1
|
Ahmed RI, Ren A, Alshaya DS, Fiaz S, Kong Y, Liaqat S, Ali N, Saddique MAB, Attia KA, Taga MUH. Identification, charectrization and genetic transformation of lignin and pectin polysaccharides through CRISPR/Cas9 in Nicotiana tobacum. Funct Integr Genomics 2024; 24:188. [PMID: 39400746 DOI: 10.1007/s10142-024-01472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Regional Agricultural Research Institute, Bahawalpur, 63100, Pakistan
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266108, China
| | | | - Naushad Ali
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| | | | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
2
|
Wu Q, He Y, Cui C, Tao X, Zhang D, Zhang Y, Ying T, Li L. Quantitative proteomic analysis of tomato fruit ripening behavior in response to exogenous abscisic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7469-7483. [PMID: 37421609 DOI: 10.1002/jsfa.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND To determine how abscisic acid (ABA) affects tomato fruit ripening at the protein level, mature green cherry tomato fruit were treated with ABA, nordihydroguaiaretic acid (NDGA) or sterile water (control, CK). The proteomes of treated fruit were analyzed and quantified using tandem mass tags (TMTs) at 7 days after treatment, and the gene transcription abundances of differently expressed proteins (DEPs) were validated with quantitative real-time polymerase chain reaction. RESULTS Postharvest tomato fruit underwent faster color transformation and ripening than the CK when treated with ABA. In total, 6310 proteins were identified among the CK and treatment groups, of which 5359 were quantified. Using a change threshold of 1.2 or 0.83 times, 1081 DEPs were identified. Among them, 127 were upregulated and 127 were downregulated in the ABA versus CK comparison group. According to KEGG and protein-protein interaction network analyses, the ABA-regulated DEPs were primarily concentrated in the photosynthesis system and sugar metabolism pathways, and 102 DEPs associated with phytohormones biosynthesis and signal transduction, pigment synthesis and metabolism, cell wall metabolism, photosynthesis, redox reactions, allergens and defense responses were identified in the ABA versus CK and NDGA versus CK comparison groups. CONCLUSION ABA affects tomato fruit ripening at the protein level to some extent. The results of this study provided comprehensive insights and data for further research on the regulatory mechanism of ABA in tomato fruit ripening. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Wu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yanan He
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Chunxiao Cui
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Xiaoya Tao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dongdong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Chizk TM, Clark JR, Johns C, Nelson L, Ashrafi H, Aryal R, Worthington ML. Genome-wide association identifies key loci controlling blackberry postharvest quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1182790. [PMID: 37351206 PMCID: PMC10282842 DOI: 10.3389/fpls.2023.1182790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Introduction Blackberry (Rubus subgenus Rubus) is a soft-fruited specialty crop that often suffers economic losses due to degradation in the shipping process. During transportation, fresh-market blackberries commonly leak, decay, deform, or become discolored through a disorder known as red drupelet reversion (RDR). Over the past 50 years, breeding programs have achieved better fruit firmness and postharvest quality through traditional selection methods, but the underlying genetic variation is poorly understood. Methods We conducted a genome-wide association of fruit firmness and RDR measured in 300 tetraploid fresh-market blackberry genotypes from 2019-2021 with 65,995 SNPs concentrated in genic regions of the R. argutus reference genome. Results Fruit firmness and RDR had entry-mean broad sense heritabilities of 68% and 34%, respectively. Three variants on homologs of polygalacturonase (PG), pectin methylesterase (PME), and glucan endo-1,3-β-glucosidase explained 27% of variance in fruit firmness and were located on chromosomes Ra06, Ra01, and Ra02, respectively. Another PG homolog variant on chromosome Ra02 explained 8% of variance in RDR, but it was in strong linkage disequilibrium with 212 other RDR-associated SNPs across a 23 Mb region. A large cluster of six PME and PME inhibitor homologs was located near the fruit firmness quantitative trait locus (QTL) identified on Ra01. RDR and fruit firmness shared a significant negative correlation (r = -0.28) and overlapping QTL regions on Ra02 in this study. Discussion Our work demonstrates the complex nature of postharvest quality traits in blackberry, which are likely controlled by many small-effect QTLs. This study is the first large-scale effort to map the genetic control of quantitative traits in blackberry and provides a strong framework for future GWAS. Phenotypic and genotypic datasets may be used to train genomic selection models that target the improvement of postharvest quality.
Collapse
Affiliation(s)
- T. Mason Chizk
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - John R. Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Carmen Johns
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Lacy Nelson
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
4
|
Lai R, Wu X, Feng X, Gao M, Long Y, Wu R, Cheng C, Chen Y. Identification and Characterization of Long Non-Coding RNAs: Implicating Insights into Their Regulatory Role in Kiwifruit Ripening and Softening during Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1070. [PMID: 36903929 PMCID: PMC10005093 DOI: 10.3390/plants12051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial players regulating many biological processes in plants. However, limited knowledge is available regarding their roles in kiwifruit ripening and softening. In this study, using lncRNA-seq technology, 591 differentially expressed (DE) lncRNAs (DELs) and 3107 DE genes (DEGs) were identified from kiwifruit stored at 4 °C for 1, 2, and 3 weeks in comparison with non-treated control fruits. Of note, 645 DEGs were predicted to be targets of DELs (DEGTLs), including some DE protein-coding genes (such as β-amylase and pectinesterase). DEGTL-based GO enrichment analysis revealed that these genes were significantly enriched in cell wall modification and pectinesterase activity in 1 W vs. CK and 3 W vs. CK, which might be closely related to the fruit softening during low-temperature storage. Moreover, KEGG enrichment analysis revealed that DEGTLs were significantly associated with starch and sucrose metabolism. Our study revealed that lncRNAs play critical regulatory roles in kiwifruit ripening and softening under low-temperature storage, mainly by mediating the expression of starch and sucrose metabolism and cell wall modification related genes.
Collapse
Affiliation(s)
- Ruilian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaopei Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minxia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Long
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Rujian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yiting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
5
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Huang W, Shi Y, Yan H, Wang H, Wu D, Grierson D, Chen K. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. J Adv Res 2022:S2090-1232(22)00211-9. [PMID: 36198382 DOI: 10.1016/j.jare.2022.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Postharvest textural changes in fruit are mainly divided into softening and lignification. Loquat fruit could have severe lignification with increased firmness during postharvest storage. Pectin is mainly associated with the postharvest softening of fruit, but some studies also found that pectin could be involved in strengthening the mechanical properties of the plant. OBJECTIVES This study focused on characterizing the dynamics of pectin and its complexation in the cell wall of lignified loquat fruit during postharvest storage, and how these changes could influence fruit firmness. METHODS The homogalacturonan (HG) pectin in the cell wall of loquat fruit was identified using monoclonal antibodies. An oligogalacturonide (OG) probe was used to label the egg-box structure formed by Ca2+ cross-linking with low-methylesterified HG. An exogenous injection was used to verify the role of egg-box structures in the firmness increase in loquat fruit. RESULTS The JIM5 antibody revealed that low-methylesterified HG accumulated in the tricellular junctions and middle lamella of loquat fruit that had severe lignification symptoms. The pectin methylesterase (PME) activity increased during the early stages of storage at 0°C, and the calcium-pectate content and flesh firmness constantly increased during storage. The OG probe demonstrated the accumulation of egg-box structures at the cellular level. The exogenous injection of PME and Ca2+ into the loquat flesh led to an increase in firmness with more low-methylesterified HG and egg-box structure signals. CONCLUSION PME-mediated demethylesterification generated large amounts of low-methylesterified HG in the cell wall. This low-methylesterified HG further cross-linked with Ca2+ to form egg-box structures. The pectin-involved complexations then contributed to the increased firmness in loquat fruit. Overall, besides being involved in fruit softening, pectin could also be involved in strengthening the mechanical properties of postharvest fruit. This study provides new ideas for obtaining a better texture of postharvest loquat fruits based on pectin regulation.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China.
| | - Donald Grierson
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| |
Collapse
|
7
|
A new method for reconstructing the 3D shape of single cells in fruit. Food Res Int 2022; 162:112017. [DOI: 10.1016/j.foodres.2022.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
|
8
|
Liu J, Ma Q, Liu D, Meng C, Hu Z, Ma L. Identification of the cell wall proteins associated with the softening of Lycium barbarum L. fruit by using iTRAQ technology. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100110. [PMID: 35586663 PMCID: PMC9108469 DOI: 10.1016/j.fochms.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
This was the first proteomic study on the cell walls of Lycium barbarum L. during fruit softening. A total of 258 differentially expressed proteins (DEPs) from the cell walls were identified between pre- and post-climacteric stages. Softening of Lycium barbarum L. fruit was accompanied by degradation of cell wall materials. DEPs promote cell wall polysaccharide degradation by driving energy metabolism.
Excessive softening of Lycium barbarum L. (LBL) fruit can limit the storage and transportation of fresh fruit. To better understand the underlying molecular mechanisms of fruit softening in LBL, changes in the pre-climacteric (S1) and post-climacteric (S2) proteomes were investigated by iTRAQ methods. The 14-fold reduction in S2 fruit firmness compared to S1 was accompanied by increased espiratory intensity and degradation of cell wall components. A total of 258 differentially expressed proteins (DEPs) were identified, which were mainly associated with photosynthesis, carbohydrate, amino acids and fatty acids metabolism. From the functional proteomic analysis, enhanced energy metabolisms, such as glycolysis/gluconeogenesis and citrate cycle (TCA cycle) contributed to cell wall degradation and conversion to substrates for respiratory metabolism, leading to fruit softening. These findings have provided new insights into the molecular pathways associated with fruit softening in LBL and the bioinformatics analyses provided insightful information for further transcriptional studies.
Collapse
|
9
|
Kumari C, Sharma M, Kumar V, Sharma R, Kumar V, Sharma P, Kumar P, Irfan M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineering (Basel) 2022; 9:bioengineering9040176. [PMID: 35447736 PMCID: PMC9028506 DOI: 10.3390/bioengineering9040176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.
Collapse
Affiliation(s)
- Chanchal Kumari
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Megha Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Vinay Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Parul Sharma
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
- Correspondence: (P.S.); (M.I.)
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (C.K.); (M.S.); (V.K.); (R.S.); (P.K.)
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (P.S.); (M.I.)
| |
Collapse
|
10
|
Li Z, Wu L, Wang C, Wang Y, He L, Wang Z, Ma X, Bai F, Feng G, Liu J, Jiang Y, Song F. Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange (Citrus sinensis Osbeck). BMC Genomics 2022; 23:185. [PMID: 35249536 PMCID: PMC8900419 DOI: 10.1186/s12864-022-08411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Citrus is one of the most important fresh fruit crops worldwide. Juice sac granulation is a physiological disorder, which leads to a reduction in soluble solid concentration, total sugar, and titratable acidity of citrus fruits. Pectin methylesterase (PME) catalyzes the de-methylesterification of homogalacturonans and plays crucial roles in cell wall modification during plant development and fruit ripening. Although PME family has been well investigated in various model plants, little is known regarding the evolutionary property and biological function of PME family genes in citrus. RESULTS In this study, 53 non-redundant PME genes were identified from Citrus sinensis genome, and these PME genes were divided into four clades based on the phylogenetic relationship. Subsequently, bioinformatics analyses of gene structure, conserved domain, chromosome localization, gene duplication, and collinearity were performed on CsPME genes, providing important clues for further research on the functions of CsPME genes. The expression profiles of CsPME genes in response to juice sac granulation and low-temperature stress revealed that CsPME genes were involved in the low temperature-induced juice sac granulation in navel orange fruits. Subcellular localization analysis suggested that CsPME genes were localized on the apoplast, endoplasmic reticulum, plasma membrane, and vacuole membrane. Moreover, yeast one-hybrid screening and dual luciferase activity assay revealed that the transcription factor CsRVE1 directly bound to the promoter of CsPME3 and activated its activity. CONCLUSION In summary, this study conducts a comprehensive analysis of the PME gene family in citrus, and provides a novel insight into the biological functions and regulation patterns of CsPME genes during juice sac granulation of citrus.
Collapse
Affiliation(s)
- Zixuan Li
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Liming Wu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Ce Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Yue Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ligang He
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Zhijing Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Xiaofang Ma
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Fuxi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Guizhi Feng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jihong Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yingchun Jiang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| | - Fang Song
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China.
| |
Collapse
|
11
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
12
|
Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. Advances in application of genome editing in tomato and recent development of genome editing technology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2727-2747. [PMID: 34076729 PMCID: PMC8170064 DOI: 10.1007/s00122-021-03874-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment to plant research and precision plant breeding is also discussed.
Collapse
Affiliation(s)
- Xuehan Xia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xinhua Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
13
|
Liu H, Liu L, Liang D, Zhang M, Jia C, Qi M, Liu Y, Shao Z, Meng F, Hu S, Yin Y, Li C, Wang Q. SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 2021; 24:102926. [PMID: 34430815 PMCID: PMC8374504 DOI: 10.1016/j.isci.2021.102926] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Fruit softening indicated by firmness determines the texture, transportability, and shelf life of tomato products. However, the regulatory mechanism underlying firmness formation in tomato fruit is poorly understood. Here, we report the regulatory role of SlBES1, an essential component of brassinosteroid hormone signaling, in tomato fruit softening. We found that SlBES1 promotes fruit softening during tomato fruit ripening and postharvest storage. RNA-seq analysis suggested that PMEU1, which encodes a pectin methylesterase, might participate in SlBES1-mediated softening. Biochemical and immunofluorescence assays indicated that SlBES1 inhibited PMEU1-related pectin de-methylesterification. Further molecular and genetic evidence verified that SlBES1 directly binds to the E-box of PMEU1 to repress its expression, leading to fruits softening. Loss-of-function SlBES1 mutant generated by CRISPR-Cas9 showed firmer fruits and longer shelf life during postharvest storage without other quality alteration. Collectively, our results indicated the potential of manipulating SlBES1 to regulate firmness without negative consequence on visual and nutrition quality. SlBES1 promotes tomato fruit softening without affecting nutritional quality SlBES1 inhibits PMEU1-related fruit pectin de-methylesterification SlBES1 represses PMEU1 expression through directly binding to the E-box Knockout of SlBES1 by CRISPR-Cas9 enhances fruit firmness and extends shelf life
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Dongyi Liang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Mingfang Qi
- Key Laboratory of Protected Horticulture of Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yuanyuan Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Songshen Hu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100097, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
14
|
Xu H, Chen Y, Ding S, Qin Y, Jiang L, Zhou H, Deng F, Wang R. Changes in texture qualities and pectin characteristics of fermented minced pepper during natural and inoculated fermentation process. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haishan Xu
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha 410125 China
| | - Yuyu Chen
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha 410125 China
| | - Yeyou Qin
- Hunan Tantanxiang Biotechnology Co Ltd, Changsha 410128 China
| | - Liwen Jiang
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Hui Zhou
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Fangming Deng
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| | - Rongrong Wang
- College of Food Science and Technology Hunan Agricultural University Changsha 410128 China
| |
Collapse
|
15
|
Uluisik S. Chemical and structural quality traits during postharvest ripening regulated by chromosome segments from a wild relative of tomato Solanum pennellii IL4-2 and IL5-1. J Food Biochem 2021; 45:e13858. [PMID: 34251032 DOI: 10.1111/jfbc.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Tomato is usually harvested at an early ripening stage with high firmness suitable for storage and transportation but lacks many quality parameters such as sugars, organic acids, and phenolics. In a recent study, we have selected introgression lines (ILs) IL4-2 and IL5-1, developed from a cross between the Solanum pennellii and the Solanum lycopersicum M82, that exhibit differentiated postharvest shelf-life characteristics in the fruit compared to M82 and the rest of the ILs. Here, we first structurally and biochemically characterized IL4-2, IL5-1, and their parent M82 to decipher the cell wall mechanistic difference between soft (IL4-2) and firm (IL5-1) lines at two postharvest ripening periods. Generally, IL4-2 had more active cell wall modifications in terms of ripening-related gene expression, water-soluble pectin, and cell wall structure under the microscope, which probably makes this line softer than IL5-1. We also evaluated these lines based on commercial quality parameters, sugars, phenolics, organic, and amino acids to gain insight into their commercial and functional quality and reveal noticeable differences. In summary, the contribution of the S. pennellii IL5-1 and IL4-2 to the shelf life of the tomato was structurally characterized, and the component differences meeting the quality criteria were revealed.
Collapse
Affiliation(s)
- Selman Uluisik
- Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
16
|
Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? HORTICULTURE RESEARCH 2021; 8:1. [PMID: 33384412 PMCID: PMC7775472 DOI: 10.1038/s41438-020-00428-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA.
| | - Jingwei Yu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA.
| | - Karin Albornoz
- Departamento de Produccion Vegetal, Universidad de Concepcion, Region del BioBio, Concepcion, Chile.
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Li J, Wang X, Wang X, Ma P, Yin W, Wang Y, Chen Y, Chen S, Jia H. Hydrogen sulfide promotes hypocotyl elongation via increasing cellulose content and changing the arrangement of cellulose fibrils in alfalfa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5852-5864. [PMID: 32640016 DOI: 10.1093/jxb/eraa318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is known to have positive physiological functions in plant growth, but limited data are available on its influence on cell walls. Here, we demonstrate a novel mechanism by which H2S regulates the biosynthesis and deposition of cell wall cellulose in alfalfa (Medicago sativa). Treatment with NaHS was found to increase the length of epidermal cells in the hypocotyl, and transcriptome analysis indicated that it caused the differential expression of numerous of cell wall-related genes. These differentially expressed genes were directly associated with the biosynthesis of cellulose and hemicellulose, and with the degradation of pectin. Analysis of cell wall composition showed that NaHS treatment increased the contents of cellulose and hemicellulose, but decreased the pectin content. Atomic force microscopy revealed that treatment with NaHS decreased the diameter of cellulose fibrils, altered the arrangement of the fibrillar bundles, and increased the spacing between the bundles. The dynamics of cellulose synthase complexes (CSCs) were closely related to cellulose synthesis, and NaHS increased the rate of mobility of the particles. Overall, our results suggest that the H2S signal enhances the plasticity of the cell wall by regulating the deposition of cellulose fibrils and by decreasing the pectin content. The resulting increases in cellulose and hemicellulose contents lead to cell wall expansion and cell elongation.
Collapse
Affiliation(s)
- Jisheng Li
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaofeng Wang
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Peiyun Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Weili Yin
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqing Wang
- Life Science Research Core, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Zhang WW, Zhao SQ, Zhang LC, Xing Y, Jia WS. Changes in the cell wall during fruit development and ripening in Fragaria vesca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:54-65. [PMID: 32526611 DOI: 10.1016/j.plaphy.2020.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Although fruit expansion during ripening has been extensively studied, the structural and metabolic mechanisms remain largely unknown. Here, we report the critical roles of cell separation and cell wall metabolism in the coordinated regulation of fruit expansion in Fragaria vesca. Anatomical observations indicated that a syndrome of cell separation occurred from the very earliest stage of fruit set. Cell separation led to an increase in apoplastic space, and the time course of this increase coincided with the period of fruit development and ripening. Moreover, massive cellulose disassembly occurred when cells were fully separated, which coincided with the expansion of cell and fruit volume. Consistent with the anatomical observations, both histochemistry and composition analysis indicated correlations between cell separation and the cell wall metabolism. These observations suggest that cell separation, cell elongation and cell wall disassembly occur simultaneously during fruit ripening in Fragaria vesca.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- College of Horticulture, China Agricultural University, Beijing, China; Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, College of Plant Science and Technology, Beijing University of Agriculture, China
| | - Shuai-Qi Zhao
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, College of Plant Science and Technology, Beijing University of Agriculture, China
| | - Ling-Chao Zhang
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, College of Plant Science and Technology, Beijing University of Agriculture, China
| | - Yu Xing
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, College of Plant Science and Technology, Beijing University of Agriculture, China.
| | - Wen-Suo Jia
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Zhang T, Li W, Xie R, Xu L, Zhou Y, Li H, Yuan C, Zheng X, Xiao L, Liu K. CpARF2 and CpEIL1 interact to mediate auxin-ethylene interaction and regulate fruit ripening in papaya. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1318-1337. [PMID: 32391615 DOI: 10.1111/tpj.14803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Papaya (Carica papaya L.) is a commercially important fruit crop. Various phytohormones, particularly ethylene and auxin, control papaya fruit ripening. However, little is known about the interaction between auxin and ethylene signaling during the fruit ripening process. In the present study, we determined that the interaction between the CpARF2 and CpEIL1 mediates the interaction between auxin and ethylene signaling to regulate fruit ripening in papaya. We identified the ethylene-induced auxin response factor CpARF2 and demonstrated that it is essential for fruit ripening in papaya. CpARF2 interacts with an important ethylene signal transcription factor CpEIL1, thus increasing the CpEIL1-mediated transcription of the fruit ripening-associated genes CpACS1, CpACO1, CpXTH12 and CpPE51. Moreover, CpEIL1 is ubiquitinated by CpEBF1 and is degraded through the 26S proteasome pathway. However, CpARF2 weakens the CpEBF1-CpEIL1 interaction and interferes with CpEBF1-mediated degradation of CpEIL1, promoting fruit ripening. Therefore, CpARF2 functions as an integrator in the auxin-ethylene interaction and regulates fruit ripening by stabilizing CpEIL1 protein and promoting the transcriptional activity of CpEIL1. To our knowledge, we have revealed a novel module of CpARF2/CpEIL1/CpEBF1 that fine-tune fruit ripening in papaya. Manipulating this mechanism could help growers tightly control papaya fruit ripening and prolong shelf life.
Collapse
Affiliation(s)
- Tao Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Weijin Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Ruxiu Xie
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Ling Xu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Langtao Xiao
- College of Bioscience and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
- College of Bioscience and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
20
|
Wen B, Zhang F, Wu X, Li H. Characterization of the Tomato ( Solanum lycopersicum) Pectin Methylesterases: Evolution, Activity of Isoforms and Expression During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:238. [PMID: 32194610 PMCID: PMC7063471 DOI: 10.3389/fpls.2020.00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/17/2020] [Indexed: 06/01/2023]
Abstract
Pectin methylesterase (PME, EC 3.1.1.11) is a hydrolytic enzyme of pectin that plays multiple roles in different plant development processes and responses to biotic stress. To characterize the molecular evolution and functional divergence of the PME gene family, a genome-wide analysis of the PME gene family in the tomato was performed. In total, 57 non-redundant PME genes were identified, and these PME genes were divided into five groups based on their phylogeneny; their classification was supported by similar gene structures and domain distributions. The PME genes were found to be unevenly distributed among 12 chromosomes of the tomato. In addition, 11 segmental duplication and 11 tandem duplication events occurred in these PME genes, implying that both contributed to the expansion of the tomato PME gene family. Non-synonymous/synonymous mutation ratio analysis revealed that positive selection played a key role in the functional divergence of PME genes. Interspecific collinear analysis indicated a large divergence in the PME gene family after the divergence of monocot and dicot plants in ancient times. Gene expression pattern analysis suggested that PMEs plays roles in the different parts of the tomato plant, including the fruit. Three newly identified candidate genes (Solyc03g083360, Solyc07g071600, and Solyc12g098340) may have functions during fruit ripening. Immunoassays suggested that the tomato isoform PE1 and PE2 may change pectin structure at cell junctions, which could be associated with fruit softening. In addition, our analysis indicate that two undescribed PE isoforms might be active in leaves and fruits. This study increases our understanding of the PME gene family in the tomato and may facilitate further functional analyses to elucidate PME function, especially during fruit ripening.
Collapse
|
21
|
Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteomics 2019; 209:103506. [DOI: 10.1016/j.jprot.2019.103506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
22
|
A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.02.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Li L, Zhao W, Feng X, Chen L, Zhang L, Zhao L. Changes in Fruit Firmness, Cell Wall Composition, and Transcriptional Profile in the yellow fruit tomato 1 ( yft1) Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:463-472. [PMID: 30545217 DOI: 10.1021/acs.jafc.8b04611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fruit firmness is an important trait in tomato ( Solanum lycopersicum), associated with shelf life and economic value; however, the precise mechanism determining fruit softening remains elusive. A yellow fruit tomato 1 ( yft1) mutant harbors a genetic lesion in the YFT1 gene and has significantly firmer fruit than those of the cv. M82 wild type at a red ripe stage, 54 days post-anthesis (dpa). When softening was further dissected, it was found that the yft1 firm fruit phenotype correlated with a difference in cellulose, hemicellulose, and pectin deposition in the primary cell wall (PCW) compared to cv. M82. Alterations in the structure of the pericarp cells, chemical components, hydrolase activities, and expression of genes encoding these hydrolases were all hypothesized to be a result of the loss of YFT1 function. This was further affirmed by RNA-seq analysis, where a total of 183 differentially expressed genes (DEGs, 50/133 down-/upregulated) were identified between yft1 and cv. M82. These DEGs were mainly annotated as participating in ethylene- and auxin-related signal transduction, sugar metabolism, and photosynthesis. This study provides new insights into the mechanism underlying the control of fruit softening.
Collapse
|
24
|
Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A. Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:55-63. [PMID: 29241567 DOI: 10.1016/j.plantsci.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 05/24/2023]
Abstract
The increase of L-Ascorbic Acid (AsA) content in tomato (Solanum lycopersicum) is a common goal in breeding programs due to its beneficial effect on human health. To shed light into the regulation of fruit AsA content, we exploited a Solanum pennellii introgression line (IL12-4-SL) harbouring one quantitative trait locus that increases the content of total AsA in the fruit. Biochemical and transcriptomic analyses were carried out in fruits of IL12-4-SL in comparison with the cultivated line M82 at different stages of ripening. AsA content was studied in relation with pectin methylesterase (PME) activity and the degree of pectin methylesterification (DME). Our results indicated that the increase of AsA content in IL12-4-SL fruits was related with pectin de-methylesterification/degradation. Specific PME, polygalacturonase (PG) and UDP-D-glucuronic-acid-4-epimerase (UGlcAE) isoforms were proposed as components of the D-galacturonate pathway leading to AsA biosynthesis. The relationship between AsA content and PME activity was also exploited in PMEI tobacco plants expressing a specific PME inhibitor (PMEI). Here we report that tobacco PMEI plants, altered in PME activity and degree of pectin methylesterification, showed a reduction in low methylesterified pectic domains and exhibited a reduced AsA content. Overall, our results provide novel biochemical and genetic traits for increasing antioxidant content by marker-assisted selection in the Solanaceae family.
Collapse
Affiliation(s)
- Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Daniela Bellincampi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy.
| |
Collapse
|
25
|
Tucker G, Yin X, Zhang A, Wang M, Zhu Q, Liu X, Xie X, Chen K, Grierson D. Ethylene† and fruit softening. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx024] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Yang L, Huang W, Xiong F, Xian Z, Su D, Ren M, Li Z. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1544-1555. [PMID: 28371176 PMCID: PMC5698048 DOI: 10.1111/pbi.12737] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 05/18/2023]
Abstract
Pectate lyase genes have been documented as excellent candidates for improvement of fruit firmness. However, implementation of pectate lyase in regulating fruit postharvest deterioration has not been fully explored. In this report, 22 individual pectate lyase genes in tomato were identified, and one pectate lyase gene SlPL (Solyc03g111690) showed dominant expression during fruit maturation. RNA interference of SlPL resulted in enhanced fruit firmness and changes in pericarp cells. More importantly, the SlPL-RNAi fruit demonstrated greater antirotting and pathogen-resisting ability. Compared to wild-type, SlPL-RNAi fruit had higher levels of cellulose and hemicellulose, whereas the level of water-soluble pectin was lower. Consistent with this, the activities of peroxidase, superoxide dismutase and catalase were higher in SlPL-RNAi fruit, and the malondialdehyde concentration was lower. RNA-Seq results showed large amounts of differentially expressed genes involved in hormone signalling, cell wall modification, oxidative stress and pathogen resistance. Collectively, these data demonstrate that pectate lyase plays an important role in both fruit softening and pathogen resistance. This may advance knowledge of postharvest fruit preservation in tomato and other fleshy fruit.
Collapse
Affiliation(s)
- Lu Yang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Wei Huang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Fangjie Xiong
- School of Life SciencesChongqing UniversityChongqingChina
| | - Zhiqiang Xian
- School of Life SciencesChongqing UniversityChongqingChina
| | - Deding Su
- School of Life SciencesChongqing UniversityChongqingChina
| | - Maozhi Ren
- School of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- School of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
27
|
Brüggenwirth M, Knoche M. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. PLANTA 2017; 245:765-777. [PMID: 28012001 DOI: 10.1007/s00425-016-2639-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 05/28/2023]
Abstract
Cell wall swelling, fracture mode (along the middle lamellae vs. across cell walls), stiffness, and pressure at fracture of the sweet cherry fruit skin are closely related. Skin cracking is a common phenomenon in many crops bearing fleshy fruit. The objectives were to investigate relationships between the mode of fracture, the extent of cell wall swelling, and the mechanical properties of the fruit skin using sweet cherry (Prunus avium) as a model. Cracking was induced by incubating whole fruit in deionised water or by fracturing exocarp segments (ESs) in biaxial tensile tests. The fracture mode of epidermal cells was investigated by light microscopy. In biaxial tensile tests, the anticlinal cell walls of the ES fractured predominantly across the cell walls (rather than along) and showed no cell wall swelling. In contrast, fruit incubated in water fractured predominantly along the anticlinal epidermal cell walls and the cell walls were swollen. Swelling of cell walls also occurred when ESs were incubated in malic acid, in hypertonic solutions of sucrose, or in water. Compared to the untreated controls, these treatments resulted in more frequent fractures along the cell walls, lower pressures at fracture (p fracture), and lower moduli of elasticity (E, i.e., less stiff). Conversely, compared to the untreated controls, incubating the ES in CaCl2 and in high concentrations of ethanol resulted in thinner cell walls, in less frequent fractures along the cell walls, higher E and p fracture. Our study demonstrates that fracture mode, stiffness, and pressure at fracture are closely related to cell wall swelling. A number of other factors, including cultivar, ripening stage, turgor, CaCl2, and malic acid, exert their effects only indirectly, i.e., by affecting cell wall swelling.
Collapse
Affiliation(s)
- Martin Brüggenwirth
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
28
|
Effect of ripening and heat processing on the physicochemical and rheological properties of pepper pectins. Carbohydr Polym 2015; 115:112-21. [DOI: 10.1016/j.carbpol.2014.08.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 11/22/2022]
|
29
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|