy Stödberg
- Neuropediatric Unit, Karolinska University Hospital , Stockholm SE-171 76, Sweden
| | - Kate Riney
- Neurosciences Unit, The Lady Cilento Children's Hospital , 501 Stanley Street, South Brisbane, Queensland 4101, Australia
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital , APHP, Paris 75019, France
| | - Simon J R Heales
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom.,Neurometabolic Unit, National Hospital for Neurology and Neurosurgery , Queen Square, London WC1N 3BG, United Kingdom
| | - Kevin A Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Paul Gissen
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health , 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
15
|
Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF. Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 2017; 9:1181-1190. [PMID: 29168484 DOI: 10.1038/nchem.2826] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.
Collapse
Affiliation(s)
- Stephan M Hacker
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Keriann M Backus
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Michael R Lazear
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Bruno E Correia
- Laboratory of Protein Design & Immunoengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| |
Collapse
|
16
|
Davies JO, Telenius JM, McGowan S, Roberts NA, Taylor S, Higgs DR, Hughes JR. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 2016; 13:74-80. [PMID: 26595209 PMCID: PMC4724891 DOI: 10.1038/nmeth.3664] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Methods for analyzing chromosome conformation in mammalian cells are either low resolution or low throughput and are technically challenging. In next-generation (NG) Capture-C, we have redesigned the Capture-C method to achieve unprecedented levels of sensitivity and reproducibility. NG Capture-C can be used to analyze many genetic loci and samples simultaneously. High-resolution data can be produced with as few as 100,000 cells, and single-nucleotide polymorphisms can be used to generate allele-specific tracks. The method is straightforward to perform and should greatly facilitate the investigation of many questions related to gene regulation as well as the functional dissection of traits examined in genome-wide association studies.
Collapse
Affiliation(s)
- James O.J. Davies
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Jelena M. Telenius
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Simon McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Nigel A. Roberts
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Douglas R. Higgs
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Jim R. Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| |
Collapse
|
17
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
18
|
A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:1147-54. [PMID: 24739647 PMCID: PMC4065258 DOI: 10.1534/g3.114.011130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.
Collapse
|
19
|
Mills PB, Camuzeaux SSM, Footitt EJ, Mills KA, Gissen P, Fisher L, Das KB, Varadkar SM, Zuberi S, McWilliam R, Stödberg T, Plecko B, Baumgartner MR, Maier O, Calvert S, Riney K, Wolf NI, Livingston JH, Bala P, Morel CF, Feillet F, Raimondi F, Del Giudice E, Chong WK, Pitt M, Clayton PT. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137:1350-60. [PMID: 24645144 PMCID: PMC3999720 DOI: 10.1093/brain/awu051] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or pyridoxal 5'-phosphate and many of them showed residual enzyme activity. One sequence change (R116Q), predicted to affect flavin mononucleotide binding and binding of the two PNPO dimers, and with high residual activity was found in Groups (ii) and (iii). This sequence change has been reported in the 1000 Genomes project suggesting it could be a polymorphism but alternatively it could be a common mutation, perhaps responsible for the susceptibility locus for genetic generalized epilepsy on 17q21.32 (close to rs72823592). We believe the reduction in PNPO activity and B6-responsive epilepsy in the patients reported here indicates that it contributes to the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Philippa B Mills
- 1 Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs DR. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 2014; 46:205-12. [PMID: 24413732 DOI: 10.1038/ng.2871] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022]
Abstract
Gene expression during development and differentiation is regulated in a cell- and stage-specific manner by complex networks of intergenic and intragenic cis-regulatory elements whose numbers and representation in the genome far exceed those of structural genes. Using chromosome conformation capture, it is now possible to analyze in detail the interaction between enhancers, silencers, boundary elements and promoters at individual loci, but these techniques are not readily scalable. Here we present a high-throughput approach (Capture-C) to analyze cis interactions, interrogating hundreds of specific interactions at high resolution in a single experiment. We show how this approach will facilitate detailed, genome-wide analysis to elucidate the general principles by which cis-acting sequences control gene expression. In addition, we show how Capture-C will expedite identification of the target genes and functional effects of SNPs that are associated with complex diseases, which most frequently lie in intergenic cis-acting regulatory elements.
Collapse
Affiliation(s)
- Jim R Hughes
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Nigel Roberts
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Simon McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Deborah Hay
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Eleni Giannoulatou
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Magnus Lynch
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Marco De Gobbi
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Richard Gibbons
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| |
Collapse
|
21
|
Pais RS, Moreno-Barriuso N, Hernández-Porras I, López IP, De Las Rivas J, Pichel JG. Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation. PLoS One 2013; 8:e83028. [PMID: 24391734 PMCID: PMC3877002 DOI: 10.1371/journal.pone.0083028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/31/2023] Open
Abstract
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development.
Collapse
Affiliation(s)
- Rosete Sofía Pais
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Nuria Moreno-Barriuso
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Isabel Hernández-Porras
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Icíar Paula López
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Javier De Las Rivas
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - José García Pichel
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
- * E-mail:
| |
Collapse
|
22
|
Lienhart WD, Gudipati V, Macheroux P. The human flavoproteome. Arch Biochem Biophys 2013; 535:150-62. [PMID: 23500531 PMCID: PMC3684772 DOI: 10.1016/j.abb.2013.02.015] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
Abstract
Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoenzymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze oxidation-reduction processes in primary metabolic pathways such as the citric acid cycle, β-oxidation and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyridoxal 5'-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-methylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase. These flavoenzymes are discussed in detail to highlight their role in health and disease.
Collapse
Affiliation(s)
| | | | - Peter Macheroux
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
23
|
Albersen M, Bosma M, Knoers NVVAM, de Ruiter BHB, Diekman EF, de Ruijter J, Visser WF, de Koning TJ, Verhoeven-Duif NM. The intestine plays a substantial role in human vitamin B6 metabolism: a Caco-2 cell model. PLoS One 2013; 8:e54113. [PMID: 23342087 PMCID: PMC3544708 DOI: 10.1371/journal.pone.0054113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background Vitamin B6 is present in various forms (vitamers) in the diet that need to be metabolized to pyridoxal phosphate (PLP), the active cofactor form of vitamin B6. In literature, the liver has been reported to be the major site for this conversion, whereas the exact role of the intestine remains to be elucidated. Objective To gain insight into the role of the intestine in human vitamin B6 metabolism. Materials and Methods Expression of the enzymes pyridoxal kinase (PK), pyridox(am)ine phosphate oxidase (PNPO) and PLP-phosphatase was determined in Caco-2 cells and in lysates of human intestine. Vitamin B6 uptake, conversion and excretion were studied in polarized Caco-2 cell monolayers. B6 vitamer concentrations (pyridoxine (PN), pyridoxal (PL), PLP, pyridoxamine (PM), pyridoxamine phosphate (PMP)) and pyridoxic acid (PA) were quantified by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using stable isotope-labeled internal standards. Results The enzymatic system involved in vitamin B6 metabolism (PK, PNPO and PLP-phosphatase) is fully expressed in Caco-2 cells as well as in human intestine. We show uptake of PN, PM and PL by Caco-2 cells, conversion of PN and PM into PL and excretion of all three unphosphorylated B6 vitamers. Conclusion We demonstrate, in a Caco-2 cell model, that the intestine plays a substantial role in human vitamin B6 metabolism.
Collapse
Affiliation(s)
- Monique Albersen
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Nine V. V. A. M. Knoers
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Berna H. B. de Ruiter
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Eugène F. Diekman
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Jessica de Ruijter
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Wouter F. Visser
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Tom J. de Koning
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
- Department of Genetics, University Medical Center, Groningen, University of Groningen, Groningen, The Netherlands
| | - Nanda M. Verhoeven-Duif
- Department of Medical Genetics, University Medical Center, Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Bowling FG. Pyridoxine supply in human development. Semin Cell Dev Biol 2011; 22:611-8. [DOI: 10.1016/j.semcdb.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
25
|
Balasubramaniam S, Bowling F, Carpenter K, Earl J, Chaitow J, Pitt J, Mornet E, Sillence D, Ellaway C. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5'-phosphate availability. J Inherit Metab Dis 2010; 33 Suppl 3:S25-33. [PMID: 20049532 DOI: 10.1007/s10545-009-9012-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
Abstract
We describe two neonates presenting with perinatal hypophosphatasia and severe epileptic encephalopathy resulting in death. Both had increased levels of urinary vanillactate, indicating functional deficiency of aromatic amino acid decarboxylase, a pyridoxal-5-phosphate (PLP)-dependent enzyme required for dopamine and serotonin biosynthesis. Clinical findings and results of subsequent metabolic investigations were consistent with secondary pyridoxine-deficient encephalopathy. These patients highlight the importance of tissue non-specific alkaline phosphatase in the neuronal PLP-dependent metabolism of neurotransmitters. In addition, the disturbance of PLP metabolism appears to underlie the predominant neurological presentation in our patients. We recommend the measurement of serum alkaline phosphatase (ALP) during the assessment of perinatal seizures.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang SH, Shi RJ, Zhang JY, Wang Z, Huang LQ. Cloning and characterization of a pyridoxine 5'-phosphate oxidase from silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2009; 18:365-371. [PMID: 19523068 DOI: 10.1111/j.1365-2583.2009.00880.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A cDNA encoding Pyridoxine 5'-phosphate oxidase (PNPO) from Bombyx mori was cloned and characterized (GenBank accession number: DQ452398). The cDNA encodes a polypeptide of 257 amino acid residues. The recombinant enzyme purified from Escherichia coli exhibited maximal activity at pH 9.0, and the K(m) values for the substrates of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate were determined as 0.65 and 1.15 micromol/l. It was found that B. mori PNPO shares 51.44% homology with humans, but several function-related, key amino acid residues in B. mori PNPO are different from the human and E. Coli gene. B. mori has a single copy of the PNPO gene, which spans a 3.5 kb region and contains five exons and four introns. B. mori PNPO is a homodimer, with each monomer containing nine antiparallel beta-strands and five alpha-helical segments. The secondary structure was deduced from computational study.
Collapse
Affiliation(s)
- S-H Huang
- Anhui Agricultural University, Hefei, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Song H, Ueno SI, Numata S, Iga JI, Shibuya-Tayoshi S, Nakataki M, Tayoshi S, Yamauchi K, Sumitani S, Tomotake T, Tada T, Tanahashi T, Itakura M, Ohmori T. Association between PNPO and schizophrenia in the Japanese population. Schizophr Res 2007; 97:264-70. [PMID: 17851041 DOI: 10.1016/j.schres.2007.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 01/17/2023]
Abstract
Accumulating evidence suggests that both homocysteine metabolism and monoaminergic neurotransmitter systems are important in schizophrenia pathology. We hypothesized that the gene PNPO (pyridoxine 5'-phosphatase oxidase gene) might be a candidate for susceptibility to schizophrenia because PNPO encodes pyridoxamine 5'-phosphate oxidase (EC 1.4.3.5), a rate-limiting enzyme in pyridoxal 5'-phosphate (PLP, vitamin B(6)) synthesis. PLP is a metabolically-active form of vitamin B(6) and thus, is required as a co-factor for enzymes involved in both homocysteine metabolism and synthesis of neurotransmitters such as catecholamine. We examined 8 single nucleotide polymorphisms (SNPs) in PNPO and its 5'-flanking regions in 359 schizophrenia patients and 582 control subjects. Four marker regions of PNPO showed significant levels of allelic associations with schizophrenia (the highest was rs2325751, P=0.004). In addition, the haplotype case-control study revealed a significant association (permutation P<0.00001) between PNPO and schizophrenia. These findings suggest that variations in PNPO may contribute to overall genetic risk for schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gharbi S, Zvelebil M, Shuttleworth S, Hancox T, Saghir N, Timms J, Waterfield M. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 2007; 404:15-21. [PMID: 17302559 PMCID: PMC1868829 DOI: 10.1042/bj20061489] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The PI3Ks (phosphatidylinositol 3-kinases) regulate cellular signalling networks that are involved in processes linked to the survival, growth, proliferation, metabolism and specialized differentiated functions of cells. The subversion of this network is common in cancer and has also been linked to disorders of inflammation. The elucidation of the physiological function of PI3K has come from pharmacological studies, which use the enzyme inhibitors Wortmannin and LY294002, and from PI3K genetic knockout models of the effects of loss of PI3K function. Several reports have shown that LY294002 is not exclusively selective for the PI3Ks, and could in fact act on other lipid kinases and additional apparently unrelated proteins. Since this inhibitor still remains a drug of choice in numerous PI3K studies (over 500 in the last year), it is important to establish the precise specificity of this compound. We report here the use of a chemical proteomic strategy in which an analogue of LY294002, PI828, was immobilized onto epoxy-activated Sepharose beads. This affinity material was then used as a bait to fish-out potential protein targets from cellular extracts. Proteins with high affinity for immobilized PI828 were separated by one-dimensional gel electrophoresis and identified by liquid chromatography-tandem MS. The present study reveals that LY294002 not only binds to class I PI3Ks and other PI3K-related kinases, but also to novel targets seemingly unrelated to the PI3K family.
Collapse
Affiliation(s)
- Severine I. Gharbi
- *Ludwig Institute for Cancer Research, Proteomics Unit, Cruciform Building, Gower Street, London WCE1 6BT, U.K
| | - Marketa J. Zvelebil
- †Ludwig Institute for Cancer Research, Bioinformatics Group, 91 Riding House Street, London W1W 7BS, U.K
| | | | - Tim Hancox
- ‡Plramed, 957 Buckingham Avenue, Slough, Berkshire SL1 4NL, U.K
| | - Nahid Saghir
- ‡Plramed, 957 Buckingham Avenue, Slough, Berkshire SL1 4NL, U.K
| | - John F. Timms
- *Ludwig Institute for Cancer Research, Proteomics Unit, Cruciform Building, Gower Street, London WCE1 6BT, U.K
- §Transitional Research Laboratory, Institute of Women's Health, University College London, Huntley Street, London WC1E 6DH, U.K
| | - Michael D. Waterfield
- *Ludwig Institute for Cancer Research, Proteomics Unit, Cruciform Building, Gower Street, London WCE1 6BT, U.K
- ‡Plramed, 957 Buckingham Avenue, Slough, Berkshire SL1 4NL, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Kästner U, Hallmen C, Wiese M, Leistner E, Drewke C. The human pyridoxal kinase, a plausible target for ginkgotoxin fromGinkgo biloba. FEBS J 2007; 274:1036-45. [PMID: 17250738 DOI: 10.1111/j.1742-4658.2007.05654.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ginkgotoxin (4'-O-methylpyridoxine) occurring in the seeds and leaves of Ginkgo biloba, is an antivitamin structurally related to vitamin B(6). Ingestion of ginkgotoxin triggers epileptic convulsions and other neuronal symptoms. Here we report on studies on the impact of B(6) antivitamins including ginkgotoxin on recombinant homogeneous human pyridoxal kinase (EC 2.7.1.35). It is shown that ginkgotoxin serves as an alternate substrate for this enzyme with a lower K(m) value than pyridoxal, pyridoxamine or pyridoxine. Thus, the presence of ginkgotoxin leads to temporarily reduced pyridoxal phosphate formation in vitro and possibly also in vivo. Our observations are discussed in light of Ginkgo medications used as nootropics.
Collapse
Affiliation(s)
- Uta Kästner
- Institut für Pharmazeutische Biologie, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
30
|
Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK. Identification of a pyridoxine (pyridoxamine) 5′-phosphate oxidase fromArabidopsis thaliana. FEBS Lett 2007; 581:344-8. [PMID: 17224143 DOI: 10.1016/j.febslet.2006.12.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/30/2006] [Accepted: 12/13/2006] [Indexed: 11/20/2022]
Abstract
Pyridoxine (pyridoxamine) 5'-phosphate oxidase (PPOX) catalyzes the oxidative conversion of pyridoxamine 5'-phosphate (PMP) or pyridoxine 5'-phosphate (PNP) to pyridoxal 5'-phosphate (PLP). The At5g49970 gene of Arabidopsis thaliana shows homology to PPOX's from a number of organisms including the Saccharomyces cerevisiae PDX3 gene. A cDNA corresponding to putative A. thaliana PPOX (AtPPOX) was obtained using reverse transcriptase-polymerase chain reaction and primers landing at the start and stop codons of At5g49970. The putative AtPPOX is 530 amino acid long and predicted to contain three distinct parts: a 64 amino acid long N-terminal putative chloroplast transit peptide, followed by a long Yjef_N domain of unknown function and a C-terminal Pyridox_oxidase domain. Recombinant proteins representing the C-terminal domain of AtPPOX and AtPPOX without transit peptide were expressed in E. coli and showed PPOX enzyme activity. The PDX3 knockout yeast deficient in PPOX activity exhibited sensitivity to oxidative stress. Constructs of AtPPOX cDNA of different lengths complemented the PDX3 knockout yeast for oxidative stress. The role of the Yjef_N domain of AtPPOX was not determined, but it shows homology with a number of conserved hypothetical proteins of unknown function.
Collapse
Affiliation(s)
- Yuying Sang
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Vitamin B6 is an important vitamin for normal brain function. The metabolism of dietary vitamin B6 to its active cofactor pyridoxal 5´-phosphate is described. The mechanism of action of pyridoxal 5´-phosphate is described, as are some important functions in the brain. The clinical features and biochemistry of three inborn errors of metabolism affecting brain pyridoxal 5´-phosphate concentrations are described, each of which cause early-onset epilepsy of variable severity. These are pyridoxine phosphate oxidase deficiency, hyperprolinemia Type 2 and pyridoxine-dependent epilepsy caused by antiquitin deficiency. Hypophosphatasia is also discussed briefly, as the epilepsy that can complicate this disorder appears to be due to pyridoxal phosphate deficiency. Lastly, the antiepileptic properties of pyridoxine and pyridoxal phosphate are discussed.
Collapse
Affiliation(s)
- Robert Surtees
- UCL Institute of Child Health, Neurosciences Unit, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philippa Mills
- UCL Institute of Child Health, Biochemistry, Endocrinology & Metabolism Unit, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter Clayton
- UCL Institute of Child Health, Biochemistry, Endocrinology & Metabolism Units, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
32
|
Mills PB, Surtees RAH, Champion MP, Beesley CE, Dalton N, Scambler PJ, Heales SJR, Briddon A, Scheimberg I, Hoffmann GF, Zschocke J, Clayton PT. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet 2005; 14:1077-86. [PMID: 15772097 DOI: 10.1093/hmg/ddi120] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mouse, neurotransmitter metabolism can be regulated by modulation of the synthesis of pyridoxal 5'-phosphate and failure to maintain pyridoxal phosphate (PLP) levels results in epilepsy. This study of five patients with neonatal epileptic encephalopathy suggests that the same is true in man. Cerebrospinal fluid and urine analyses indicated reduced activity of aromatic L-amino acid decarboxylase and other PLP-dependent enzymes. Seizures ceased with the administration of PLP, having been resistant to treatment with pyridoxine, suggesting a defect of pyridox(am)ine 5'-phosphate oxidase (PNPO). Sequencing of the PNPO gene identified homozygous missense, splice site and stop codon mutations. Expression studies in Chinese hamster ovary cells showed that the splice site (IVS3-1g>a) and stop codon (X262Q) mutations were null activity mutations and that the missense mutation (R229W) markedly reduced pyridox(am)ine phosphate oxidase activity. Maintenance of optimal PLP levels in the brain may be important in many neurological disorders in which neurotransmitter metabolism is disturbed (either as a primary or as a secondary phenomenon).
Collapse
Affiliation(s)
- Philippa B Mills
- Institute of Child Health, University College London with Great Ormond Street Hospital for Children, NHS Trust, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|