1
|
Proffitt MR, Liu X, Ortlund EA, Smith GT. Evolution of androgen receptors contributes to species variation in androgenic regulation of communication signals in electric fishes. Mol Cell Endocrinol 2023; 578:112068. [PMID: 37714403 PMCID: PMC10695101 DOI: 10.1016/j.mce.2023.112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Hormones and receptors coevolve to generate species diversity in hormone action. We compared the structure and function of androgen receptors (ARs) across fishes, with a focus on ARs in ghost knifefishes (Apteronotidae). Apteronotids, like many other teleosts, have two ARs (ARα and ARβ). ARβ is largely conserved, whereas ARα sequences vary considerably across species. The ARα ligand binding domain (LBD) has evolved under positive selection, and differences in the LBD across apteronotid species are associated with diversity in androgenic regulation of behavior. The Apteronotus leptorhynchus ARα LBD differs substantially from that of the Apteronotus albifrons ARα or the ancestral AR. Structural modeling and transactivation assays demonstrated that A. leptorhynchus ARα cannot bind androgens. We propose a model whereby relative expression of ARα versus ARβ in the brain, coupled with loss of androgen binding by ARα in A. leptorhynchus might explain reversals in androgenic regulation and sex differences in electrocommunication behavior.
Collapse
Affiliation(s)
- Melissa Renee Proffitt
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - G Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Wilton-Clark H, Al-aghbari A, Yang J, Yokota T. Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada. Genes (Basel) 2023; 14:1634. [PMID: 37628685 PMCID: PMC10454234 DOI: 10.3390/genes14081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1-2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence of the disease among the indigenous population of Western Canada compared to the general population. The disease is caused by a pathogenic expansion of polyglutamine residues in the androgen receptor protein, which acts as a key transcriptional regulator for numerous genes. SBMA has no cure, and current treatments are primarily supportive and focused on symptom management. Recently, a form of precision medicine known as antisense therapy has gained traction as a promising therapeutic option for numerous neuromuscular diseases. Antisense therapy uses small synthetic oligonucleotides to confer therapeutic benefit by acting on pathogenic mRNA molecules, serving to either degrade pathogenic mRNA transcripts or helping to modulate splicing. Recent studies have explored the suitability of antisense therapy for the treatment of SBMA, primarily focused on gene therapy and antisense-mediated mRNA knockdown approaches. Advancements in understanding the pathogenesis of SBMA and the development of targeted therapies offer hope for improved quality of life for individuals affected by this debilitating condition. Continued research is essential to optimize these genetic approaches, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Ammar Al-aghbari
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica Yang
- Department of Immunology, Department of Pharmacology and Toxicology, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
4
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Isebia KT, Lolkema MP, Jenster G, de Wit R, Martens JWM, van Riet J. A Compendium of AR Splice Variants in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24066009. [PMID: 36983083 PMCID: PMC10053078 DOI: 10.3390/ijms24066009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Treatment-induced AR alterations, including AR alternative splice variants (AR-Vs), have been extensively linked to harboring roles in primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer and therefore have gained momentum. Our aim was to uniformly determine recurrent AR-Vs in metastatic castration-resistant prostate cancer (mCRPC) using whole transcriptome sequencing in order to assess which AR-Vs might hold potential diagnostic or prognostic relevance in future research. This study reports that in addition to the promising AR-V7 as a biomarker, AR45 and AR-V3 were also seen as recurrent AR-Vs and that the presence of any AR-V could be associated with higher AR expression. With future research, these AR-Vs may therefore harbor similar or complementary roles to AR-V7 as predictive and prognostic biomarkers in mCRPC or as proxies for abundant AR expression.
Collapse
Affiliation(s)
- Khrystany T Isebia
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
| | - Job van Riet
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
- Division of AI in Oncology, German Cancer Research Centre DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
7
|
Modulating the Activity of Androgen Receptor for Treating Breast Cancer. Int J Mol Sci 2022; 23:ijms232315342. [PMID: 36499670 PMCID: PMC9739178 DOI: 10.3390/ijms232315342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The androgen receptor (AR) is a steroid hormone receptor widely detected in breast cancer. Evidence suggests that the AR might be a tumor suppressor in estrogen receptor alpha-positive (ERα+ve) breast cancer but a tumor promoter in estrogen receptor alpha-negative (ERα-ve) breast cancer. Modulating AR activity could be a potential strategy for treating breast cancer. For ERα+ve breast cancer, activation of the AR had been demonstrated to suppress the disease. In contrast, for ERα-ve breast cancer, blocking the AR could confer better prognosis to patients. These studies support the feasibility of utilizing AR modulators as anti-cancer drugs for different subtypes of breast cancer patients. Nevertheless, several issues still need to be addressed, such as the lack of standardization in the determination of AR positivity and the presence of AR splice variants. In future, the inclusion of the AR status in the breast cancer report at the time of diagnosis might help improve disease classification and treatment decision, thereby providing additional treatment strategies for breast cancer.
Collapse
|
8
|
Pytlowanciv EZ, Ribeiro DL, Tamarindo GH, Taboga SR, Góes RM. High-fat diet during sexual maturation induces hyperplastic differentiation of rat prostate and higher expression of AR45 isoform and ERα. Reprod Biol 2022; 22:100674. [PMID: 35901618 DOI: 10.1016/j.repbio.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
We examined the consequences of high-fat diet (HFD) on prostate histophysiology in two periods along sexual maturation of rats and the impact on the gland in adulthood. After weaning, male Wistar rats were fed a balanced diet (4 % fat-C3, C6, C9) or a HFD (20 % fat- HF3, HF6, HF9) for 3, 6 or 9 weeks. Fat deposit weights, blood glucose and levels of serum testosterone and estrogen were measured. Prostate was evaluated for histology, proliferative and apoptotic cell index, and for the expression of androgen (AR), estrogen receptors type α (ERα) and aromatase. HFD did not affect estrogen levels and elevated serum testosterone only in HF9. HFD reduced prostate weight in HF6 and increased it in adulthood (HF9) but relative prostate weight was unchanged among groups. Cell proliferation, height and density were higher in epithelium of all HFD-groups, compared to controls, featuring the epithelial hyperplasia. Epithelial apoptosis was lower in HF9. HF3 and HF9 exhibited higher expressions of ERα, indicating that HFD triggers a new activation of ERα expression in the acinar epithelium. The content of prostatic aromatase was also elevated in HF9. Increased numbers of AR-positive cells were observed in all HFD groups, and western blotting analysis showed an increase in the truncated form of 45 kDa (AR45) and a reduction in the expression of 110 kDa-AR for HF3 and HF9. In conclusion, excessive dietary fats during sexual maturation of rats led to developmental programming of the prostate, inducing a hyperplastic status with perturbations in AR isoforms expression and reactivation of ERα in adulthood, whose implications for posterior prostatic health could be detrimental.
Collapse
Affiliation(s)
- Eloisa Zanin Pytlowanciv
- Departament of Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil.
| | - Daniele Lisboa Ribeiro
- Institute of Biomedical Sciences. Federal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Guilherme Henrique Tamarindo
- Departament of Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil; Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Sebastião Roberto Taboga
- Departament of Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Departament of Biological Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
10
|
TR3 Enhances AR Variant Production and Transactivation, Promoting Androgen Independence of Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14081911. [PMID: 35454821 PMCID: PMC9031921 DOI: 10.3390/cancers14081911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advanced prostate cancer development is associated with androgen-independent AR signaling. TR3 overexpression alters AR expression, splicing process, and transactivation towards increasing the androgen independence of AR signaling in prostate cancer cells. These results suggest that TR3 is a pivotal factor in the progression of prostate cancer to advanced form. Abstract The pro-oncogenic function of TR3, an orphan nuclear receptor, has been reported in prostate cancer. However, the roles of TR3 in androgen receptor (AR) expression and signaling in prostate cancer cells are poorly understood. Database analysis revealed that TR3 expression level is elevated in prostate tumors, and is positively, although weakly, correlated with that of AR. TR3 overexpression increased the production of AR splice variants in addition to general upregulation of AR expression. TR3 interacted with some spliceosomal complex components and AR precursor mRNA, altering the splice junction rates between exons. TR3 also enhanced androgen-independent AR function. Furthermore, TR3 overexpression increased cell proliferation and mobility of AR-positive prostate cancer cells and stimulated tumorigenesis of androgen-independent prostate cancer cells in mouse xenograft models. This is the first study to report that TR3 is a multifunctional regulator of AR signaling in prostate cancer cells. TR3 alters AR expression, splicing process, and activity in prostate cancer cells, increasing the androgen independence of AR signaling. Therefore, TR3 may play a crucial role in the progression of prostate cancer to an advanced castration-resistant form.
Collapse
|
11
|
Meakin AS, Gough M, Saif Z, Clifton VL. An ex vivo approach to understanding sex-specific differences in placental androgen signalling in the presence and absence of inflammation. Placenta 2022; 120:49-58. [DOI: 10.1016/j.placenta.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
|
12
|
AR Structural Variants and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:195-211. [DOI: 10.1007/978-3-031-11836-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
14
|
Thiebaut C, Vlaeminck-Guillem V, Trédan O, Poulard C, Le Romancer M. Non-genomic signaling of steroid receptors in cancer. Mol Cell Endocrinol 2021; 538:111453. [PMID: 34520815 DOI: 10.1016/j.mce.2021.111453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors (SRs) are members of the nuclear receptor family, which are ligand-activated transcription factors. SRs regulate many physiological functions including development and reproduction, though they can also be involved in several pathologies, especially cancer. Highly controlled cellular responses to steroids involve transcriptional regulation (genomic activity) combined with direct activation of signaling cascades (non-genomic activity). Non-genomic signaling has been extensively studied in cancer, mainly in breast cancer for ER and PR, and prostate cancer for AR. Even though most of the studies have been conducted in cells, some of them have been confirmed in vivo, highlighting the relevance of this pathway in cancer. This review provides an overview of the current and emerging knowledge on non-genomic signaling with a focus on breast and prostate cancers and its clinical relevance. A thorough understanding of ER, PR, AR and GR non-genomic pathways may open new perspectives for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69495, Pierre-Bénite, France
| | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
15
|
Lim WF, Forouhan M, Roberts TC, Dabney J, Ellerington R, Speciale AA, Manzano R, Lieto M, Sangha G, Banerjee S, Conceição M, Cravo L, Biscans A, Roux L, Pourshafie N, Grunseich C, Duguez S, Khvorova A, Pennuto M, Cortes CJ, La Spada AR, Fischbeck KH, Wood MJA, Rinaldi C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. SCIENCE ADVANCES 2021; 7:7/34/eabi6896. [PMID: 34417184 PMCID: PMC8378820 DOI: 10.1126/sciadv.abi6896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.
Collapse
Affiliation(s)
- Wooi F Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gavinda Sangha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Subhashis Banerjee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lara Cravo
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loïc Roux
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Constanza J Cortes
- Department of Neurology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry and the UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Meakin AS, Cuffe JSM, Darby JRT, Morrison JL, Clifton VL. Let's Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female- and Male-Specific Fetal Growth and Developmental Outcomes. Int J Mol Sci 2021; 22:6386. [PMID: 34203717 PMCID: PMC8232290 DOI: 10.3390/ijms22126386] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
It is well understood that sex differences exist between females and males even before they are born. These sex-dependent differences may contribute to altered growth and developmental outcomes for the fetus. Based on our initial observations in the human placenta, we hypothesised that the male prioritises growth pathways in order to maximise growth through to adulthood, thereby ensuring the greatest chance of reproductive success. However, this male-specific "evolutionary advantage" likely contributes to males being less adaptable to shifts in the in-utero environment, which then places them at a greater risk for intrauterine morbidities or mortality. Comparatively, females are more adaptable to changes in the in-utero environment at the cost of growth, which may reduce their risk of poor perinatal outcomes. The mechanisms that drive these sex-specific adaptations to a change in the in-utero environment remain unclear, but an increasing body of evidence within the field of developmental biology would suggest that alterations to placental function, as well as the feto-placental hormonal milieu, is an important contributing factor. Herein, we have addressed the current knowledge regarding sex-specific intrauterine growth differences and have examined how certain pregnancy complications may alter these female- and male-specific adaptations.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Vicki L. Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4000, Australia
| |
Collapse
|
17
|
Meakin AS, Morrison JL, Bradshaw EL, Holman SL, Saif Z, Gatford KL, Wallace MJ, Bischof RJ, Moss TJM, Clifton VL. Identification of placental androgen receptor isoforms in a sheep model of maternal allergic asthma. Placenta 2021; 104:232-235. [PMID: 33450642 DOI: 10.1016/j.placenta.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/26/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Maternal asthma is known to impact intrauterine growth outcomes, which may be mediated, in part, by altered androgen signalling. Our aim was to explore whether the sheep placenta expresses androgen receptor (AR) isoforms and determine if the differential expression of AR protein isoforms is altered by maternal asthma. Four known AR isoforms were detected (AR-FL, AR-v1, AR-v7, and AR-45), and their expression and subcellular distribution was altered in the presence of maternal allergic asthma. These findings underscore the importance for in vivo models of maternal asthma to delineate molecular patterns that may contribute to feto-placental growth and development.
Collapse
Affiliation(s)
- Ashley S Meakin
- Pregnancy and Development Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Zarqa Saif
- Pregnancy and Development Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Vicki L Clifton
- Pregnancy and Development Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
He MX, Cuoco MS, Crowdis J, Bosma-Moody A, Zhang Z, Bi K, Kanodia A, Su MJ, Ku SY, Garcia MM, Sweet AR, Rodman C, DelloStritto L, Silver R, Steinharter J, Shah P, Izar B, Walk NC, Burke KP, Bakouny Z, Tewari AK, Liu D, Camp SY, Vokes NI, Salari K, Park J, Vigneau S, Fong L, Russo JW, Yuan X, Balk SP, Beltran H, Rozenblatt-Rosen O, Regev A, Rotem A, Taplin ME, Van Allen EM. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat Med 2021; 27:426-433. [PMID: 33664492 PMCID: PMC7960507 DOI: 10.1038/s41591-021-01244-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Metastatic castration-resistant prostate cancer is typically lethal, exhibiting intrinsic or acquired resistance to second-generation androgen-targeting therapies and minimal response to immune checkpoint inhibitors1. Cellular programs driving resistance in both cancer and immune cells remain poorly understood. We present single-cell transcriptomes from 14 patients with advanced prostate cancer, spanning all common metastatic sites. Irrespective of treatment exposure, adenocarcinoma cells pervasively coexpressed multiple androgen receptor isoforms, including truncated isoforms hypothesized to mediate resistance to androgen-targeting therapies2,3. Resistance to enzalutamide was associated with cancer cell-intrinsic epithelial-mesenchymal transition and transforming growth factor-β signaling. Small cell carcinoma cells exhibited divergent expression programs driven by transcriptional regulators promoting lineage plasticity and HOXB5, HOXB6 and NR1D2 (refs. 4-6). Additionally, a subset of patients had high expression of dysfunction markers on cytotoxic CD8+ T cells undergoing clonal expansion following enzalutamide treatment. Collectively, the transcriptional characterization of cancer and immune cells from human metastatic castration-resistant prostate cancer provides a basis for the development of therapeutic approaches complementing androgen signaling inhibition.
Collapse
Affiliation(s)
- Meng Xiao He
- Harvard Graduate Program in Biophysics, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Michael S. Cuoco
- grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Jett Crowdis
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Alice Bosma-Moody
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Zhenwei Zhang
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.416999.a0000 0004 0591 6261Present Address: Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA USA
| | - Kevin Bi
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Abhay Kanodia
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Mei-Ju Su
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Sheng-Yu Ku
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Maria Mica Garcia
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Amalia R. Sweet
- grid.239395.70000 0000 9011 8547Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | | | - Laura DelloStritto
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA USA
| | - Rebecca Silver
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - John Steinharter
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Parin Shah
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Benjamin Izar
- Columbia Center for Translational Immunology, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, NY USA
| | - Nathan C. Walk
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Kelly P. Burke
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA USA
| | - Ziad Bakouny
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Alok K. Tewari
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - David Liu
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Sabrina Y. Camp
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Natalie I. Vokes
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.240145.60000 0001 2291 4776Present Address: Department of Thoracic/Head and Neck Oncology, MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Present Address: Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX USA
| | - Keyan Salari
- grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Department of Urology, Massachusetts General Hospital, Boston, MA USA
| | - Jihye Park
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Sébastien Vigneau
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA USA
| | - Lawrence Fong
- grid.266102.10000 0001 2297 6811Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA USA
| | - Joshua W. Russo
- grid.239395.70000 0000 9011 8547Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Xin Yuan
- grid.239395.70000 0000 9011 8547Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Steven P. Balk
- grid.239395.70000 0000 9011 8547Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Himisha Beltran
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | | | - Aviv Regev
- grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biology, Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA USA ,grid.418158.10000 0004 0534 4718Present Address: Genentech, South San Francisco, CA USA
| | - Asaf Rotem
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA USA ,grid.418152.bPresent Address: AstraZeneca, Waltham, MA USA
| | - Mary-Ellen Taplin
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Eliezer M. Van Allen
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.66859.34Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA USA
| |
Collapse
|
19
|
Castanotto D, Zhang X, Rüger J, Alluin J, Sharma R, Pirrotte P, Joenson L, Ioannou S, Nelson MS, Vikeså J, Hansen BR, Koch T, Jensen MA, Rossi JJ, Stein CA. A Multifunctional LNA Oligonucleotide-Based Strategy Blocks AR Expression and Transactivation Activity in PCa Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:63-75. [PMID: 33335793 PMCID: PMC7723773 DOI: 10.1016/j.omtn.2020.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
The androgen receptor (AR) plays a critical role in the development of prostate cancer (PCa) through the activation of androgen-induced cellular proliferation genes. Thus, blocking AR-mediated transcriptional activation is expected to inhibit the growth and spread of PCa. Using tailor-made splice-switching locked nucleic acid (LNA) oligonucleotides (SSOs), we successfully redirected splicing of the AR precursor (pre-)mRNA and destabilized the transcripts via the introduction of premature stop codons. Furthermore, the SSOs simultaneously favored production of the AR45 mRNA in lieu of the full-length AR. AR45 is an AR isoform that can attenuate the activity of both full-length and oncogenic forms of AR by binding to their common N-terminal domain (NTD), thereby blocking their transactivation potential. A large screen was subsequently used to identify individual SSOs that could best perform this dual function. The selected SSOs powerfully silence AR expression and modulate the expression of AR-responsive cellular genes. This bi-functional strategy that uses a single therapeutic molecule can be the basis for novel PCa treatments. It might also be customized to other types of therapies that require the silencing of one gene and the simultaneous expression of a different isoform.
Collapse
Affiliation(s)
- Daniela Castanotto
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xiaowei Zhang
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jacqueline Rüger
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jessica Alluin
- Department of Molecular and Cellular Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lars Joenson
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - Silvia Ioannou
- Science Department, Flintridge Preparatory School, 4543 Crown Avenue, La Cañada Flintridge, CA 91011, USA
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte CA 91010
| | - Jonas Vikeså
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - Bo Rode Hansen
- Genevant Sciences, 245 Main Street, Floor 2, Cambridge, MA 02142
| | - Troels Koch
- Frederikskaj 10B, 2nd floor, 2450 Copenhagen SV, Denmark
| | - Mads Aaboe Jensen
- Roche Innovation Center Copenhagen A/S, Fremtidsvej 3, 2970 Hørsholm, Denmark
| | - John J Rossi
- Department of Molecular and Cellular Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Cy A Stein
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
20
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
21
|
Meakin AS, Saif Z, Seedat N, Clifton VL. The impact of maternal asthma during pregnancy on fetal growth and development: a review. Expert Rev Respir Med 2020; 14:1207-1216. [PMID: 32825809 DOI: 10.1080/17476348.2020.1814148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Asthma is a highly prevalent co-morbidity during pregnancy that can worsen as gestation progresses and is associated with several adverse perinatal outcomes. These adverse outcomes often result from uncontrolled asthma during pregnancy and acute asthma exacerbations that are associated with alterations in placental function and fetal growth. AREAS COVERED This paper will discuss how maternal asthma in pregnancy affects fetal growth and development which may alter future offspring health. Changes in placental function occur in a sex-specific manner in pregnancies complicated by asthma and result in differences in fetal growth and development which may influence child health. The follow up of children from mothers with asthma suggests they are at greater risk of developing asthma, have alterations in microvascular structure that may contribute to a future risk of cardiovascular disease and epigenetic modifications in immune cell function. The current evidence suggests that appropriately managed asthma during pregnancy results in normal fetal growth and development. EXPERT OPINION Clinical management of asthma during pregnancy needs significant improvement to prevent adverse outcomes for the fetus. The key to improving maternal and fetal outcomes is through education of health professionals and parents about controlling asthma during pregnancy.
Collapse
Affiliation(s)
- Ashley S Meakin
- Mater Research Institute, The University of Queensland , Brisbane, Australia
| | - Zarqa Saif
- Mater Research Institute, The University of Queensland , Brisbane, Australia
| | - Nabila Seedat
- Mater Research Institute, The University of Queensland , Brisbane, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland , Brisbane, Australia
| |
Collapse
|
22
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
23
|
Ji H, Li Y, Liu Z, Tang M, Zou L, Su F, Zhang Y, Zhang J, Li H, Li L, Ai B, Ma J, Wang L, Liu M, Xiao F. Quantitative Evaluation of the Transcriptional Activity of Steroid Hormone Receptor Mutants and Variants Using a Single Vector With Two Reporters and a Receptor Expression Cassette. Front Endocrinol (Lausanne) 2020; 11:167. [PMID: 32296391 PMCID: PMC7137763 DOI: 10.3389/fendo.2020.00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Although the rapid development of high-throughput sequencing has led to the identification of a large number of truncated or mutated steroid hormone receptor (SHR) variants, their clinical relevance remains to be defined. A platform for functional analysis of these SHR variants in cells would be instrumental for better assessing their impact on normal physiology and SHR-associated diseases. Here we have developed a new reporter system that allows rapid and accurate assessment of the transcriptional activity of SHR variants in cells. The reporter is a single construct containing a firefly luciferase reporter gene, whose expression is under the control of a promoter with multiple steroid hormone responsive elements, and a Renilla luciferase reporter gene, that is constitutively expressed under the control of an internal ribosome entry site (IRES) and is not regulated by steroid hormones. The corresponding SHR (wildtype or mutant/variant) is also expressed from the same construct. Using this improved reporter system, we revealed a large spectrum of transactivation activities within a set of previously identified mutations and variations of the androgen receptor (AR), the estrogen receptor α (ERα) and the glucocorticoid receptor (GR). This novel reporter system enables functional analysis of SHR mutants and variants in physiological and pathological settings, offering valuable preclinical, or diagnostic information for the understanding and treatment of associated diseases.
Collapse
MESH Headings
- Animals
- Biological Assay/methods
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Cloning, Molecular/methods
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/physiology
- Gene Expression Regulation/drug effects
- Genes, Reporter/drug effects
- Genetic Vectors/genetics
- HEK293 Cells
- Hep G2 Cells
- Hormones/pharmacology
- Humans
- Luciferases, Firefly/genetics
- Mutant Proteins/physiology
- Mutation
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Transfection/methods
Collapse
Affiliation(s)
- Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Ai
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center for Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- State Key Lab of Molecular Oncology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Duong P, Tenkorang MAA, Trieu J, McCuiston C, Rybalchenko N, Cunningham RL. Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biol Sex Differ 2020; 11:12. [PMID: 32223745 PMCID: PMC7104511 DOI: 10.1186/s13293-020-0283-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of sex hormones on cellular function is unclear. Studies show androgens and estrogens are protective in the CNS, whereas other studies found no effects or damaging effects. Furthermore, sex differences have been observed in multiple oxidative stress-associated CNS disorders, such as Alzheimer's disease, depression, and Parkinson's disease. The goal of this study is to examine the relationship between sex hormones (i.e., androgens and estrogens) and oxidative stress on cell viability. METHODS N27 and PC12 neuronal and C6 glial phenotypic cell lines were used. N27 cells are female rat derived, whereas PC12 cells and C6 cells are male rat derived. These cells express estrogen receptors and the membrane-associated androgen receptor variant, AR45, but not the full-length androgen receptor. N27, PC12, and C6 cells were exposed to sex hormones either before or after an oxidative stressor to examine neuroprotective and neurotoxic properties, respectively. Estrogen receptor and androgen receptor inhibitors were used to determine the mechanisms mediating hormone-oxidative stress interactions on cell viability. Since the presence of AR45 in the human brain tissue was unknown, we examined the postmortem brain tissue from men and women for AR45 protein expression. RESULTS Neither androgens nor estrogens were protective against subsequent oxidative stress insults in glial cells. However, these hormones exhibited neuroprotective properties in neuronal N27 and PC12 cells via the estrogen receptor. Interestingly, a window of opportunity exists for sex hormone neuroprotection, wherein temporary hormone deprivation blocked neuroprotection by sex hormones. However, if sex hormones are applied following an oxidative stressor, they exacerbated oxidative stress-induced cell loss in neuronal and glial cells. CONCLUSIONS Sex hormone action on cell viability is dependent on the cellular environment. In healthy neuronal cells, sex hormones are protective against oxidative stress insults via the estrogen receptor, regardless of sex chromosome complement (XX, XY). However, in unhealthy (e.g., high oxidative stress) cells, sex hormones exacerbated oxidative stress-induced cell loss, regardless of cell type or sex chromosome complement. The non-genomic AR45 receptor, which is present in humans, mediated androgen's damaging effects, but it is unknown which receptor mediated estrogen's damaging effects. These differential effects of sex hormones that are dependent on the cellular environment, receptor profile, and cell type may mediate the observed sex differences in oxidative stress-associated CNS disorders.
Collapse
Affiliation(s)
- Phong Duong
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Mavis A A Tenkorang
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Jenny Trieu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Clayton McCuiston
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA. .,Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
25
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
26
|
Gene Expression Alterations during Development of Castration-Resistant Prostate Cancer Are Detected in Circulating Tumor Cells. Cancers (Basel) 2019; 12:cancers12010039. [PMID: 31877738 PMCID: PMC7016678 DOI: 10.3390/cancers12010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 11/24/2022] Open
Abstract
Development of castration-resistant prostate cancer (CRPC) is associated with alterations in gene expression involved in steroidogenesis and androgen signaling. This study investigates whether gene expression changes related to CRPC development can be identified in circulating tumor cells (CTCs). Gene expression in paired CTC samples from 29 patients, before androgen deprivation therapy (ADT) and at CRPC relapse, was compared using a panel including 47 genes related to prostate cancer progression on a qPCR platform. Fourteen genes displayed significantly changed gene expression in CTCs at CRPC relapse compared to before start of ADT. The genes with increased expression at CRPC relapse were related to steroidogenesis, AR-signaling, and anti-apoptosis. In contrast, expression of prostate markers was downregulated at CRPC. We also show that midkine (MDK) expression in CTCs from metastatic hormone-sensitive prostate cancer (mHSPC) was associated to short cancer-specific survival (CSS). In conclusion, this study shows that gene expression patterns in CTCs reflect the development of CRPC, and that MDK expression levels in CTCs are prognostic for cancer-specific survival in mHSPC. This study emphasizes the role of CTCs in exploring mechanisms of therapy resistance, as well as a promising biomarker for prognostic and treatment-predictive purposes in advanced mHSPC.
Collapse
|
27
|
Jarzabek K, Koda M, Chrusciel M, Kanczuga-Koda L, Sobczynska-Tomaszewska A, Rahman NA, Wolczynski S. Features of the fetal gonad in androgen synthesis in the postpubertal testis are preserved in complete androgen insensitivity syndrome due to a novel genetic splice site donor variant in androgen receptor gene intron 1. J Steroid Biochem Mol Biol 2019; 193:105420. [PMID: 31283987 DOI: 10.1016/j.jsbmb.2019.105420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Mutations in the X-linked androgen receptor (AR) gene cause complete androgen insensitivity syndrome (CAIS). CAIS may cause congenital sexual development disorder, which frequently develops into testicular tumors. Here, we describe a novel splice-site intron 1 mutation in AR leading to improper splicing and AR protein absence in CAIS gonads. We characterized a patient's postpubertal gonadal steroidogenic enzyme expression profile. Localization of both CYP11A1 and CYP17A1 enzymes was restricted to both Leydig tumor cells and adjacent to tumor gonadal tissues. Sertoli cells of the CAIS gonad showed abundant HSD17B3 protein, which is an adult Leydig cell marker that enables the conversion of androstenedione to testosterone. Such HSD17B3 expression is typical for fetal-type Sertoli cells in rodents. The postpubertal CAIS gonad of our patient was completely devoid of androgen signaling pathway activity. Plausibly, the postpubertal Leydig cells consisted of two distinct cell populations: postpubertal fetal-type Leydig cells that persisted as androgen-independent cells and immature adult Leydig cells that failed to differentiate. Taken together, in this CAIS postpubertal testis, both Leydig and fetal-type Sertoli cells participated in testosterone production. Our results indicate the importance of molecular analysis as well as the characterization of steroidogenic enzyme profiling in the CAIS patient's gonad.
Collapse
Affiliation(s)
- Katarzyna Jarzabek
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Poland.
| | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Bialystok, Poland
| | | | - Luiza Kanczuga-Koda
- Department of Pathology, Maria Curie-Sklodowska Bialystok Oncology Center, Bialystok, Poland
| | | | - Nafis A Rahman
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Poland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Slawomir Wolczynski
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Poland
| |
Collapse
|
28
|
Review: Understanding the role of androgens and placental AR variants: Insight into steroid-dependent fetal-placental growth and development. Placenta 2019; 84:63-68. [DOI: 10.1016/j.placenta.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
|
29
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
30
|
Tenkorang MAA, Duong P, Cunningham RL. NADPH Oxidase Mediates Membrane Androgen Receptor-Induced Neurodegeneration. Endocrinology 2019; 160:947-963. [PMID: 30811529 PMCID: PMC6435014 DOI: 10.1210/en.2018-01079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membrane-associated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gαq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cell-permeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3-O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gαq. NOX1, NOX2, and the Gαq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gαq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.
Collapse
Affiliation(s)
- Mavis A A Tenkorang
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Phong Duong
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
- Correspondence: Rebecca L. Cunningham, PhD, Department of Physiology and Anatomy, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107. E-mail:
| |
Collapse
|
31
|
Meakin AS, Saif Z, Tuck AR, Clifton VL. Human placental androgen receptor variants: Potential regulators of male fetal growth. Placenta 2019; 80:18-26. [PMID: 31103062 DOI: 10.1016/j.placenta.2019.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Numerous studies show that males have increased intrauterine growth compared to females, and that pregnancy complications may further these growth differences, but the regulatory mechanisms underlying these differences remain unknown. We propose that these growth outcomes may be due to sex-specific differences in androgen sensitivity - giving rise to altered growth signalling pathways - mediated by the differential expression of placental androgen receptor (AR) variants. METHODS Placental protein and mRNA were used to identify AR protein variant levels and AR-downstream target gene expression, and were then analysed against neonatal measurements. Dihydrotestosterone (DHT)-induced AR protein variant expression and downstream growth factors were examined in vitro. RESULTS Four known AR variants (AR-FL, AR-V1, AR-V7, and AR-45), and three unknown proteins (120, 90 and 55 kDa) immunoreactive to the anti-AR antibody were identified in human placentae. Male placentae from controlled asthmatic pregnancies had increased AR-45 and decreased AR-V1 and AR-V7 nuclear expression. Increased nuclear AR-45 expression was associated with increased insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), and IGF-binding protein 5 (IGFBP-5) mRNA expression and normal male growth. AR-45 mRNA and protein did not change in the presence of uncontrolled maternal asthma and associated with an increase in small for gestational (SGA) male fetuses. In vitro DHT stimulation increased AR-45 protein and IGF-1R and IGFBP-5 mRNA expression. CONCLUSIONS Collectively, our data shows altered AR protein expression and downstream signalling targets may contribute to sex-specific fetal growth outcomes in response to an adverse environment, and that AR-45 appears central in mediating these changes.
Collapse
Affiliation(s)
- Ashley S Meakin
- Pregnancy and Development, Mater Medical Research Institute-University of Queensland, Brisbane, Australia
| | - Zarqa Saif
- Pregnancy and Development, Mater Medical Research Institute-University of Queensland, Brisbane, Australia
| | - Astrud R Tuck
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Vicki L Clifton
- Pregnancy and Development, Mater Medical Research Institute-University of Queensland, Brisbane, Australia.
| |
Collapse
|
32
|
Shift from androgen to estrogen action causes abdominal muscle fibrosis, atrophy, and inguinal hernia in a transgenic male mouse model. Proc Natl Acad Sci U S A 2018; 115:E10427-E10436. [PMID: 30327348 PMCID: PMC6217386 DOI: 10.1073/pnas.1807765115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inguinal hernia is one of the most common disorders that affect elderly men. A major pathology underlying inguinal hernia is the fibrosis and other degenerative changes that affect the lower abdominal muscle strength adjacent to the inguinal canal. Here we describe a critical role of estrogen and its nuclear receptor that enhance fibroblast proliferation and muscle atrophy, leading to inguinal hernia. Further research may reveal a potential role of estrogen ablation to prevent muscle fibrosis or hernia in a subset of elderly men. Inguinal hernia develops primarily in elderly men, and more than one in four men will undergo inguinal hernia repair during their lifetime. However, the underlying mechanisms behind hernia formation remain unknown. It is known that testosterone and estradiol can regulate skeletal muscle mass. We herein demonstrate that the conversion of testosterone to estradiol by the aromatase enzyme in lower abdominal muscle (LAM) tissue causes intense fibrosis, leading to muscle atrophy and inguinal hernia; an aromatase inhibitor entirely prevents this phenotype. LAM tissue is uniquely sensitive to estradiol because it expresses very high levels of estrogen receptor-α. Estradiol acts via estrogen receptor-α in LAM fibroblasts to activate pathways for proliferation and fibrosis that replaces atrophied myocytes, resulting in hernia formation. This is accompanied by decreased serum testosterone and decreased expression of the androgen receptor target genes in LAM tissue. These findings provide a mechanism for LAM tissue fibrosis and atrophy and suggest potential roles of future nonsurgical and preventive approaches in a subset of elderly men with a predisposition for hernia development.
Collapse
|
33
|
Li J, Fu X, Cao S, Li J, Xing S, Li D, Dong Y, Cardin D, Park HW, Mauvais-Jarvis F, Zhang H. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem 2018; 293:12719-12729. [PMID: 29934310 DOI: 10.1074/jbc.ra118.003075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated nuclear receptor that plays a critical role in normal prostate physiology, as well as in the development and progression of prostate cancer. In addition to the classical paradigm in which AR exerts its biological effects in the nucleus by orchestrating the expression of the androgen-regulated transcriptome, there is considerable evidence supporting a rapid, nongenomic activity mediated by membrane-associated AR. Although the genomic action of AR has been studied in depth, the molecular events governing AR transport to the plasma membrane and the downstream AR signaling cascades remain poorly understood. In this study, we report that AR membrane transport is microtubule-dependent. Disruption of the function of kinesin 5B (KIF5B), but not of kinesin C3 (KIFC3), interfered with AR membrane association and signaling. Co-immunoprecipitation and pulldown assays revealed that AR physically interacts with KIF5B and that androgen enhances this interaction. Furthermore, we show that heat shock protein 27 (HSP27) is activated by membrane-associated AR and that HSP27 plays an important role in mediating AR-mediated membrane-to-nuclear signal transduction. Together, these results indicate that AR membrane translocation is mediated by the microtubule cytoskeleton and the motor protein KIF5B. By activating HSP27, membrane-associated AR potentiates the transcriptional activity of nuclear AR. We conclude that disruption of AR membrane translocation may represent a potential strategy for targeting AR signaling therapeutically in prostate cancer.
Collapse
Affiliation(s)
- Jianzhuo Li
- School of Life Sciences, Jilin University, Changchun, China 130012; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, China 130012
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Jing Li
- School of Medicine, Jilin University, Changchun, China 130012
| | - Shu Xing
- School of Life Sciences, Jilin University, Changchun, China 130012
| | - Dongying Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Derrick Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Hee-Won Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Franck Mauvais-Jarvis
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana 70119
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
34
|
Crumbaker M, Savdie R, Joshua AM. Refining the Assessment and Implications of AR-V7 in Castrate-resistant Prostate Cancer. Eur Urol 2018; 73:736-737. [DOI: 10.1016/j.eururo.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
35
|
Schreihofer DA, Duong P, Cunningham RL. N-terminal truncations in sex steroid receptors and rapid steroid actions. Steroids 2018; 133:15-20. [PMID: 29104096 PMCID: PMC5864524 DOI: 10.1016/j.steroids.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/14/2023]
Abstract
Sex steroid receptors act as ligand activated nuclear transcription factors throughout the body, including the brain. However, post-translational modification of these receptors can direct them to extranuclear sites, including the plasma membrane, where they are able to initiate rapid signaling. Because of the conserved domain structure of these receptors, alternative exon splicing can result in proteins with altered nuclear and extranuclear actions. Although much attention has focused on internal and C-terminal splice variants, both estrogen and androgen receptors undergo N-terminal truncations, as well. These truncated proteins not only influence the transcriptional activity of the full-length receptors, but also associate with caveolin and initiate signaling at the plasma membrane. Such actions may have important physiological consequences in neuronal, endothelial, and cancer signaling and cell survival.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76244, USA.
| |
Collapse
|
36
|
Del Re M, Crucitta S, Restante G, Rofi E, Arrigoni E, Biasco E, Sbrana A, Coppi E, Galli L, Bracarda S, Santini D, Danesi R. Pharmacogenetics of androgen signaling in prostate cancer: Focus on castration resistance and predictive biomarkers of response to treatment. Crit Rev Oncol Hematol 2018; 125:51-59. [DOI: 10.1016/j.critrevonc.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
|
37
|
Antonopoulou E, Ladomery M. Targeting Splicing in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19051287. [PMID: 29693622 PMCID: PMC5983716 DOI: 10.3390/ijms19051287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Over 95% of human genes are alternatively spliced, expressing splice isoforms that often exhibit antagonistic functions. We describe genes whose alternative splicing has been linked to prostate cancer; namely VEGFA, KLF6, BCL2L2, ERG, and AR. We discuss opportunities to develop novel therapies that target specific splice isoforms, or that target the machinery of splicing. Therapeutic approaches include the development of small molecule inhibitors of splice factor kinases, splice isoform specific siRNAs, and splice switching oligonucleotides.
Collapse
Affiliation(s)
- Effrosyni Antonopoulou
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
38
|
Christenson JL, Trepel JB, Ali HY, Lee S, Eisner JR, Baskin-Bey ES, Elias AD, Richer JK. Harnessing a Different Dependency: How to Identify and Target Androgen Receptor-Positive Versus Quadruple-Negative Breast Cancer. Discov Oncol 2018; 9:82-94. [PMID: 29340907 DOI: 10.1007/s12672-017-0314-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
The androgen receptor (AR) is a promising therapeutic target for a subset of triple-negative breast cancers (TNBCs) in which AR is expressed. However, the mechanistic action of AR and the degree to which primary and metastatic tumors depend on AR, both before and after conventional treatment, remain to be defined. We discuss preclinical and clinical data for AR+ TNBC, the difficulties in monitoring AR protein levels, new methods for determining AR status, the influence of AR on "stemness" in the context of TNBC, the role of combined inhibition of sex steroid production and AR, and the role of AR in regulation of the immune system. Although the exact role of AR in subsets of TNBC is still being characterized, new therapies that target AR and the production of androgens may provide additional options for patients with TNBC for whom chemotherapy is currently the sole treatment option.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jane B Trepel
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Sunmin Lee
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Anthony D Elias
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
39
|
Augmentation de l’intervalle QT imputable à un traitement antiandrogénique, majorée par les psychotropes : à propos d’un cas. Therapie 2017; 72:701-703. [DOI: 10.1016/j.therap.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 11/15/2022]
|
40
|
Uo T, Plymate SR, Sprenger CC. Allosteric alterations in the androgen receptor and activity in prostate cancer. Endocr Relat Cancer 2017; 24:R335-R348. [PMID: 28808043 PMCID: PMC6812555 DOI: 10.1530/erc-17-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Organisms have evolved to generate biological complexity in their proteome and transcriptome from a limited number of genes. This concept holds true for the androgen receptor, which displays a diversity of inclusion/exclusion events in its structural motifs as a mechanism of resistance to the most forefront anti-androgen therapies. More than 20 androgen receptor variants that lack various portions of ligand-binding domain have been identified in human prostate cancer (PCa) samples. Most of the variants are inactive on their own, with a few exceptions displaying constitutive activity. The full-length receptor and one or more variants can be co-expressed in the same cell under many circumstances, which raises the question of how these variants physically and functionally interact with the full-length receptor or one another in the course of PCa progression. To address this issue, in this review, we will characterize and discuss androgen receptor variants, including the novel variants discovered in the last couple of years (i) individually, (ii) with respect to their physical and functional interaction with one another and (iii) in clinical relevance. Here, we also introduce the very recent understanding of AR-Vs obtained through successful development of some AR-V-specific antibodies as well as identification of novel AR-Vs by data mining approaches.
Collapse
Affiliation(s)
- Takuma Uo
- Department of MedicineUniversity of Washington, Seattle, Washington, USA
| | - Stephen R Plymate
- Department of MedicineUniversity of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical CenterVA Puget Sound Health Care System, Seattle, Washington, USA
| | - Cynthia C Sprenger
- Department of MedicineUniversity of Washington, Seattle, Washington, USA
| |
Collapse
|
41
|
Hu J, Wang G, Sun T. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives. Tumour Biol 2017; 39:1010428317692259. [PMID: 28475016 DOI: 10.1177/1010428317692259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
|
43
|
Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2-8) in Normal and Cancerous Breast and Prostate Cells. Int J Mol Sci 2016; 18:ijms18010040. [PMID: 28035996 PMCID: PMC5297675 DOI: 10.3390/ijms18010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE).
Collapse
|
44
|
Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer 2016; 23:T199-T210. [PMID: 27702752 PMCID: PMC5107136 DOI: 10.1530/erc-16-0298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
Abstract
Androgen receptor splice variants are alternatively spliced variants of androgen receptor, which are C-terminally truncated and lack the canonical ligand-binding domain. Accumulating evidence has indicated a significant role of androgen receptor splice variants in mediating resistance of castration-resistant prostate cancer to current therapies and in predicting therapeutic responses. As such, there is an urgent need to target androgen receptor splicing variants for more effective treatment of castration-resistant prostate cancer. Identification of precise and critical targeting points to deactivate androgen receptor splicing variants relies on a deep understanding of how they are generated and the mechanisms of their action. In this review, we will focus on the emerging data on their generation, clinical significance and mechanisms of action as well as the therapeutic influence of these findings.
Collapse
Affiliation(s)
- Subing Cao
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yang Zhan
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yan Dong
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| |
Collapse
|
45
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Ma D, Gao P, Qian L, Wang Q, Cai C, Jiang S, Xiao G, Cui W. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice. Int J Mol Sci 2015; 16:20020-32. [PMID: 26305245 PMCID: PMC4581338 DOI: 10.3390/ijms160820020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022] Open
Abstract
Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.
Collapse
Affiliation(s)
- Dezun Ma
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pengfei Gao
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lili Qian
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qingqing Wang
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunbo Cai
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shengwang Jiang
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Gaojun Xiao
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wentao Cui
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
47
|
Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen Receptor Biology in Triple Negative Breast Cancer: a Case for Classification as AR+ or Quadruple Negative Disease. Discov Oncol 2015. [PMID: 26201402 DOI: 10.1007/s12672-015-0232-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) amplification. Due to the absence of these receptors, TNBC does not respond to traditional endocrine or HER2-targeted therapies that improve patient prognosis in other breast cancer subtypes. TNBC has a poor prognosis, and currently, there are no effective targeted therapies. Some TNBC tumors express androgen receptor (AR) and may benefit from AR-targeted therapies. Here, we review the literature on AR in TNBC and propose that TNBC be further sub-classified as either AR+ TNBC or quadruple negative breast cancer since targeting AR may represent a viable therapeutic option for a subset of TNBC.
Collapse
Affiliation(s)
- Valerie N Barton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA
| | - Nicholas C D'Amato
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA
| | - Michael A Gordon
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA
| | - Anthony Elias
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO, RC1 North P18-5127 Mail Stop 8104, 12800 E. 19th Ave, Aurora, CO, 80015, USA.
| |
Collapse
|
48
|
Kerver HN, Wade J. Relationships among sex, season and testosterone in the expression of androgen receptor mRNA and protein in the green anole forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:303-14. [PMID: 25471151 DOI: 10.1159/000368388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Sexual behavior in male green anole lizards is regulated by a seasonal increase in testosterone (T). However, T is much more effective at activating behavioral, morphological and biochemical changes related to reproduction in the breeding season (BS; spring) compared to nonbreeding season (NBS; fall). An increase in androgen receptor (AR) during the BS is one potential mechanism for this differential responsiveness. AR expression has not been investigated in specific brain regions across seasons in anoles. The present studies were designed to determine relative AR expression in areas important for male (preoptic area, ventromedial amygdala) and female (ventromedial hypothalamus) sexual behavior, as well as whether T upregulates AR in the anole brain. In situ hybridization and Western blot analyses were performed in unmanipulated animals across sex and season, as well as in gonadectomized animals with and without T treatment. Among hormone-manipulated animals, more cells expressing AR mRNA were detected in females than males in the amygdala. T treatment increased the volume of the ventromedial hypothalamus of gonadectomized animals in the BS, but not the NBS. AR protein in dissections of the hypothalamus and preoptic area was increased in males compared to females specifically in the BS. Additionally, among females, it was increased in the NBS compared to the BS. Collectively, these results indicate that differences in central AR expression probably do not facilitate a seasonal responsiveness to T. However, they are consistent with a role for AR in regulating some differences between sexes in the display of reproductive behaviors.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
49
|
Mitani Y, Rao PH, Maity SN, Lee YC, Ferrarotto R, Post JC, Licitra L, Lippman SM, Kies MS, Weber RS, Caulin C, Lin SH, El-Naggar AK. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clin Cancer Res 2014; 20:6570-81. [PMID: 25316813 DOI: 10.1158/1078-0432.ccr-14-1746] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the molecular events associated with the activation of androgen receptor (AR) as a potential therapeutic target in patients with salivary duct carcinoma (SDC). EXPERIMENTAL DESIGN Comprehensive molecular and expression analysis of the AR gene in 35 tumor specimens (20 males and 15 females) and cell lines derived from SDC using Western blotting and RT-PCR, FISH analysis, and DNA sequencing was conducted. In vitro and in vivo animal studies were also performed. RESULTS AR expression was detected in 70% of the tumors and was mainly nuclear and homogenous in both male and female SDCs, although variable cytoplasmic and/or nuclear localization was also found. We report the identification of ligand-independent AR splice variants, mutations, and extra AR gene copy in primary untreated SDC tumors. In contrast to prostate cancer, no AR gene amplification was observed. In vitro knockdown of AR in a female derived SDC cell line revealed marked growth inhibition in culture and in vivo androgen-independent tumor growth. CONCLUSIONS Our study provides new detailed information on the molecular and structural alterations associated with AR gene activation in SDC and sheds more light on the putative functional role of AR in SDC cells. On the basis of these data, we propose that patients with SDC (male and female) can be stratified for hormone-based therapy in future clinical trials.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pulivarthi H Rao
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julian C Post
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Licitra
- Head and Neck Cancer Medical Oncology Unit, Department of Medical Oncology, Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan, Italy
| | - Scott M Lippman
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Merrill S Kies
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
50
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|