1
|
Herritt MT, Pauli D, Mockler TC, Thompson AL. Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum ( Sorghum bicolor) in a field setting. PLANT METHODS 2020; 16:109. [PMID: 32793296 PMCID: PMC7419188 DOI: 10.1186/s13007-020-00650-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/01/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthesis is one of the most important biological reactions and forms the basis of crop productivity and yield on which a growing global population relies. However, to develop improved plant cultivars that are capable of increased productivity, methods that can accurately and quickly quantify photosynthetic efficiency in large numbers of genotypes under field conditions are needed. Chlorophyll fluorescence imaging is a rapid, non-destructive measurement that can provide insight into the efficiency of the light-dependent reactions of photosynthesis. RESULTS To test and validate a field-deployed fluorescence imaging system on the TERRA-REF field scanalyzer, leaves of potted sorghum plants were treated with a photosystem II inhibitor, DCMU, to reduce photochemical efficiency (FV/FM). The ability of the fluorescence imaging system to detect changes in fluorescence was determined by comparing the image-derived values with a handheld fluorometer. This study demonstrated that the imaging system was able to accurately measure photochemical efficiency (FV/FM) and was highly correlated (r = 0.92) with the handheld fluorometer values. Additionally, the fluorescence imaging system was able to track the decrease in photochemical efficiency due to treatment of DCMU over a 7 day period. CONCLUSIONS The system's ability to capture the temporal dynamics of the plants' response to this induced stress, which has comparable dynamics to abiotic and biotic stressors found in field environments, indicates the system is operating correctly. With the validation of the fluorescence imaging system, physiological and genetic studies can be undertaken that leverage the fluorescence imaging capabilities and throughput of the field scanalyzer.
Collapse
Affiliation(s)
- Matthew T. Herritt
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ 85138 USA
| | - Duke Pauli
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Todd C. Mockler
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Alison L. Thompson
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ 85138 USA
| |
Collapse
|
2
|
Chaumet B, Morin S, Hourtané O, Artigas J, Delest B, Eon M, Mazzella N. Flow conditions influence diuron toxicokinetics and toxicodynamics in freshwater biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1242-1251. [PMID: 30586810 DOI: 10.1016/j.scitotenv.2018.10.265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Biofilms are considered as good bioindicators of contamination by means of their capacity to react quickly to xenobiotics exposure, and their pivotal role in sustaining the aquatic trophic web. The exchanges of dissolved substances between water column and biofilm can be modulated by flow velocity. This study deals with toxicokinetic (transfer mechanisms) and toxicodynamic (effects) modelling of pesticides under two contrasted flow conditions. Diuron was used to run a 2-h kinetic study on mature biofilms in river channels. Two flow conditions were considered (⋘1 cm·s-1: lentic environments such as ponds, 2 cm·s-1: lotic environments such as watercourses). Three concentrations were tested in order to estimate contamination levels in biofilms: 0, 5 (environmentally relevant concentration) and 50 (to determine the concentration effect) μg·L-1. The effect of the above-mentioned factors was also assessed on biofilms photosynthesis inhibition. For successive sampling times between 0 and 2 h, the raw biofilms and EPS tightly bound to cells plus microorganisms (T-EPS-M), were physically separated and analysed for diuron accumulation and structural and functional microbial descriptors. Diuron amounts accumulated in biofilm increased with increasing diuron exposure. Biofilms accumulated higher amounts of diuron at the lower flow velocity compared to high flow for raw biofilms, while accumulation in the T-EPS-M fraction was similar between flow conditions. Consequently, both flow velocity and diuron exposure had an influence on diuron bioaccumulation and distribution. Photosynthesis inhibition over time was directly linked to the exposure concentration of diuron recorded in the T-EPS-M fraction. These results suggest that flow causes a loss of organic matter in biofilms, decreasing the total accumulation of diuron, especially within diffusible EPS. As pesticide distribution in biofilm is a major factor in the onset of toxicity, the novel fractioning method presented here will improve further toxicokinetic and toxicodynamic studies dealing with biofilms exposed to organic toxicants.
Collapse
Affiliation(s)
- Betty Chaumet
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France.
| | - Soizic Morin
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France
| | - Océane Hourtané
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France
| | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 63000 Clermont-Ferrand, France
| | - Brigitte Delest
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France
| | - Mélissa Eon
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France
| | - Nicolas Mazzella
- Unité de recherche EABX, Groupement Irstea de Bordeaux, 50 Avenue de Verdun, 33612 Cestas Cedex, France
| |
Collapse
|
3
|
Noble E, Kumar S, Görlitz FG, Stain C, Dunsby C, French PMW. In vivo label-free mapping of the effect of a photosystem II inhibiting herbicide in plants using chlorophyll fluorescence lifetime. PLANT METHODS 2017; 13:48. [PMID: 28638436 PMCID: PMC5472976 DOI: 10.1186/s13007-017-0201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/08/2017] [Indexed: 06/19/2023]
Abstract
BACKGROUND In order to better understand and improve the mode of action of agrochemicals, it is useful to be able to visualize their uptake and distribution in vivo, non-invasively and, ideally, in the field. Here we explore the potential of plant autofluorescence (specifically chlorophyll fluorescence) to provide a readout of herbicide action across the scales utilising multiphoton-excited fluorescence lifetime imaging, wide-field single-photon excited fluorescence lifetime imaging and single point fluorescence lifetime measurements via a fibre-optic probe. RESULTS Our studies indicate that changes in chlorophyll fluorescence lifetime can be utilised as an indirect readout of a photosystem II inhibiting herbicide activity in living plant leaves at three different scales: cellular (~μm), single point (~1 mm2) and macroscopic (~8 × 6 mm2 of a leaf). Multiphoton excited fluorescence lifetime imaging of Triticum aestivum leaves indicated that there is an increase in the spatially averaged chlorophyll fluorescence lifetime of leaves treated with Flagon EC-a photosystem II inhibiting herbicide. The untreated leaf exhibited an average lifetime of 560 ± 30 ps while the leaf imaged 2 h post treatment exhibited an increased lifetime of 2000 ± 440 ps in different fields of view. The results from in vivo wide-field single-photon excited fluorescence lifetime imaging excited at 440 nm indicated an increase in chlorophyll fluorescence lifetime from 521 ps in an untreated leaf to 1000 ps, just 3 min after treating the same leaf with Flagon EC, and to 2150 ps after 27 min. In vivo single point fluorescence lifetime measurements demonstrated a similar increase in chlorophyll fluorescence lifetime. Untreated leaf presented a fluorescence lifetime of 435 ps in the 440 nm excited chlorophyll channel, CH4 (620-710 nm). In the first 5 min after treatment, mean fluorescence lifetime is observed to have increased to 1 ns and then to 1.3 ns after 60 min. For all these in vivo plant autofluorescence lifetime measurements, the plants were not dark-adapted. CONCLUSIONS We demonstrate that the local impact of a photosystem II herbicide on living plant leaves can be conveniently mapped in space and time via changes in autofluorescence lifetime, which we attribute to changes in chlorophyll fluorescence. Using portable fibre-optic probe instrumentation originally designed for label-free biomedical applications, this capability could be deployed outside the laboratory for monitoring the distribution of herbicides in growing plants.
Collapse
Affiliation(s)
- Elizabeth Noble
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
- Institute of Chemical Biology, Imperial College London, London, SW7 2AZ UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| | - Frederik G. Görlitz
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| | - Chris Stain
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
- Centre for Pathology, Imperial College London, London, SW7 2AZ UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
4
|
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. PHOTOSYNTHESIS RESEARCH 2014; 122:121-58. [PMID: 25119687 PMCID: PMC4210649 DOI: 10.1007/s11120-014-0024-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/02/2014] [Indexed: 05/18/2023]
Abstract
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gert Schansker
- Avenue des Amazones 2, 1226 Chêne-Bougeries, Switzerland
| | - Richard J. Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL Brazil
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Karolina Bosa
- Department of Pomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - Piotr Dąbrowski
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, 452 001 M.P India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, C de Vera sn, 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - DorothyBelle Poli
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153 USA
| | - Martina Pollastrini
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | | | - Beata Rutkowska
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - João Serôdio
- Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kancherla Suresh
- Directorate of Oil Palm Research, West Godavari Dt., Pedavegi, 534 450 Andhra Pradesh India
| | - Wiesław Szulc
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
5
|
Lichtenthaler HK, Langsdorf G, Buschmann C. Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence. PHOTOSYNTHESIS RESEARCH 2013; 116:355-61. [PMID: 23722588 DOI: 10.1007/s11120-013-9842-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/26/2013] [Indexed: 05/22/2023]
Abstract
The principles of the chlorophyll (Chl) fluorescence induction kinetics (known as Kautsky effect) and their change by the photosystem II herbicide diuron are presented together with the Chl fluorescence emission spectra of a normal and diuron-inhibited leaf. By imaging the Chl fluorescence emission of green leaves the successive uptake of diuron and the concomitant loss of photosynthetic quantum conversion from the leaf base to the leaf tip are documented.
Collapse
Affiliation(s)
- Hartmut K Lichtenthaler
- Botanisches Institut (Physiology and Biochemistry of Plants), Karlsruhe Institute of Technology (KIT), University Division, Kaiserstr. 12, 76128, Karlsruhe, Germany,
| | | | | |
Collapse
|
6
|
Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann C. Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnol J 2009; 4:1152-67. [PMID: 19557794 DOI: 10.1002/biot.200800242] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Agricultural production is limited by a wide range of abiotic (e.g. drought, waterlogging) and biotic (pests, diseases and weeds) stresses. The impact of these stresses can be minimized by appropriate management actions such as irrigation or chemical pesticide application. However, further optimization requires the ability to diagnose and quantify the different stresses at an early stage. Particularly valuable information of plant stress responses is provided by plant imaging, i.e. non-contact sensing with spatial resolving power: (i) thermal imaging, detecting changes in transpiration rate and (ii) fluorescence imaging monitoring alterations in photosynthesis and other physiological processes. These can be supplemented by conventional video imagery for study of growth. An efficient early warning system would need to discriminate between different stressors. Given the wide range of sensors, and the association of specific plant physiological responses with changes at particular wavelengths, this goal seems within reach. This is based on the organization of the individual sensor results in a matrix that identifies specific signatures for multiple stress types. In this report, we first review the diagnostic effectiveness of different individual imaging techniques and then extend this to the multi-sensor stress-identification approach.
Collapse
|
7
|
Szigeti Z. Physiological status of cultivated plants characterised by multi-wavelength fluorescence imaging. ACTA ACUST UNITED AC 2008. [DOI: 10.1556/aagr.56.2008.2.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fluorescence imaging technique was elaborated primarily for the detection of the fluorescence traits accompanying changes in the physiological status of stressed plants. The paper summarises the conditions and technical background required for the use of multi-wavelength fluorescence imaging. Images of leaves were recorded at wavelengths of 440, 520, 690 and 740 nm. Possible applications are illustrated by studies on the leaves of stressed plants. An evaluation of the images is presented, including the necessary corrections and fluorescence ratios, examples of comparisons between imaging and functional activity measurements, and an evaluation of the diagnostic importance and reliability of imaging in detecting the effects of stressors in plants. The results demonstrate that the multi-wavelength fluorescence imaging of leaves is a useful method for detecting the presence of stress in plants and for determining the extent of the stress.
Collapse
Affiliation(s)
- Z. Szigeti
- 1 Eötvös Loránd University Department of Plant Physiology and Molecular Plant Biology, Institute of Biology Budapest Hungary
| |
Collapse
|
8
|
Buschmann C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. PHOTOSYNTHESIS RESEARCH 2007; 92:261-71. [PMID: 17525834 DOI: 10.1007/s11120-007-9187-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/25/2007] [Indexed: 05/15/2023]
Abstract
Various approaches to understand and make use of the variable chlorophyll (Chl) fluorescence emission spectrum and fluorescence ratio are reviewed. The Chl fluorescence of leaves consists of two maxima in the red (near 685-690 nm), and far-red region (near 730-740 nm). The intensity and shape of the Chl fluorescence emission spectrum of leaves at room temperature are primarily dependent on the concentration of the fluorophore Chl a, and to a lower degree also on the leaf structure, the photosynthetic activity, and the leaf's optical properties. The latter determine the penetration of excitation light into the leaf as well as the emission of Chl fluorescence from different depths of the leaf. Due to the re-absorption mainly of the red Chl fluorescence band emitted inside the leaf, the ratio between the red and the far-red Chl fluorescence maxima (near 690 and 730-740 nm, respectively), e.g., as F690/F735, decreases with increasing Chl content in a curvilinear relationship and is a good inverse indicator of the Chl content of the leaf tissue, e.g., before and after stress events. The Chl fluorescence ratio of leaves can be applied for Chl determinations in basic photosynthesis research, agriculture, horticulture, and forestry. It can be used to assess changes of the photosynthetic apparatus, developmental processes of leaves, state of health, stress events, stress tolerance, and also to detect diseases or N-deficiency of plants.
Collapse
Affiliation(s)
- Claus Buschmann
- Botanical Institute, University of Karlsruhe, 76128 Karlsruhe, Germany.
| |
Collapse
|
9
|
Pérez-Bueno ML, Ciscato M, VandeVen M, García-Luque I, Valcke R, Barón M. Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. PHOTOSYNTHESIS RESEARCH 2006; 90:111-23. [PMID: 17203361 DOI: 10.1007/s11120-006-9098-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 08/18/2006] [Indexed: 05/04/2023]
Abstract
We have studied by kinetic Chl-fluorescence imaging (Chl-FI) Nicotiana benthamiana plants infected with the Italian strain of the pepper mild mottle tobamovirus (PMMoV-I). We have mapped leaf photosynthesis at different points of the fluorescence induction curve as well as at different post-infection times. Images of different fluorescence parameters were obtained to investigate which one could discriminate control from infected leaves in the absence of symptoms. The non-photochemical quenching (NPQ) of excess energy in photosystem II (PSII) seems to be the most adequate chlorophyll fluorescence parameter to assess the effect of tobamoviral infection on the chloroplast. Non-symptomatic mature leaves from inoculated plants displayed a very characteristic time-varying NPQ pattern. In addition, a correlation between NPQ amplification and virus localization by tissue-print was found, suggesting that an increase in the local NPQ values is associated with the areas invaded by the pathogen. Changes in chloroplast ultrastructure in non-symptomatic leaf areas showing different NPQ levels were also investigated. A gradient of ultrastructural modifications was observed among the different areas.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Plant Biology Department, Centro Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Schurr U, Walter A, Rascher U. Functional dynamics of plant growth and photosynthesis--from steady-state to dynamics--from homogeneity to heterogeneity. PLANT, CELL & ENVIRONMENT 2006; 29:340-52. [PMID: 17080590 DOI: 10.1111/j.1365-3040.2005.01490.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants are much more dynamic than we usually expect them to be. This dynamic behaviour is of paramount importance for their performance under natural conditions, when resources are distributed heterogeneously in space and time. However, plants are not only the cue ball of their physical and chemical environment. Endogenous rhythms and networks controlling photosynthesis and growth buffer plant processes from external fluctuations. This review highlights recent evidence of the importance of dynamic temporal and spatial organization of photosynthesis and of growth in leaves and roots. These central processes for plant performance differ strongly in their dependence on environmental impact and endogenous properties, respectively. Growth involves a wealth of processes ranging from the supply of resources from external and internal sources to the growth processes themselves. In contrast, photosynthesis can only take place when light and CO2 are present and thus clearly requires 'input from the environment'. Nevertheless, growth and photosynthesis are connected to each other via mechanisms that are still not fully understood. Recent advances in imaging technology have provided new insights into the dynamics of plant-environment interactions. Such processes do not only play a crucial role in understanding stress response of plants under extreme environmental conditions. Dynamics of plants under modest growth conditions rise from endogenous mechanisms as well as exogenous impact too. It is thus an important task for future research to identify how dynamic external conditions interact with plant-internal signalling networks to optimize plant behaviour in real time and to understand how plants have adapted to characteristic spatial and temporal properties of the resources from their environment, on which they depend on.
Collapse
Affiliation(s)
- U Schurr
- ICG-III (Phytosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
11
|
Hulsen K, Minne V, Lootens P, Vandecasteele P, Höfte M. A chlorophyll a fluorescence-based Lemna minor bioassay to monitor microbial degradation of nanomolar to micromolar concentrations of linuron. Environ Microbiol 2002; 4:327-37. [PMID: 12071978 DOI: 10.1046/j.1462-2920.2002.00309.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A plant-microbial bioassay, based on the aquatic macrophyte Lemna minor L. (duckweed), was used to monitor biodegradation of nano- and micromolar concentrations of the phenylurea herbicide linuron. After 7 days of exposure to linuron, log-logistic-based dose-response analysis revealed significant growth inhibition on the total frond area of L. minor when linuron concentrations > or = 80 nM were added to the bioassay. A plant-protective effect was obtained for all concentrations > 80 nM by inoculation with either a bacterial consortium or Variovorax paradoxus WDL1, which is probably the main actor in this consortium. The outcome of the plant-microbe-toxicant interaction was also assessed using pulse amplitude-modulated chlorophyll a fluorescence and chlorophyll a fluorescence imaging. Linuron toxicity to L. minor became apparent as a significant decrease in the effective quantum yield (Delta F/Fm') within 90 min after exposure of the plants to linuron concentrations > or = 160 nM. Inoculation of the bioassay with the linuron-degrading bacteria neutralized the effect on the effective quantum yield at concentrations > or = 160 nM, indicating microbial degradation of these concentrations. The chlorophyll a fluorescence-based Lemna bioassay described here offers a sensitive, fast and cost-effective approach to study the potential of biodegrading microorganisms to break down minute concentrations of photosynthesis-inhibiting xenobiotics.
Collapse
Affiliation(s)
- Kris Hulsen
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
12
|
Hulsen K, Top EM, Höfte M. Biodegradation of linuron in a Phaseolus bioassay detected by chlorophyll fluorescence. THE NEW PHYTOLOGIST 2002; 154:821-829. [PMID: 33873450 DOI: 10.1046/j.1469-8137.2002.00402.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Measuring chlorophyll fluorescence of sensitive indicator plants is a promising approach to follow microbial degradation of the photosystem II (PSII) inhibiting herbicide linuron in a plant-microbial bioassay. • Both pulse amplitude modulation (PAM) fluorimetry and a stroboscope-based Chla fluorescence imaging system were used to monitor the phytotoxic effect of linuron applied to bean (Phaseolus vulgaris) plants. • Inoculation of a hydroponic model system with a linuron-degrading microbial consortium mostly neutralized the phytotoxic effect of the linuron, applied at 0.1 mg l-1 and 1 mg l-1 . This indicated that the inoculum was even able to degrade linuron at substrate concentrations (0.1 mg l-1 ) that were not detectable by HPLC analysis. The bioprotective effect of the inoculum was also demonstrated when 5 mg l-1 of linuron was spiked into a soil substrate. • This is the first report on the use of chlorophyll fluorescence to demonstrate biodegradation. This method is particularly suited for the detection of low linuron concentrations and could probably also be used for other xenobiotics interfering with photosynthesis.
Collapse
Affiliation(s)
- Kris Hulsen
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Belgium
| | - Eva M Top
- University of Idaho, Department of Biological Sciences, 353B Life Sciences Building, Moscow, ID 83844-3051, USA
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Belgium
| |
Collapse
|