1
|
Müllers Y, Postma JA, Poorter H, van Dusschoten D. Deep-water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean. PLANT, CELL & ENVIRONMENT 2023; 46:2046-2060. [PMID: 36942406 DOI: 10.1111/pce.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/08/2023]
Abstract
Moderate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%-72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake.
Collapse
Affiliation(s)
- Yannik Müllers
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | | | - Hendrik Poorter
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- Department of Natural Sciences, Macquarie University, Sydney, Australia
| | | |
Collapse
|
2
|
Bourbia I, Lucani C, Brodribb TJ. Constant hydraulic supply enables optical monitoring of transpiration in a grass, a herb, and a conifer. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5625-5633. [PMID: 35727898 PMCID: PMC9467656 DOI: 10.1093/jxb/erac241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant transpiration is an inevitable consequence of photosynthesis and has a huge impact on the terrestrial carbon and water cycle, yet accurate and continuous monitoring of its dynamics is still challenging. Under well-watered conditions, canopy transpiration (Ec) could potentially be continuously calculated from stem water potential (Ψstem), but only if the root to stem hydraulic conductance (Kr-s) remains constant and plant capacitance is relatively small. We tested whether such an approach is viable by investigating whether Kr-s remains constant under a wide range of daytime transpiration rates in non-water-stressed plants. Optical dendrometers were used to continuously monitor tissue shrinkage, an accurate proxy of Ψstem, while Ec was manipulated in three species with contrasting morphological, anatomical, and phylogenetic identities: Tanacetum cinerariifolium, Zea mays, and Callitris rhomboidea. In all species, we found Kr-s to remain constant across a wide range of Ec, meaning that the dynamics of Ψstem could be used to monitor Ec. This was evidenced by the close agreement between measured Ec and that predicted from optically measured Ψstem. These results suggest that optical dendrometers enable both plant hydration and Ec to be monitored non-invasively and continuously in a range of woody and herbaceous species. This technique presents new opportunities to monitor transpiration under laboratory and field conditions in a diversity of woody, herbaceous, and grassy species.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, Tas, Australia
| | - Christopher Lucani
- School of Natural Sciences, University of Tasmania, Hobart, Tas, Australia
| | | |
Collapse
|
3
|
Franzini VI, Azcón R, Ruiz-Lozano JM, Aroca R. Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. PLANTA 2019; 249:1207-1215. [PMID: 30603790 DOI: 10.1007/s00425-018-03076-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/10/2023]
Abstract
Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N2-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.
Collapse
Affiliation(s)
- Vinicius Ide Franzini
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Rosario Azcón
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
4
|
Meunier F, Zarebanadkouki M, Ahmed MA, Carminati A, Couvreur V, Javaux M. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:31-44. [PMID: 29395124 DOI: 10.1016/j.jplph.2017.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported in the literature.
Collapse
Affiliation(s)
- Félicien Meunier
- Earth and Life Institute, Environmental sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | - Mutez A Ahmed
- Division of Soil Physics, University of Bayreuth, Bayreuth, Germany; Division of Soil Hydrology, University of Goettingen, D-37077 Göttingen, Germany; Department of Agricultural Engineering, Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| | - Andrea Carminati
- Division of Soil Physics, University of Bayreuth, Bayreuth, Germany
| | - Valentin Couvreur
- Earth and Life Institute, Agronomic sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Mathieu Javaux
- Earth and Life Institute, Environmental sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; Institute of Bio- and Geosciences, IBG-3 Agrosphere, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
5
|
Ranathunge K, Kim YX, Wassmann F, Kreszies T, Zeisler V, Schreiber L. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers. ANNALS OF BOTANY 2017; 119:629-643. [PMID: 28065927 PMCID: PMC5604597 DOI: 10.1093/aob/mcw252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. METHODS Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. KEY RESULTS When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. CONCLUSIONS Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Yangmin X. Kim
- Department of Soil Hydrology, George-August-University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Friedrich Wassmann
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Viktoria Zeisler
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
6
|
|
7
|
Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D, Haase A. High Molecular Weight Organic Compounds in the Xylem Sap of Mangroves: Implications for Long-Distance Water Transport. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1994.tb00789.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ranathunge K, Lin J, Steudle E, Schreiber L. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. PLANT, CELL & ENVIRONMENT 2011; 34:1223-40. [PMID: 21414017 DOI: 10.1111/j.1365-3040.2011.02318.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the root growth rate relative to aerated conditions. Histochemical studies revealed an early deposition of Casparian bands (CBs) and suberin lamellae (SL) in both the endodermis (EN) and exodermis, and accelerated lignification of stagnant roots. The absolute amounts of suberin, lignin and esterified aromatics (coumaric and ferulic acid) in these barriers were significantly higher in stagnant roots. However, correlative permeability studies revealed that early deposition of barriers in stagnant roots failed to reduce hydraulic conductivity (Lp(r) ) below those of aerated roots. In contrast to Lp(r) , the NaCl permeability (P(sr) ) of stagnant roots was markedly lower than that of aerated roots, as indicated by an increased reflection coefficient (σ(sr) ). In stagnant roots, P(sr) decreased by 60%, while σ(sr) increased by 55%. The stagnant medium differentially affected the Lp(r) and P(sr) of roots, which can be explained in terms of the physical properties of the molecules used and the size of the pores in the apoplast.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
9
|
Ranathunge K, Schreiber L. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1961-74. [PMID: 21421706 PMCID: PMC3060681 DOI: 10.1093/jxb/erq389] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 05/18/2023]
Abstract
Although it is implied that suberized apoplastic barriers of roots negatively correlate with water and solute permeabilities, direct transport measurements across roots with altered amounts and compositions of aliphatic suberin are scarce. In the present study, hydroponically grown Arabidopsis wild types (Col8 and Col0) and different suberin mutants with altered amounts and/or compositions (horst, esb1-1, and esb1-2) were used to test this hypothesis. Detailed histochemical studies revealed late development of Casparian bands and suberin lamellae in the horst mutant compared with wild types and esb mutants. Suberin analysis with gas chromatography and mass spectrometry (GC-MS) showed that the horst mutant had ∼33% lower amounts of aliphatic monomers than Col8 and Col0. In contrast, enhanced suberin mutants (esb1-1 and esb1-2) had twice the amount of suberin as the wild types. Correlative permeability measurements, which were carried out for the first time with a root pressure probe for Arabidopsis, revealed that the hydraulic conductivity (Lp(r)) and NaCl permeability (P(sr)) of the whole root system of the horst mutant were markedly greater than in the respective wild types. This was reflected by the total amounts of aliphatic suberin determined in the roots. However, increased levels of aliphatic suberin in esb mutants failed to reduce either water or NaCl permeabilities below those of the wild types. It was concluded that the simple view and the conventional assumption that the amount of root suberin negatively correlates with permeability may not always be true. The aliphatic monomer arrangement in the suberin biopolymer and its microstructure also play a role in apoplastic barrier formation.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | | |
Collapse
|
10
|
Meyer CJ, Peterson CA, Steudle E. Permeability of Iris germanica's multiseriate exodermis to water, NaCl, and ethanol. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1911-1926. [PMID: 21131546 PMCID: PMC3060676 DOI: 10.1093/jxb/erq380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 10/12/2010] [Accepted: 11/02/2010] [Indexed: 05/28/2023]
Abstract
The exodermis of Iris germanica roots is multiseriate. Its outermost layer matures first with typical Casparian bands and suberin lamellae. But as subsequent layers mature, the Casparian band extends into the tangential and anticlinal walls of their cells. Compared with roots in which the endodermis represents the major transport barrier, the multiseriate exodermis (MEX) was expected to reduce markedly radial water and solute transport. To test this idea, precocious maturation of the exodermis was induced with a humid air gap inside a hydroponic chamber. Hydraulic conductivity (Lp(pc)) was measured on completely submerged roots (with an immature exodermis) and on air-gap-exposed root regions (with two mature exodermal layers) using a pressure chamber. Compared with regions of roots with no mature exodermal layers, the mature MEX reduced Lp(pc) from 8.5×10(-8) to 3.9×10(-8) m s(-1) MPa(-1). Puncturing the MEX increased Lp(pc) to 19×10(-8) m s(-1) MPa(-1), indicating that this layer constituted a substantial hydraulic resistance within the root (75% of the total). Alternatively, a root pressure probe was used to produce pressure transients from which hydraulic conductivity was determined, but this device measured mainly flow through the endodermis in these wide-diameter roots. The permeability of roots to NaCl and ethanol was also reduced in the presence of two mature MEX layers. The data are discussed in terms of the validity of current root models and in terms of a potential role for I. germanica MEX during conditions of drought and salt stress.
Collapse
Affiliation(s)
- Chris J Meyer
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
11
|
Bramley H, Turner NC, Turner DW, Tyerman SD. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. PLANT, CELL & ENVIRONMENT 2007; 30:861-74. [PMID: 17547657 DOI: 10.1111/j.1365-3040.2007.01678.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.
Collapse
Affiliation(s)
- Helen Bramley
- School of Agriculture, Food and Wine, The University of Adelaide (Waite Campus), Plant Research Centre, Glen Osmond SA 5064, Australia
| | | | | | | |
Collapse
|
12
|
Ye Q, Kim Y, Steudle E. A re-examination of the minor role of unstirred layers during the measurement of transport coefficients of Chara corallina internodes with the cell pressure probe. PLANT, CELL & ENVIRONMENT 2006; 29:964-80. [PMID: 17087479 DOI: 10.1111/j.1365-3040.2006.01485.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The impact of unstirred layers (USLs) during cell pressure probe experiments with Chara corallina internodes has been quantified. The results show that the hydraulic conductivity (Lp) measured in hydrostatic relaxations was not significantly affected by USLs even in the presence of high water flow intensities ('sweep-away effect'). During pressure clamp, there was a reversible reduction in Lp by 20%, which was explained by the constriction of water to aquaporins (AQPs) in the C. corallina membrane and a rapid diffusional equilibration of solutes in arrays where water protruded across AQPs. In osmotic experiments, Lp, and permeability (Ps) and reflection (sigma s) coefficients increased as external flow rate of medium increased, indicating some effects of external USLs. However, the effect was levelling off at 'usual' flow rates of 0.20-0.30 m s(-1) and in the presence of vigorous stirring by air bubbles, suggesting a maximum thickness of external USLs of around 30 microm including the cell wall. Because the diameters of internodes were around 1 mm, internal USLs could have played a significant or even a dominating role, at least in the presence of the rapidly permeating solutes used [acetone, 2-propanol and dimethylformamide (DMF)]. A comparison of calculated (diffusion kinetics) and of measured permeabilities indicated an upper limit of the contribution of USLs for the rapidly moving solute acetone of 29%, and of 15% for the less rapidly permeating DME The results throw some doubt on recent claims that in C. corallina, USLs rather than the cell membrane dominate solute uptake, at least for the most rapidly moving solute acetone.
Collapse
Affiliation(s)
- Qing Ye
- Department of Plant Ecology, Bayreuth University, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
13
|
Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in corn roots. PLANT, CELL & ENVIRONMENT 2006; 29:459-70. [PMID: 17080599 DOI: 10.1111/j.1365-3040.2005.01423.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An oxidative gating of water channels (aquaporins: AQPs) was observed in roots of corn seedlings as already found for the green alga Chara corallina. In the presence of 35 mM hydrogen peroxide (H2O2)--a precursor of hydroxyl radicals (*OH)--half times of water flow (as measured with the aid of pressure probes) increased at the level of both entire roots and individual cortical cells by factors of three and nine, respectively. This indicated decreases in the hydrostatic hydraulic conductivity of roots (Lp(hr)) and of cells (Lp(h)) by the same factors. Unlike other stresses, the plant hormone abscisic acid (ABA) had no ameliorative effect either on root LP(hr) or on cell Lp(h) when AQPs were inhibited by oxidative stress. Closure of AQPs reduced the permeability of acetone by factors of two in roots and 1.5 in cells. This indicated that AQPs were not ideally selective for water but allowed the passage of the organic solute acetone. In the presence of H2O2, channel closure caused anomalous (negative) osmosis at both the root and the cell level. This was interpreted by the fact that in the case of the rapidly permeating solute acetone, channel closure caused the solute to move faster than the water and the reflection coefficient (sigma s) reversed its sign. When H2O2 was removed from the medium, the effects were reversible, again at both the root and the cell level. The results provide evidence of oxidative gating of AQPs, which leads on to inhibition of water uptake by the roots. Possible mechanisms of the oxidative gating of AQPs induced by H2O2 (*OH) are discussed.
Collapse
Affiliation(s)
- Qing Ye
- Department of Plant Ecology, University of Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
14
|
Garthwaite AJ, Steudle E, Colmer TD. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:655-64. [PMID: 16410258 DOI: 10.1093/jxb/erj055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The adventitious roots of Hordeum marinum grown in stagnant deoxygenated solution contain a barrier to radial O2 loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. The present experiments assessed whether induction of the barrier to ROL influences root hydraulic conductivity (Lpr). Wheat (Triticum aestivum) was also studied since, like H. marinum, this species forms aerenchyma in stagnant conditions, but does not form a barrier to ROL. Plants were grown in either aerated or stagnant, deoxygenated nutrient solution for 21-28 d. Root-sleeving O2 electrodes were used to assess patterns of ROL along adventitious roots, and a root-pressure probe and a pressure chamber to measure Lpr for individual adventitious roots and whole root systems, respectively. Lpr, measured under a hydrostatic pressure gradient, was 1.8-fold higher for individual roots, and 5.6-fold higher for whole roots systems, in T. aestivum than H. marinum. However, there was no difference in Lpr between the two species when measured under an osmotic driving force, when water moved from cell to cell rather than apoplastically. Root-zone O2 treatments during growth had no effect on Lpr for either species (measured in aerobic solution). It is concluded that induction of the barrier to ROL in H. marinum did not significantly affect the hydraulic conductivity of either individual adventitious roots or of the whole root system.
Collapse
Affiliation(s)
- Alaina J Garthwaite
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley 6009, Western Australia
| | | | | |
Collapse
|
15
|
Wan X, Steudle E, Hartung W. Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:411-22. [PMID: 14739264 DOI: 10.1093/jxb/erh051] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hydraulic properties (half-time of water exchange, T1/2, and hydraulic conductivity, Lp; T1/2 approximately 1/Lp) of individual cells in the cortex of young corn roots were measured using a cell pressure probe for up to 6 h to avoid variations between cells. When pulses of turgor pressure of different size were imposed, T1/2 (Lp) responded differently depending on the size. Pulses of smaller than 0.1 MPa, which induced a small proportional water flow, caused no changes in T1/2 (Lp). Medium-sized pulses of between 0.1 and 0.2 MPa caused an increase in T1/2 (decrease in Lp) by a factor of 4 to 23. The effects caused by medium-sized pulses were reversible within 5-20 min. When larger pulses of more than 0.2 MPa were employed, changes were not reversible within 1-3 h, but could be reversed within 30 min in the presence of 500 nM of the stress hormone ABA. Cells with a short T1/2 responded to the aquaporin blocker mercuric chloride (HgCl2). The treatment had no effect on cells which exhibited long T1/2 following a mechanical inhibition by the large-pulse treatment. Step decreases in pressure resulted in the same inhibition as step increases. Hence, the treatment did not cause a stretch-inhibition of water channels and was independent of the directions of both pressure changes and water flows induced by them. It is concluded that inhibition is caused by the absolute value of intensities of water flow within the channels, which increased in proportion to the size of step changes in pressure. Probable mechanisms by which the mechanical stimuli are perceived are (i) the input of kinetic energy to the channel constriction (NPA motif of aquaporin) which may cause a conformational change of the channel protein (energy-input model) or (ii) the creation of tensions at the constriction analogous to Bernoulli's principle for macroscopic pores (cohesion-tension model). Estimated rates of water flow within the pores were a few hundred micro m s-1, which is too small to create sufficient tension. They were much smaller than those proposed for AQP1. Based on literature data of single-channel permeability of AQP1, a per channel energy input of 200 kBxT (kB=Boltzmann constant) was estimated for the energy-input model. This should be sufficient to initiate changes of protein conformation and an inactivation of channels. The data indicate different closed states which differ in the amount of distortion and the rates at which they relax back to the open state.
Collapse
Affiliation(s)
- Xianchong Wan
- Lehrstuhl Pflanzenökologie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
16
|
Kargol M, Kargol A. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations. Biophys Chem 2003; 103:117-27. [PMID: 12568935 DOI: 10.1016/s0301-4622(02)00250-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since the physical interpretation of practical Kedem-Katchalsky (KK) equations is not clear, we consider an alternative, mechanistic approach to membrane transport generated by osmotic and hydraulic pressure. We study a porous membrane with randomly distributed pore sizes (radii). We postulate that reflection coefficient (sigma(p)) of a single pore may equal 1 or 0. From this postulate we derive new (mechanistic) transport equations. Their advantage is in clear physical interpretation and since we show they are equivalent to the KK equations, the interpretation of the latter became clearer as well. Hence the equations allow clearer and more detailed interpretation of results concerning membrane substances transport.
Collapse
Affiliation(s)
- M Kargol
- Institute of Physics, Swietokrzyska Academy, 25-406 Kielce, Swietokrzyska 15, Poland.
| | | |
Collapse
|
17
|
Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W. The exodermis: a variable apoplastic barrier. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2245-64. [PMID: 11709575 DOI: 10.1093/jexbot/52.365.2245] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The exodermis (hypodermis with Casparian bands) of plant roots represents a barrier of variable resistance to the radial flow of both water and solutes and may contribute substantially to the overall resistance. The variability is a result largely of changes in structure and anatomy of developing roots. The extent and rate at which apoplastic exodermal barriers (Casparian bands and suberin lamellae) are laid down in radial transverse and tangential walls depends on the response to conditions in a given habitat such as drought, anoxia, salinity, heavy metal or nutrient stresses. As Casparian bands and suberin lamellae form in the exodermis, the permeability to water and solutes is differentially reduced. Apoplastic barriers do not function in an all-or-none fashion. Rather, they exhibit a selectivity pattern which is useful for the plant and provides an adaptive mechanism under given circumstances. This is demonstrated for the apoplastic passage of water which appears to have an unusually high mobility, ions, the apoplastic tracer PTS, and the stress hormone ABA. Results of permeation properties of apoplastic barriers are related to their chemical composition. Depending on the growth regime (e.g. stresses applied) barriers contain aliphatic and aromatic suberin and lignin in different amounts and proportion. It is concluded that, by regulating the extent of apoplastic barriers and their chemical composition, plants can effectively regulate the uptake or loss of water and solutes. Compared with the uptake by root membranes (symplastic and transcellular pathways), which is under metabolic control, this appears to be an additional or compensatory strategy of plants to acquire water and solutes.
Collapse
Affiliation(s)
- E Hose
- Julius-von-Sachs-Institut für Biowissenschaften der Universität, Lehrstuhl Botanik I, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Miyamoto N, Steudle E, Hirasawa T, Lafitte R. Hydraulic conductivity of rice roots. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1835-46. [PMID: 11520872 DOI: 10.1093/jexbot/52.362.1835] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A pressure chamber and a root pressure probe technique have been used to measure hydraulic conductivities of rice roots (root Lp(r) per m(2) of root surface area). Young plants of two rice (Oryza sativa L.) varieties (an upland variety, cv. Azucena and a lowland variety, cv. IR64) were grown for 31-40 d in 12 h days with 500 micromol m(-2) s(-1) PAR and day/night temperatures of 27 degrees C and 22 degrees C. Root Lp(r) was measured under conditions of steady-state and transient water flow. Different growth conditions (hydroponic and aeroponic culture) did not cause visible differences in root anatomy in either variety. Values of root Lp(r) obtained from hydraulic (hydrostatic) and osmotic water flow were of the order of 10(-8) m s(-1) MPa(-1) and were similar when using the different techniques. In comparison with other herbaceous species, rice roots tended to have a higher hydraulic resistance of the roots per unit root surface area. The data suggest that the low overall hydraulic conductivity of rice roots is caused by the existence of apoplastic barriers in the outer root parts (exodermis and sclerenchymatous (fibre) tissue) and by a strongly developed endodermis rather than by the existence of aerenchyma. According to the composite transport model of the root, the ability to adapt to higher transpirational demands from the shoot should be limited for rice because there were minimal changes in root Lp(r) depending on whether hydrostatic or osmotic forces were acting. It is concluded that this may be one of the reasons why rice suffers from water shortage in the shoot even in flooded fields.
Collapse
Affiliation(s)
- N Miyamoto
- Lehrstuhl Pflanzenökologie, Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.
Collapse
Affiliation(s)
- E Steudle
- Lehrstuhl für Pflanzenökologie, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
20
|
Abstract
The expansion of roots is considered at the level of the single cell. The water relations of cell expansion are discussed. Water entry, solute import and cell wall properties are considered as possible regulatory points. It is argued that root cell expansion can be understood in terms of cell turgor pressure and the physical properties of the cell wall, provided solute supply is not limiting. Various measurements of cell wall properties in roots are presented and the assumptions underlying their measurements are presented. It is concluded that cell wall properties must be measured over short time periods to prevent alterations in wall properties during the experiment. The radial location of the load-bearing layers is discussed and it is concluded that, unlike aerial tissue, growth is limited by the properties of the inner layer of the root cortex. Evidence is presented to show that cell wall properties can change both during development and following turgor perturbation. In general, however, turgor itself is tightly regulated, particularly towards the root tip. A number of environmental situations are presented in which root growth is altered. The mechanism of the alteration is discussed at the single cell level. These 'stresses'include osmotic stress, low temperature and soil compaction. In many cases the alteration of root growth is consistent with changes in the ceil wall properties of the growing ceils. Severe stress, resulting in near cessation of root cell extension, can result in a change (usually an increase) in turgor pressure. The change in turgor pressure of the cells in the growing zone is smaller than that which would be expected from a continuation of an unstressed solute import rate. This exemplifies both the change in cell wall properties and the tight turgor homeostasis of root tips. The biochemical processes which underlie the modulation of cell wall properties are presented as they are currently understood in roots. Measurements of the chemical composition of the wall have not revealed any useful differences which can explain the developmental or stress-induced changes in cell wall properties. Recent work on cell wall enzymes and proteins may provide information about control of cross-linkages within the wall. In the last section the relative importance of apoplastic and symplastic solute transport to the expanding cells is considered. At present the consensus appears to favour the symplastic route, but the apoplastic pathway may also operate, possibly as a scavenging mechanism for leaked ions. The regulation of turgor pressure by linking solute import with wall loosening is discussed. Contents Summary 3 I. Introduction 4 II. Factors controlling cell expansion 4 III. Wall extensibility and yield threshold in roots 6 IV. Environmental effects on root cell expansion 10 V. Modification of cell wall biochemistry 15 VI. Linkage of growth with solute import 18 VII. Future prospects 21 VIII. Acknowledgements 22 IX. References 22.
Collapse
Affiliation(s)
- Jeremy Pritchard
- Ysgol Gwyddorau Bioleg, Coleg Prifysgol Gogledd Cymru, Bangor, Gwynedd LL57 2SY, Wales
| |
Collapse
|
21
|
Steudle E, Frensch J. Osmotic responses of maize roots : Water and solute relations. PLANTA 1989; 177:281-95. [PMID: 24212420 DOI: 10.1007/bf00403585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/1988] [Accepted: 10/13/1988] [Indexed: 05/12/2023]
Abstract
Water and solute relations of excised seminal roots of young maize (Zea mays L) plants, have been measured using the root pressure probe. Upon addition of osmotic solutes to the root medium, biphasic root pressure relaxations were obtained as theoretically expected. The relaxations yielded the hydraulic conductivity Lp r) the permeability coefficient (P sr), and the reflection coefficient (σ sr) of the root. Values of Lp r in these experiments were by nearly an order of magnitude smaller than Lp r values obtained from experiments where hydrostatic pressure gradients were used to induce water flows. The value of P sr was determined for nine different osmotica (electrolytes and nonelectrolytes) which resulted in rather variable values (0.1·10(-8)-1.7·10(-8)m·s(-1)). The reflection coefficient σ sr of the same solutes ranged between 0.3 and 0.6, i.e. σ sr was low even for solutes for which cell membranes exhibit a σ s≈1. Deviations from the theoretically expected biphasic responses occured which may have reflected changes of either P sr or of active pumping induced by the osmotic change. The absolute values of Lp r, P sr, and σ sr have been critically examined for an underestimation by unstirred layer effecs. The data indicate a considerable apoplasmic component for radial movement of water in the presence of hydrostatic gradients and also some solute flow byppassing root protoplasts. In the presence of osmotic gradients, however, there was a substantial cell-to-cell transport of water. Cutting experiments demonstrated that the hydraulic resistance for the longitudinal movement of water was much smaller than for radial transport except for the apical ends of the segments (length=5 to 20 mm). The differences in Lp r as well as the low σ sr values suggest that the simple osmometer model of the root with a single osmotic barrier exhibiting nearly semipermeable properties should be extended for a composite membrane model with hydraulic and osmotic barriers arranged in series and in parallel.
Collapse
Affiliation(s)
- E Steudle
- Lehrstuhl für Pflanzenökologie, Universität Bayreuth, Universitätsstrasse 30, D-8580, Bayreuth, Federal Republic of Germany
| | | |
Collapse
|
22
|
|