1
|
Mai J, Gargiullo R, Zheng M, Esho V, Hussein OE, Pollay E, Bowe C, Williamson LM, McElroy AF, Saunders JL, Goolsby WN, Brooks KA, Rodgers CC. Sound-seeking before and after hearing loss in mice. Sci Rep 2024; 14:19181. [PMID: 39160202 PMCID: PMC11333604 DOI: 10.1038/s41598-024-67577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
How we move our bodies affects how we perceive sound. For instance, head movements help us to better localize the source of a sound and to compensate for asymmetric hearing loss. However, many auditory experiments are designed to restrict head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded freely moving mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. Next, we asked how sound-seeking was affected by hearing loss induced by surgical removal of the malleus from the middle ear. After bilateral hearing loss sound-seeking performance drastically declined and did not recover. In striking contrast, after unilateral hearing loss mice were only transiently impaired and then recovered their sound-seek ability over about a week. Throughout recovery, unilateral mice increasingly relied on a movement strategy of sequentially checking potential locations for the sound source. In contrast, the startle reflex (an innate auditory behavior) was preserved after unilateral hearing loss and abolished by bilateral hearing loss without recovery over time. In sum, mice compensate with body movement for permanent unilateral damage to the peripheral auditory system. Looking forward, this paradigm provides an opportunity to examine how movement enhances perception and enables resilient adaptation to sensory disorders.
Collapse
Affiliation(s)
- Jessica Mai
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rowan Gargiullo
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Megan Zheng
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Valentina Esho
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Osama E Hussein
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eliana Pollay
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Cedric Bowe
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Lucas M Williamson
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Abigail F McElroy
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Jonny L Saunders
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - William N Goolsby
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kaitlyn A Brooks
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Mai J, Gargiullo R, Zheng M, Esho V, Hussein OE, Pollay E, Bowe C, Williamson LM, McElroy AF, Goolsby WN, Brooks KA, Rodgers CC. Sound-seeking before and after hearing loss in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574475. [PMID: 38260458 PMCID: PMC10802496 DOI: 10.1101/2024.01.08.574475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
How we move our bodies affects how we perceive sound. For instance, we can explore an environment to seek out the source of a sound and we can use head movements to compensate for hearing loss. How we do this is not well understood because many auditory experiments are designed to limit head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. We then asked how auditory behavior was affected by hearing loss induced by surgical removal of the malleus from the middle ear. An innate behavior, the auditory startle response, was abolished by bilateral hearing loss and unaffected by unilateral hearing loss. Similarly, performance on the sound-seeking task drastically declined after bilateral hearing loss and did not recover. In striking contrast, mice with unilateral hearing loss were only transiently impaired on sound-seeking; over a recovery period of about a week, they regained high levels of performance, increasingly reliant on a different spatial sampling strategy. Thus, even in the face of permanent unilateral damage to the peripheral auditory system, mice recover their ability to perform a naturalistic sound-seeking task. This paradigm provides an opportunity to examine how body movement enables better hearing and resilient adaptation to sensory deprivation.
Collapse
Affiliation(s)
- Jessica Mai
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Rowan Gargiullo
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Megan Zheng
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Valentina Esho
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Osama E Hussein
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Eliana Pollay
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
| | - Cedric Bowe
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
| | | | | | - William N Goolsby
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | - Kaitlyn A Brooks
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta GA 30308
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA 30322
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
- Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta GA 30322
- Department of Biology, Emory College of Arts and Sciences, Atlanta GA 30322
| |
Collapse
|
3
|
Mahdy MAA. Correlation between computed tomography, magnetic resonance imaging and cross-sectional anatomy of the head of the guinea pig (Cavia porcellus, Linnaeus 1758). Anat Histol Embryol 2021; 51:51-61. [PMID: 34726282 DOI: 10.1111/ahe.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
The current work aimed to study the anatomical features of the guinea pig's head by two medical imaging techniques: computed tomography (CT) and magnetic resonance imaging (MRI), and their correlation with the anatomical cross-sectional images. Six adult healthy guinea pigs were used in the present study. Two heads were imaged by CT scanner and then by MRI. The examined heads were cut sagittally and transversely, and two skulls were macerated. The anatomical features were identified on the anatomical sections and compared with the tomographic and MRI images obtained. Data were presented as three-dimensional reconstructed images of the head. In addition, representative combinations of the sagittal and transverse anatomical sections and the corresponding CT scans and MRI images were also presented. Reconstruction of CT images enabled the visualization of different bony structures and airways of the guinea pig head. In addition, skull bones were easily visualized on CT scans, while different parts of the brain were identified on MRI images. Air cavities could be identified by their different contrast on the CT scans and their low intensity on MRI images. The study showed that guinea pig had poorly developed paranasal sinus system represented by rostral and caudal maxillary sinuses. On the contrary, the guinea pig had two tympanic bullae: a small dorsal and a large ventral bulla. In conclusion, this study provides one of the first investigations that uses the multislice CT scans and MRI to study the guinea pig's head and their correlation with the corresponding anatomical sections.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Martonos C, Damian A, Gudea A, Bud IT, Stan F. Morphological and morphometrical study of the auditory ossicles in chinchilla. Anat Histol Embryol 2019; 48:340-345. [PMID: 31041818 DOI: 10.1111/ahe.12446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/30/2022]
Abstract
This study is meant to illustrate and describe the features of the auditory ossicles of the chinchilla (Chinchilla lanigera), one of the species used more and more frequently in otology and ear surgery as animal model. Cephalic extremities of 12 C. lanigera individuals obtained from a private farm, where this species was bred for fur, were used in this study. The ossicles were obtained either by direct surgical harvesting by mastoid approach or after a dermestid beetle exposure followed by anatomical dissection. The three ossicles that form the assembly are the malleus, incus and stapes. After the removal of these ossicles, a series of anatomical descriptions were made, followed by seriate sets of measurements. The malleus and incus form a joined-single unit called the maleo-incal complex, with an elongated straight appearance, also due to the development of the anterior process. The handle of the malleus and the long process of incus are almost perpendicular to the main axis of the maleo-incal complex. The presence of the muscular process on the handle of the malleus is recorded. The overall shape of the incus is given by the uneven development of the two processes and the reduced neck part. The stapes is the smallest of the components that maintains the well-known architecture in accordance with the general model. The morphology of all three ossicles is backed by a series of measurements, some standard, some adapted to the morphology of the ossicles. From the very reduced comparative metrical data at our disposal, our study presents an average of 10% lower values for the ones presented earlier by other researchers in the same species.
Collapse
Affiliation(s)
- Cristian Martonos
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Aurel Damian
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandru Gudea
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioan Teodor Bud
- Clinical Emergency Hospital Târgu-Mureș, University of Medicine, Pharmacy, Science and Technology Târgu-Mureș, Târgu Mureș, Romania
| | - Florin Stan
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Kim YY, Chao JR, Kim C, Kang TC, Park HS, Chang J, Suh JG, Lee JH. Applicability of vital staining and tissue clearing to vascular anatomy and melanocytes' evaluation of temporal bone in six laboratory species. Anat Histol Embryol 2019; 48:296-305. [PMID: 30916435 DOI: 10.1111/ahe.12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to define the applicability of tissue clearing to the field of otology. We combined tissue clearing with vital staining perfusion via a pumping system to examine the vascular anatomy of temporal bones in laboratory animals. We used six different types of species including Korean wild mouse, mouse, Mongolian gerbil, hamsters and Guinea pigs. A mixture of Alcian blue reagent and 4% paraformaldehyde was circulated throughout the entire circulatory system of the animal via a perfusion pump system. Transparency images were obtained from the temporal bones according to the protocol of the SunHyun 3D Imaging Kit. In examining the inner surface of the tympanic membrane, flaccid part (pars flaccida) was positioned along the entire marginal area in Guinea pig. In the Guinea pig, unlike the other species, the cortical bone of the mastoid (bullae) was easily removed using cold instruments, allowing a direct approach to the enclosed structures. The distribution and pattern of cochlea melanocytes were compared among the species. "Mobius strip"-like accumulated melanocytes in vestibules were shown in both the Korean wild mouse and mouse. The collateral blood supply to the cochlea in six different species was checked in various pattern. Combining dye infusion with tissue-clearing techniques, we documented the middle ear and transparent inner ear structures in six different species. The information and associated images will help other researchers to develop hypotheses and design experimental investigations.
Collapse
Affiliation(s)
- Yoo Yeon Kim
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Korea
| | - Janet Ren Chao
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hae Sang Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jiwon Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jun-Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jun Ho Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
6
|
Kim MJ, Kim YY, Chao JR, Park HS, Chang J, Oh D, Lee JJ, Kang TC, Suh JG, Lee JH. Comparing the Organs and Vasculature of the Head and Neck in Five Murine Species. ACTA ACUST UNITED AC 2017; 31:861-871. [PMID: 28882952 DOI: 10.21873/invivo.11140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The purpose of the present study was to delineate the cervical and facial vascular and associated anatomy in five murine species, and compare them for optimal use in research studies focused on understanding the pathology and treatment of diseases in humans. MATERIALS AND METHODS The specific adult male animals examined were mice (C57BL/6J), rats (F344), mongolian gerbils (Merionesunguiculatus), hamsters (Syrian), and guinea pigs (Hartley). To stain the vasculature and organs, of the face and neck, each animal was systemically perfused using the vital stain, Trypan Blue. Following this step, the detailed anatomy of the head and neck could be easily visualized in all species. RESULTS Unique morphological characteristics were demonstrated by comparing the five species, including symmetry of the common carotid origin bilaterally in the Mongolian Gerbil, a large submandibular gland in the hamster and an enlarged buccal branch in the Guinea Pig. In reviewing the anatomical details, this staining technique proves superior for direct surgical visualization and identification. CONCLUSION The anatomical details provided through these five species atlas will help experimental researchers in the future to select the most appropriate animal model for specific laboratory studies aimed to improve our understanding and treatment of diseases in patients.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yoo Yeon Kim
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Janet Ren Chao
- School of Medicine, George Washington University, Washington, DC, U.S.A
| | - Hae Sang Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jiwon Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dawoon Oh
- Department of Anesthesiology and Pain Medicine, Dongtan Sacred Heart Hospital, Hallym University, Dongtan, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Tae Chun Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun-Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea .,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Sakamoto A, Kuroda Y, Kanzaki S, Matsuo K. Dissection of the Auditory Bulla in Postnatal Mice: Isolation of the Middle Ear Bones and Histological Analysis. J Vis Exp 2017. [PMID: 28117786 PMCID: PMC5408703 DOI: 10.3791/55054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In most mammals, auditory ossicles in the middle ear, including the malleus, incus and stapes, are the smallest bones. In mice, a bony structure called the auditory bulla houses the ossicles, whereas the auditory capsule encloses the inner ear, namely the cochlea and semicircular canals. Murine ossicles are essential for hearing and thus of great interest to researchers in the field of otolaryngology, but their metabolism, development, and evolution are highly relevant to other fields. Altered bone metabolism can affect hearing function in adult mice, and various gene-deficient mice show changes in morphogenesis of auditory ossicles in utero. Although murine auditory ossicles are tiny, their manipulation is feasible if one understands their anatomical orientation and 3D structure. Here, we describe how to dissect the auditory bulla and capsule of postnatal mice and then isolate individual ossicles by removing part of the bulla. We also discuss how to embed the bulla and capsule in different orientations to generate paraffin or frozen sections suitable for preparation of longitudinal, horizontal, or frontal sections of the malleus. Finally, we enumerate anatomical differences between mouse and human auditory ossicles. These methods would be useful in analyzing pathological, developmental and evolutionary aspects of auditory ossicles and the middle ear in mice.
Collapse
Affiliation(s)
- Ayako Sakamoto
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine
| | - Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, Keio University School of Medicine
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine;
| |
Collapse
|
8
|
Chen R, Schwander M, Barbe MF, Chan MM. Ossicular Bone Damage and Hearing Loss in Rheumatoid Arthritis: A Correlated Functional and High Resolution Morphometric Study in Collagen-Induced Arthritic Mice. PLoS One 2016; 11:e0164078. [PMID: 27690307 PMCID: PMC5045188 DOI: 10.1371/journal.pone.0164078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023] Open
Abstract
Globally, a body of comparative case-control studies suggests that rheumatoid arthritis (RA) patients are more prone to developing hearing loss (HL). However, experimental evidence that supports this hypothesis is still lacking because the human auditory organ is not readily accessible. The aim of this study was to determine the association between bone damage to the ossicles of the middle ear and HL, using a widely accepted murine model of collagen-induced arthritis (RA mice). Diarthrodial joints in the middle ear were examined with microcomputer tomography (microCT), and hearing function was assessed by auditory brainstem response (ABR). RA mice exhibited significantly decreased hearing sensitivity compared to age-matched controls. Additionally, a significant narrowing of the incudostapedial joint space and an increase in the porosity of the stapes were observed. The absolute latencies of all ABR waves were prolonged, but mean interpeak latencies were not statistically different. The observed bone defects in the middle ear that were accompanied by changes in ABR responses were consistent with conductive HL. This combination suggests that conductive impairment is at least part of the etiology of RA-induced HL in a murine model. Whether the inner ear sustains bone erosion or other pathology, and whether the cochlear nerve sustains pathology await subsequent studies. Considering the fact that certain anti-inflammatories are ototoxic in high doses, monitoring RA patients’ auditory function is advisable as part of the effort to ensure their well-being.
Collapse
Affiliation(s)
- Rensa Chen
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Martin Schwander
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, United States of America
| | - Mary F. Barbe
- Department of Anatomy, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Marion M. Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
- * E-mail:
| |
Collapse
|
9
|
Counter SA, Damberg P, Aski SN, Nagy K, Berglin CE, Laurell G. Experimental Fusion of Contrast Enhanced High-Field Magnetic Resonance Imaging and High-Resolution Micro-Computed Tomography in Imaging the Mouse Inner Ear. Open Neuroimag J 2015; 9:7-12. [PMID: 26401173 PMCID: PMC4578136 DOI: 10.2174/1874440001509010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Objective: Imaging cochlear, vestibular, and 8th cranial nerve abnormalities remains a challenge. In this study, the membranous and osseous labyrinths of the wild type mouse inner ear were examined using volumetric data from ultra high-field magnetic resonance imaging (MRI) with gadolinium contrast at 9.4 Tesla and high-resolution micro-computed tomography (µCT) to visualize the scalae and vestibular apparatus, and to establish imaging protocols and parameters for comparative analysis of the normal and mutant mouse inner ear. Methods: For in vivo MRI acquisition, animals were placed in a Milleped coil situated in the isocenter of a horizontal 9.4 T Varian magnet. For µCT examination, cone beam scans were performed ex vivo following MRI using the µCT component of a nanoScan PET/CT in vivo scanner. Results: The fusion of Gd enhanced high field MRI and high-resolution µCT scans revealed the dynamic membranous labyrinth of the perilymphatic fluid filled scala tympani and scala vestibule of the cochlea, and semicircular canals of the vestibular apparatus, within the µCT visualized contours of the contiguous osseous labyrinth. The ex vivo µCT segmentation revealed the surface contours and structural morphology of each cochlea turn and the semicircular canals in 3 planes. Conclusions: The fusion of ultra high-field MRI and high-resolution µCT imaging techniques were complementary, and provided high-resolution dynamic and static visualization of the complex morphological features of the normal mouse inner ear structures, which may offer a valuable approach for the investigation of cochlear and vestibular abnormalities that are associated with birth defects related to genetic inner ear disorders in humans.
Collapse
Affiliation(s)
- S Allen Counter
- Neurology Department, Harvard University Biological Laboratories, Cambridge, MA 02138, USA
| | - Peter Damberg
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | - Sahar Nikkhou Aski
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | - Kálmán Nagy
- Karolinska Experimental Research Imaging Center, Karolinska Universitetssjukhuset Solna, Sweden
| | | | - Göran Laurell
- Department of Surgical Sciences Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Hong SM, Lee JH, Park CH, Kim HJ. Transverse fracture of the stapes anterior crus caused by the blast pressure from a land mine explosion. KOREAN JOURNAL OF AUDIOLOGY 2014; 18:137-40. [PMID: 25558408 PMCID: PMC4280756 DOI: 10.7874/kja.2014.18.3.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/22/2022]
Abstract
Stapes fractures without other ossicle problems are rare and ossicle problems due to explosion pressure are also rare. We describe a very rare case of stapes anterior crural fracture resulting from a land mine explosion. As this case suggests, a close examination of the ossicles is necessary during an exploration tympanotomy.
Collapse
Affiliation(s)
- Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon, Korea
| | - Chan Hum Park
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon, Korea
| | - Hyung-Jong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
11
|
Abstract
The use of genetically modified mice can accelerate progress in auditory research. However, the fundamental profile of mouse hearing has not been thoroughly documented. In the current study, we explored mouse middle ear transmission by measuring sound-evoked vibrations at several key points along the ossicular chain using a laser-Doppler vibrometer. Observations were made through an opening in pars flaccida. Simultaneously, the pressure at the tympanic membrane close to the umbo was monitored using a micro-pressure-sensor. Measurements were performed in C57BL mice, which are widely used in hearing research. Our results show that the ossicular local transfer function, defined as the ratio of velocity to the pressure at the tympanic membrane, was like a high-pass filter, almost flat at frequencies above ∼15 kHz, decreasing rapidly at lower frequencies. There was little phase accumulation along the ossicles. Our results suggested that the mouse ossicles moved almost as a rigid body. Based on these 1-dimensional measurements, the malleus-incus-complex primarily rotated around the anatomical axis passing through the gonial termination of the anterior malleus and the short process of the incus, but secondary motions were also present. This article is part of a special issue entitled "MEMRO 2012".
Collapse
Affiliation(s)
- Wei Dong
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, P&S 11-452, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
12
|
Powell KA, Wilson D. 3-dimensional imaging modalities for phenotyping genetically engineered mice. Vet Pathol 2011; 49:106-15. [PMID: 22146851 DOI: 10.1177/0300985811429814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves.
Collapse
Affiliation(s)
- K A Powell
- Small Animal Imaging Shared Resource, The James Comprehensive Cancer Center Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
13
|
Conchou F, Sautet J, Raharison F, Mogicato G. Magnetic resonance imaging of normal nasal cavity and paranasal sinuses in cats. Anat Histol Embryol 2011; 41:60-7. [PMID: 21895743 DOI: 10.1111/j.1439-0264.2011.01104.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed description of the nasal cavity and paranasal sinuses in clinically normal cats using magnetic resonance imaging (MRI) is presented. The heads of seven normal cats were imaged using a 1.5-T MR unit and two sequences spin echo (SE) T1-weighted and fast spin echo (FSE) T2-weighted. Eighteen relevant MR scans were taken in the transverse (12 scans) and dorsal (six scans) planes. Anatomical structures were identified and labelled using anatomical texts, sectioned specimen heads and previous studies. MR scans revealed the soft-tissue structure of the head. Identified relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and evaluate pathological conditions that affect the nasal region.
Collapse
Affiliation(s)
- F Conchou
- Groupe de Recherches pour Animaux de Compagnie, ENVT, Toulouse, Cedex, France
| | | | | | | |
Collapse
|
14
|
Petnehazy O, Benczik J, Takacs I, Petrasi Z, Sütő Z, Horn P, Repa I. Computed Tomographical (CT) Anatomy of the Thoracoabdominal Cavity of the Male Turkey (Meleagris gallopavo). Anat Histol Embryol 2011; 41:12-20. [DOI: 10.1111/j.1439-0264.2011.01099.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|