1
|
Cabrita PJV. Water exchange between the Chlorenchyma and the Hydrenchyma and its physiological role in leaves with Crassulacean acid metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14221. [PMID: 38450837 DOI: 10.1111/ppl.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
Direct and non-destructive measurements of plant-water relations of plants exhibiting the Crassulacean acid metabolism (CAM) photosynthetic pathway are seldom addressed, with most findings inferred from gas exchange measurements. The main focus of this paper was to study how the water exchange between the chlorenchyma and the hydrenchyma depends on and follows the CAM photosynthetic diel pattern using non-invasive and continuous methods. Gas exchange and leaf patch clamp pressure probe (LPCP) measurements were performed on Aloe vera (L.) Burm f., a CAM species, and compared to measurements on banana (Musa acuminata Colla), a C3 species. The LPCP output pressure, Pp , of Aloe vera plants follows its diel CAM photosynthetic cycle, reversed to that observed in banana and other C3 species. The four phases of CAM photosynthesis can also be identified in the diel LPCP output pressure, Pp , cycle. The Pp values in Aloe vera are determined by the hydrenchyma turgor pressure, with both parameters being reversely related. A non-invasive and continuous assessment of the water exchange between the chlorenchyma and the hydrenchyma in CAM plants, namely, by following the changes in the hydrenchyma turgor pressure, is presented. However, showing once more how the LPCP output pressure, Pp , depends on the leaf structure, such an approach can be used to study plant-water relations in other CAM species with a leaf structure similar to Aloe vera, with the hydrenchyma composing most of the leaf volume.
Collapse
|
2
|
Perez-Arcoiza A, Diaz-Espejo A, Fernandez-Torres R, Perez-Romero LF, Hernandez-Santana V. Dual effect of the presence of fruits on leaf gas exchange and water relations of olive trees. TREE PHYSIOLOGY 2023; 43:277-287. [PMID: 36263987 DOI: 10.1093/treephys/tpac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The presence of fruits provokes significant modifications in plant water relations and leaf gas exchange. The underlying processes driving these modifications are still uncertain and likely depend on the water deficit level. Our objective was to explain and track the modification of leaf-water relations by the presence of fruits and water deficit. With this aim, net photosynthesis rate (AN), stomatal conductance (gs), leaf osmotic potential (Ψπ), leaf soluble sugars and daily changes in a variable related to leaf turgor (leaf patch pressure) were measured in olive trees with and without fruits at the same time, under well-watered (WW) and water stress (WS) conditions. Leaf gas exchange was increased by the presence of fruits, this effect being observed mainly in WW trees, likely because under severe water stress, the dominant process is the response of the plant to the water stress and the presence of fruits has less impact on the leaf gas exchange. Ψπ was also higher for WW trees with fruits than for WW trees without fruits. Moreover, leaves from trees without fruits presented higher concentrations of soluble sugars and starch than leaves from trees with fruits for both WW and WS, these differences matching those found in Ψπ. Thus, the sugar accumulation would have had a dual effect because on one hand, it decreased Ψπ, and on the other hand, it would have downregulated AN, and finally gs in WW trees. Interestingly, the modification of Ψπ by the presence of fruits affected turgor in WW trees, the change in which can be identified with leaf turgor sensors. We conclude that plant water relationships and leaf gas exchange are modified by the presence of fruits through their effect on the export of sugars from leaves to fruits. The possibility of automatically identifying the onset of sugar demand by the fruit through the use of sensors, in addition to the water stress produced by soil water deficit and atmosphere drought, could be of great help for fruit orchard management in the future.
Collapse
Affiliation(s)
- A Perez-Arcoiza
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda Reina Mercedes, 41012 Seville, Spain
| | - A Diaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), Avda. Reina Mercedes, 41012 Seville, Spain
| | - R Fernandez-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla (US), C/Prof. García González s/n, 41012 Seville, Spain
| | - L F Perez-Romero
- Departamento de Ciencias Agroforestales, Universidad de Huelva (UHU), Campus del Carmen, Edificio ETSI, Avda de las Fuerzas Armadas s/n, 21007, Huelva, Spain
| | - V Hernandez-Santana
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda Reina Mercedes, 41012 Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), Avda. Reina Mercedes, 41012 Seville, Spain
| |
Collapse
|
3
|
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes (Basel) 2023; 14:genes14020370. [PMID: 36833297 PMCID: PMC9957078 DOI: 10.3390/genes14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.
Collapse
Affiliation(s)
| | | | - Punshi Singh Tongbram
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
| | - Vadthya Lokya
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
- Department of Life Sciences, School of Life Sciences, Manipur University, Imphal 795003, India
- Correspondence:
| |
Collapse
|
4
|
The monitoring of plant physiology and ecology:from materials to flexible devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Fuenzalida TI, Binks O, Bryant CJ, Wolfe J, Ball MC. Monitoring plant water status via static uniaxial compression of the leaf lamina. PLANT, CELL & ENVIRONMENT 2022; 45:2589-2606. [PMID: 35733289 DOI: 10.1111/pce.14383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Turgor pressure is an essential, but difficult to measure indicator of plant water status. Turgor has been quantified by localized compression of cells or tissues, but a simple method to perform these measurements is lacking. We hypothesized that changes in leaf turgidity can be monitored by uniaxially compressing the leaf lamina and measuring the mechanical stress under a constrained thickness (stress relaxation) and that changes in leaf water content can be monitored by measuring the leaf thickness under constant mechanical stress. Using a simple, custom-built leaf squeeze-flow rheometer, we performed different compression tests on leaves from 13 plant species. The mechanical stress measured during stress relaxation was correlated with leaf bulk turgor pressure (R2 > 0.95) and thus with balancing pressure (R2 > 0.94); the leaf thickness measured under constant mechanical stress was correlated with relative water content (R2 > 0.74). The coefficients of these relationships were related to the leaf bulk osmotic pressure at the turgor-loss point. An idealized average-cell model suggests that, under isothermal conditions, the stationary bulk modulus during compression is largely determined by the bulk osmotic pressure. Our study presents an inexpensive, accessible and automatable method to monitor plant water status noninvasively.
Collapse
Affiliation(s)
- Tomás I Fuenzalida
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australia
| | - Oliver Binks
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australia
| | - Callum J Bryant
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australia
| | - Joe Wolfe
- School of Physics, UNSW, Sydney, NSW, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, Australia
| |
Collapse
|
6
|
Cabrita P. Non-invasive assessment of the physiological role of leaf aerenchyma in Hippeastrum Herb. and its relation to plant water status. PLANTA 2022; 256:19. [PMID: 35750944 PMCID: PMC9232429 DOI: 10.1007/s00425-022-03930-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The leaf patch clamp pressure probe combined with gas exchange measurements provides a non-invasive approach for measuring leaf aerenchyma pressure and study its physiological role in plants. The non-invasive leaf patch clamp pressure probe (LPCP) measures the output pressure, Pp, in response to the pressure applied by two magnets clamped to a leaf. In many plant species, it has been observed that the diel pattern of Pp follows the changes in the leaf turgor pressure reversely. The genus Hippeastrum comprises 143 species and many hybrids and cultivars of high economic value within Amaryllidaceae. Their leaves are characterized by the presence of aerenchyma composed of lacunae, running throughout the leaf and composing most of the mesophyll volume. In Hippeastrum, the diel changes of the LPCP output pressure are the reverse of that observed on the air pressure in the leaf aerenchyma, Pa, which depends on the changes in the leaf vapor pressure occurring during photosynthesis. A theoretical model is proposed and confirmed experimentally by LPCP and gas exchange measurements. The output pressure, Pp, in Hippeastrum can be related to the plant water status through the gas exchange processes that occur during photosynthesis. Considering the natural habitats of Hippeastrum species, these results agree with the physiological role of leaf aerenchyma in facilitating gas transport and light scattering in leaves, thus contributing to the photosynthetic efficiency of these plants under adverse environments. A second, but supplemental, interpretation of the LPCP output pressure, Pp, when applied on species in which the aerenchyma constitutes most of the mesophyll volume is presented.
Collapse
Affiliation(s)
- Paulo Cabrita
- IAPN-Institute of Applied Plant Nutrition, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Eyland D, Luchaire N, Cabrera‐Bosquet L, Parent B, Janssens SB, Swennen R, Welcker C, Tardieu F, Carpentier SC. High-throughput phenotyping reveals differential transpiration behaviour within the banana wild relatives highlighting diversity in drought tolerance. PLANT, CELL & ENVIRONMENT 2022; 45:1647-1663. [PMID: 35297073 PMCID: PMC9310827 DOI: 10.1111/pce.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Crop wild relatives, the closely related species of crops, may harbour potentially important sources of new allelic diversity for (a)biotic tolerance or resistance. However, to date, wild diversity is only poorly characterized and evaluated. Banana has a large wild diversity but only a narrow proportion is currently used in breeding programmes. The main objective of this study was to evaluate genotype-dependent transpiration responses in relation to the environment. By applying continuous high-throughput phenotyping, we were able to construct genotype-specific transpiration response models in relation to light, VPD and soil water potential. We characterized and evaluated six (sub)species and discerned four phenotypic clusters. Significant differences were observed in leaf area, cumulative transpiration and transpiration efficiency. We confirmed a general stomatal-driven 'isohydric' drought avoidance behaviour, but discovered genotypic differences in the onset and intensity of stomatal closure. We pinpointed crucial genotype-specific soil water potentials when drought avoidance mechanisms were initiated and when stress kicked in. Differences between (sub)species were dependent on environmental conditions, illustrating the need for high-throughput dynamic phenotyping, modelling and validation. We conclude that the banana wild relatives contain useful drought tolerance traits, emphasising the importance of their conservation and potential for use in breeding programmes.
Collapse
Affiliation(s)
- David Eyland
- Laboratory of Tropical Crop Improvement, Division of Crop BiotechnicsKU LeuvenLeuvenBelgium
| | - Nathalie Luchaire
- Département Environnement et AgronomieLEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Llorenç Cabrera‐Bosquet
- Département Environnement et AgronomieLEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Boris Parent
- Département Environnement et AgronomieLEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Steven B. Janssens
- Department ResearchMeise Botanic GardenMeiseBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop BiotechnicsKU LeuvenLeuvenBelgium
- Banana and Plantain Crop ImprovementInternational Institute of Tropical AgricultureKampalaUganda
| | - Claude Welcker
- Département Environnement et AgronomieLEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - François Tardieu
- Département Environnement et AgronomieLEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Sebastien C. Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop BiotechnicsKU LeuvenLeuvenBelgium
- Biodiversity for Food and AgricultureBioversity InternationalLeuvenBelgium
| |
Collapse
|
8
|
Franco-Navarro JD, Díaz-Rueda P, Rivero-Núñez CM, Brumós J, Rubio-Casal AE, de Cires A, Colmenero-Flores JM, Rosales MA. Chloride nutrition improves drought resistance by enhancing water deficit avoidance and tolerance mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5246-5261. [PMID: 33783493 PMCID: PMC8272566 DOI: 10.1093/jxb/erab143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 05/27/2023]
Abstract
Chloride (Cl-), traditionally considered harmful for agriculture, has recently been defined as a beneficial macronutrient with specific roles that result in more efficient use of water (WUE), nitrogen (NUE), and CO2 in well-watered plants. When supplied in a beneficial range of 1-5 mM, Cl- increases leaf cell size, improves leaf osmoregulation, and reduces water consumption without impairing photosynthetic efficiency, resulting in overall higher WUE. Thus, adequate management of Cl- nutrition arises as a potential strategy to increase the ability of plants to withstand water deficit. To study the relationship between Cl- nutrition and drought resistance, tobacco plants treated with 0.5-5 mM Cl- salts were subjected to sustained water deficit (WD; 60% field capacity) and water deprivation/rehydration treatments, in comparison with plants treated with equivalent concentrations of nitrate, sulfate, and phosphate salts. The results showed that Cl- application reduced stress symptoms and improved plant growth during water deficit. Drought resistance promoted by Cl- nutrition resulted from the simultaneous occurrence of water deficit avoidance and tolerance mechanisms, which improved leaf turgor, water balance, photosynthesis performance, and WUE. Thus, it is proposed that beneficial Cl- levels increase the ability of crops to withstand drought, promoting a more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Juan D Franco-Navarro
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Pablo Díaz-Rueda
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Carlos M Rivero-Núñez
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Javier Brumós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, Moncada, Valencia, Spain
| | - Alfredo E Rubio-Casal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - José M Colmenero-Flores
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Miguel A Rosales
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
9
|
Huber AE, Melcher PJ, Piñeros MA, Setter TL, Bauerle TL. Signal coordination before, during and after stomatal closure in response to drought stress. THE NEW PHYTOLOGIST 2019; 224:675-688. [PMID: 31364171 DOI: 10.1111/nph.16082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 05/27/2023]
Abstract
Signal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique. In both drought treatments, it was found that AE events and turgor changes preceded the onset of stomatal closure, whereas electrical surface potentials shifted concurrently with stomatal closure. Leaf-level ABA concentration did not change until after stomata were closed. Roots and petioles were equally vulnerable to drought stress based on the single vessel injection technique. However, anatomical analysis of the xylem indicated that the increased AE events were not a result of xylem embolism formation. Additionally, roots and stems never reached a xylem pressure threshold that would initiate runaway embolism throughout the entire experiment. It is concluded that stomatal closure was not embolism-driven, but, rather, that onset of stomatal closure was most closely correlated with the hydraulic signal from changes in leaf turgor.
Collapse
Affiliation(s)
- Annika E Huber
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, NY, USA
| | - Peter J Melcher
- Biology Department, Center for Natural Sciences, Ithaca College, Ithaca, NY, 14850, NY, USA
| | - Miguel A Piñeros
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, NY, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, NY, USA
| | - Tim L Setter
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, NY, USA
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, NY, USA
| |
Collapse
|
10
|
Franco-Navarro JD, Rosales MA, Cubero-Font P, Calvo P, Álvarez R, Diaz-Espejo A, Colmenero-Flores JM. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:815-831. [PMID: 31148340 DOI: 10.1111/tpj.14423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 05/27/2023]
Abstract
Chloride (Cl- ) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water-use efficiency (WUE). However, it is still unclear how Cl- could be beneficial, especially in comparison with nitrate (NO3- ), an essential source of nitrogen that shares with Cl- similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl- specifically reduce stomatal conductance (gs ) without a concomitant reduction in the net photosynthesis rate (AN ). As stomata-mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2 , simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl- -mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl- improves mesophyll diffusion conductance to CO2 (gm ) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl- nutrition. This work identifies relevant and specific functions in which Cl- participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.
Collapse
Affiliation(s)
- Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Univ. Montpellier, CNRS, INRA, SupAgro, 2 Place P. Viala, Montpellier, 34060, France
| | - Purificación Calvo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla, Spain
| | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| |
Collapse
|
11
|
Kögler F, Söffker D. Explorative Frequency Analysis of Leaf Temperature Behavior of Maize ( Zea mays subsp. mays) at Water Deficit. PLANTS (BASEL, SWITZERLAND) 2019; 8:E105. [PMID: 31003523 PMCID: PMC6524069 DOI: 10.3390/plants8040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, different standard frequency analysis (FA) methods are applied to measured leaf temperature data of maize plants (developmental stages EC13-15). These FA methods are used to identify specific behaviors, regularities, and sudden changes in frequencies/amplitudes of data, e.g., in control engineering. The thorough application of different FA methods in plant studies is novel. The aim of this paper is to analyze features of the measured data and to explore the explanatory power of different methods for the detection of plant dynamic behavioral changes. The basic assumption is an expected relation between plant water stress and resulting changes in leaf temperature oscillations caused by stress-induced changes in stomatal behavior. Therefore, an irrigation experiment (laboratory; controlled environmental conditions) was implemented to compare leaf temperature behavior of stressed and unstressed plants. Leaf temperature time series are processed and the results are compared as functions of time showing the behavioral changes in terms of the different methods applied. The analysis of results is explained; conclusions, which can be made based on different methods, are given. The study confirms the applicability of FA methods and provides new insights into leaf temperature behavioral patterns. Results are discussed regarding the hypothesized incipience of leaf temperature oscillations due to water stress.
Collapse
Affiliation(s)
- Friederike Kögler
- Chair of Dynamics and Control, University of Duisburg-Essen, Lotharstr. 1-21, 47057 Duisburg, Germany.
| | - Dirk Söffker
- Chair of Dynamics and Control, University of Duisburg-Essen, Lotharstr. 1-21, 47057 Duisburg, Germany.
| |
Collapse
|
12
|
Scalisi A, O’Connell MG, Stefanelli D, Lo Bianco R. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. FRONTIERS IN PLANT SCIENCE 2019; 10:805. [PMID: 31333685 PMCID: PMC6616271 DOI: 10.3389/fpls.2019.00805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 05/14/2023]
Abstract
Continuous assessment of plant water status indicators provides the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigated the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates (p p) in nectarine trees [Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem (Ψ stem) and leaf water potential, leaf relative water content, leaf stomatal conductance, and fruit growth was studied across the stages of double-sigmoidal fruit development in 'September Bright' nectarines. Fruit relative growth rate (RGR) and leaf relative pressure change rate (RPCR) were derived from FD and p p to represent rates of water in- and outflows in the organs, respectively. Continuous RGR and RPCR dynamics were independently and jointly related to plant water status and environmental variables. The independent use of RGR and RPCR yielded significant associations with midday Ψ stem, the most representative index of tree water status in anisohydric species. However, a combination of nocturnal fruit and leaf parameters unveiled an even more significant relationship with Ψ stem, suggesting a changing behavior of fruit and leaf water flows in response to pronounced water deficit. In conclusion, we highlight the suitability of a dual-organ sensing approach for improved prediction of tree water status.
Collapse
Affiliation(s)
- Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
- *Correspondence: Alessio Scalisi,
| | - Mark Glenn O’Connell
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
| | - Dario Stefanelli
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Batke S, Holohan A, Hayden R, Fricke W, Porter AS, Evans-Fitz.Gerald CM. The Pressure Is On - Epiphyte Water-Relations Altered Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2018; 9:1758. [PMID: 30538718 PMCID: PMC6277575 DOI: 10.3389/fpls.2018.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Vascular epiphytes are a major biomass component of forests across the globe and they contribute to 9% of global vascular plant diversity. To improve our understanding of the whole-plant response of epiphytes to future climate change, we investigated for the first time both individual and combined effects of elevated CO2 (560 ppm) and light on the physiology and growth of two epiphyte species [Tillandsia brachycaulos (CAM) and Phlebodium aureum (C3)] grown for 272 days under controlled conditions. We found that under elevated CO2 the difference in water loss between the light (650 μmol m-2s-1) and shade (130 μmol m-2s-1) treatment was strongly reduced. Stomatal conductance (g s) decreased under elevated CO2, resulting in an approximate 40-45% reduction in water loss over a 24 h day/night period under high light and high CO2 conditions. Under lower light conditions water loss was reduced by approximately 20% for the CAM bromeliad under elevated CO2 and increased by approximately 126% for the C3 fern. Diurnal changes in leaf turgor and water loss rates correlated strong positively under ambient CO2 (400 ppm) and high light conditions. Future predicted increases in atmospheric CO2 are likely to alter plant water-relations in epiphytes, thus reducing the canopy cooling potential of epiphytes to future increases in temperature.
Collapse
Affiliation(s)
- Sven Batke
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Aidan Holohan
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Roisin Hayden
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
| | - Amanda Sara Porter
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin, Ireland
- Botany Department, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
14
|
Water (stress) models and deficit irrigation: System-theoretical description and causality mapping. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zait Y, Shapira O, Schwartz A. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves. PLANT, CELL & ENVIRONMENT 2017; 40:1143-1152. [PMID: 28098339 DOI: 10.1111/pce.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations - while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem-epidermis water supply.
Collapse
Affiliation(s)
- Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Or Shapira
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Amnon Schwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
16
|
|
17
|
Bramley H, Bitter R, Zimmermann G, Zimmermann U. Simultaneous recording of diurnal changes in leaf turgor pressure and stem water status of bread wheat reveal variation in hydraulic mechanisms in response to drought. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:1001-1009. [PMID: 32480739 DOI: 10.1071/fp15087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/06/2015] [Indexed: 06/11/2023]
Abstract
Information about water relations within crop canopies is needed to improve our understanding of canopy resource distribution and crop productivity. In this study, we examined the dehydration/rehydration kinetics of different organs of wheat plants using ZIM-probes that continuously monitor water status non-destructively. ZIM-probes were clamped to the flag leaf and penultimate leaf of the same stem to monitor changes in turgor pressure, and a novel stem probe was clamped to the peduncle (just below the spike of the same stem) to monitor changes in stem water status. All organs behaved similarly under well-watered conditions, dehydrating and recovering at the same times of day. When water was withheld, the behaviour diverged, with the leaves showing gradual dehydration and incomplete recovery in leaf turgor pressure during the night, but the stem was affected to a lesser extent. Penultimate leaves were the most severely affected, reaching turgor loss point before the flag leaf. Upon rewatering, turgor pressure recovered but the output patch-pressure of the probes (Pp) oscillated at ~30min periods in all organs of most plants (n=4). Oscillations in Pp were attributed to oscillations in stomatal opening and appear to only occur above a threshold light intensity. The mechanisms identified in this study will be beneficial for crop productivity because the flag leaf is the source of most photoassimilates in developing grains, so the plant's ability to maintain flag leaf hydration at the expense of older leaves should moderate the impact of drought on yield. Stomatal oscillations could increase water use efficiency as the plant attempts to rehydrate after drought.
Collapse
Affiliation(s)
- Helen Bramley
- Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, 12656 Newell Highway, Narrabri, NSW 2390, Australia
| | - Rebecca Bitter
- ZIM-Plant Technology GmbH, Neuendorfstr. 19, 16761 Hennigsdorf, Germany
| | | | - Ulrich Zimmermann
- ZIM-Plant Technology GmbH, Neuendorfstr. 19, 16761 Hennigsdorf, Germany
| |
Collapse
|
18
|
Bader MKF, Ehrenberger W, Bitter R, Stevens J, Miller BP, Chopard J, Rüger S, Hardy GESJ, Poot P, Dixon KW, Zimmermann U, Veneklaas EJ. Spatio-temporal water dynamics in mature Banksia menziesii trees during drought. PHYSIOLOGIA PLANTARUM 2014; 152:301-315. [PMID: 24547765 DOI: 10.1111/ppl.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function.
Collapse
Affiliation(s)
- Martin K-F Bader
- School of Plant Biology and Centre of Excellence for Climate Change, Woodland & Forest Health, University of Western Australia, Crawley, WA, 6009, Australia; New Zealand Forest Research Institute (SCION), Te Papa Tipu Innovation Park, Rotorua, 3010, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee KM, Driever SM, Heuvelink E, Rüger S, Zimmermann U, de Gelder A, Marcelis LFM. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes. PHYSIOLOGIA PLANTARUM 2012; 146:439-447. [PMID: 22540231 DOI: 10.1111/j.1399-3054.2012.01637.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained.
Collapse
Affiliation(s)
- Kang M Lee
- Wageningen UR Greenhouse Horticulture, P.O. Box 644, 6700AP Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Ehrenberger W, Rüger S, Rodríguez-Domínguez CM, Díaz-Espejo A, Fernández JE, Moreno J, Zimmermann D, Sukhorukov VL, Zimmermann U. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:666-674. [PMID: 22288430 DOI: 10.1111/j.1438-8677.2011.00545.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) .
Collapse
Affiliation(s)
- W Ehrenberger
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ehrenberger W, R Ger S, Fitzke R, Vollenweider P, G Nthardt-Goerg M, Kuster T, Zimmermann U, Arend M. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:297-305. [PMID: 32480782 DOI: 10.1071/fp11206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/02/2012] [Indexed: 05/25/2023]
Abstract
Tree water relations and their dependence on microclimate and soil moisture were studied over several months in young oaks (Quercus robur L.) subjected in large lysimeter-based open top chambers to environments with a controlled soil water supply. Automated single point dendrometers and the recently developed leaf patch clamp pressure (LPCP) probe were used for monitoring water-related stem radius variations (ΔW) and turgor-dependent leaf patch pressures (Pp). Both parameters showed distinct diurnal patterns with sharp negative and positive peaking of ΔW and Pp, respectively, after solar noon and recovery to initial levels in the evening. During the day, varying solar radiation was responsible for short time fluctuations of Pp in the range of minutes to hours reflecting feedback regulation of leaf turgor by sunlight driven stomatal movements. At longer timescales, i.e. days to months, atmospheric vapour pressure deficit (VPD) and soil water content (SWC) were the main determinants of ΔW and Pp. Daily minimum and maximum values of ΔW and Pp decreased and increased, respectively, with increasing VPD or decreasing SWC and recovery of ΔW and Pp in the evening was impeded by low SWC. In well-watered oaks, daily positive peaking of Pp preceded daily negative peaking of ΔW; these time lags gradually increased with increasing soil drought, suggesting hydraulic uncoupling of stem and leaves.
Collapse
Affiliation(s)
| | - Simon R Ger
- ZIM Plant Technology GmbH, Neuendorfstr. 19, D-16761 Hennigsdorf, Germany
| | - Ronald Fitzke
- ZIM Plant Technology GmbH, Neuendorfstr. 19, D-16761 Hennigsdorf, Germany
| | - Pierre Vollenweider
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf/ZH, Switzerland
| | - Madeleine G Nthardt-Goerg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf/ZH, Switzerland
| | - Thomas Kuster
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf/ZH, Switzerland
| | - Ulrich Zimmermann
- ZIM Plant Technology GmbH, Neuendorfstr. 19, D-16761 Hennigsdorf, Germany
| | - Matthias Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf/ZH, Switzerland
| |
Collapse
|
22
|
Energetics and Dynamics of Biological Systems. Biophysics (Nagoya-shi) 2012. [DOI: 10.1007/978-3-662-45845-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, Kaiser BN, Leigh RA, Tyerman SD. Calcium delivery and storage in plant leaves: exploring the link with water flow. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2233-50. [PMID: 21511913 DOI: 10.1093/jxb/err111] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.
Collapse
Affiliation(s)
- Matthew Gilliham
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ache P, Bauer H, Kollist H, Al-Rasheid KAS, Lautner S, Hartung W, Hedrich R. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1072-82. [PMID: 20345603 DOI: 10.1111/j.1365-313x.2010.04213.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Uptake of CO(2) by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard-cell anion release channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard-cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non-invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long-term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild-type plants responded to CO(2), light, humidity, ozone and abscisic acid (ABA) in a guard cell-specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild-type plants, leaves from well-watered ost1 plants exposed to a dry atmosphere wilted after light-induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root-shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.
Collapse
Affiliation(s)
- Peter Ache
- Universität Würzburg, Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|