1
|
Wanta A, Noguchi K, Sugawara T, Sonoda K, Somsuan K, Wakayama T. Short-Term Treatment of Melatonin Improves the Expression of Cell Adhesion Molecules in the Testis of the Mouse Cryptorchidism Model. J Histochem Cytochem 2024; 72:623-640. [PMID: 39301779 PMCID: PMC11483776 DOI: 10.1369/00221554241279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
Melatonin plays a major role in regulating the sleep-wake cycle and enhancing testosterone production. We investigated the short-term effects of melatonin treatment for 14 consecutive days in the cryptorchidism model. We categorized experimental mice into Sham (S), Orchiopexy (O), Melatonin (Mel), and Orchiopexy + Melatonin (OMel) groups. Surgery involved inducing cryptorchidism in the left testis for seven days, followed by orchiopexy. The Mel group's testes did not descend, but they received melatonin injections after seven days of cryptorchidism. The OMel group underwent both orchiopexy and melatonin treatment. Both O and Mel groups exhibited decreased sperm and round-headed sperm in the epididymis. Significant increases were observed in the numbers of giant cells and negative Nectin-3 cells at p-value<0.05. The pattern of Cadm1 expression changed, and Nectin-2 and Nectin-3 co-expression was lacking in abnormal spermatids. Sertoli cell cytoplasm in both O and Mel groups exhibited autophagosomes and multivesicular bodies, which correlated with increased cyclooxygenase-2 expression. However, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell numbers increased significantly in all treatment groups compared to the S group. Our study found that the combination of orchiopexy and melatonin positively influenced the expression of cell adhesion molecules (Cadm1, Nectin-2, and Nectin-3) involved in spermatogenesis, while reducing giant cells, autophagosomes, and apoptosis.
Collapse
Affiliation(s)
- Arunothai Wanta
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keerakarn Somsuan
- School of Medicine and Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
4
|
Lavrentiadou SN, Sapanidou V, Tzekaki EE, Margaritis I, Tsantarliotou MP. Melatonin Protects Bovine Spermatozoa by Reinforcing Their Antioxidant Defenses. Animals (Basel) 2023; 13:3219. [PMID: 37893943 PMCID: PMC10603642 DOI: 10.3390/ani13203219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cryopreserved semen is widely used in assisted reproductive techniques. Post-thawing spermatozoa endure oxidative stress due to the high levels of reactive oxygen and nitrogen species, which are produced during the freezing/thawing process, and the depletion of antioxidants. To counteract this depletion, supplementation of sperm preparation medium with antioxidants has been widely applied. Melatonin is a hormone with diverse biological roles and a potent antioxidant, with an ameliorative effect on spermatozoa. In the present study, we assessed the effect of melatonin on thawed bovine spermatozoa during their handling. Cryopreserved bovine spermatozoa were thawed and incubated for 60 min in the presence or absence of 100 μΜ melatonin. Also, the effect of melatonin was assessed on spermatozoa further challenged by the addition of 100 μΜ hydrogen peroxide. Spermatozoa were evaluated in terms of kinematic parameters (CASA), viability (trypan blue staining) and antioxidant capacity (glutathione and NBT assay, determination of iNOS levels by Western blot analysis). In the presence of melatonin, spermatozoa presented better kinematic parameters, as the percentage of motile and rapid spermatozoa was higher in the melatonin group. They also presented higher viability and antioxidant status, as determined by the increased cellular glutathione levels and the decreased iNOS protein levels.
Collapse
Affiliation(s)
- Sophia N. Lavrentiadou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Vasiliki Sapanidou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Elena E. Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Ioannis Margaritis
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Maria P. Tsantarliotou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| |
Collapse
|
5
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
6
|
Monteiro KS, Motta NC, Cardoso ACP, Souza SPD, Murgas LDS. Melatonin Supplementation for the Cryopreservation of Canine Sperm. Biopreserv Biobank 2023; 21:477-482. [PMID: 36169627 DOI: 10.1089/bio.2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antioxidants can be used in sperm cryopreservation protocols to reduce oxidative stress that occurs due to the cryopreservation process. The aim of this study was to evaluate the effects of melatonin supplementation on quality and oxidative stress parameters in cryopreserved canine sperm. Eighteen sperm ejaculates were collected from 6 Frenchie Bulldog males (3 collections per male). Sperm motility parameters, membrane integrity, and sperm morphology were analyzed before the cryopreservation process. The extender used in cryopreservation was composed of Tris-egg yolk and ethylene glycol 5% was added as a cryoprotectant. The cryoprotective medium was supplemented with 1.0, 1.5, 2.0, 2.5, and 3.0 mM melatonin, and the control group (without melatonin). Post-thaw sperm was evaluated as described for fresh sperm and oxidative stress parameters (lipid peroxidation, catalase, and superoxide dismutase). Post-thaw sperm motility parameters, membrane integrity, sperm morphology, and oxidative stress parameters did not differ (p > 0.05) among the control group and samples supplemented with melatonin. The results of this study showed that melatonin supplementation had no positive or negative effect on the parameters evaluated. Thus, it is suggested that different concentrations of melatonin be tested to assess its effectiveness as an antioxidant in the cryopreservation process in canine sperm.
Collapse
|
7
|
Özgen M, Take G, Kaplanoğlu İ, Erdoğan D, Seymen CM. Therapeutic effects of melatonin in long-term exposure to 2100MHz radiofrequency radiation on rat sperm characteristics. Rev Int Androl 2023; 21:100371. [PMID: 37413938 DOI: 10.1016/j.androl.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/15/2022] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Radiofrequency electromagnetic fields (RF-EMFs) are one of the risk factors for male reproductive health and melatonin can be an ideal candidate for therapeutic development against RF-induced male fertility problems due to its antioxidant properties. The possible therapeutic role of melatonin in the destructive effects of 2100MHz RF radiation on rat sperm characteristics is investigated in the present study. METHODS Wistar albino rats were divided into four groups and the experiment continued for ninety consecutive days; Control, Melatonin (10mg/kg, subcutaneously), RF (2100MHz, thirty minutes per day, whole-body), and RF+Melatonin groups. Left caudal epididymis and ductus deferens tissues were placed in sperm wash solution (at 37°C) and dissected. The sperms were counted and stained. Measurements of the perinuclear ring of the manchette and posterior portion of the nucleus (ARC) were performed and the sperms were examined at an ultrastructural level. All of the parameters were evaluated statistically. RESULTS The percentages of abnormal sperm morphology were significantly increased with RF exposure, while the total sperm count was significantly decreased. RF exposure also showed harmful effects on acrosome, axoneme, mitochondrial sheath, and outer dense fibers at the ultrastructural level. The number of total sperms, sperms with normal morphology increased, and ultrastructural appearance returned to normal by melatonin administration. DISCUSSION The data showed that melatonin may be a beneficial therapeutic agent for long-term exposure of 2100MHz RF radiation-related reproductive impairments.
Collapse
Affiliation(s)
- Meltem Özgen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Gülnur Take
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - İskender Kaplanoğlu
- Sağlık Bilimleri University, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Center of Assisted Reproduction, Ankara, Turkey
| | - Deniz Erdoğan
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Cemile Merve Seymen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
8
|
Li Z, Zhang K, Zhou Y, Zhao J, Wang J, Lu W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023; 28:4940. [PMID: 37446601 PMCID: PMC10343719 DOI: 10.3390/molecules28134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuming Zhou
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Lee SH, Lee S. Effects of Melatonin and Silymarin on Reactive Oxygen Species, Nitric Oxide Production, and Sperm Viability and Motility during Sperm Freezing in Pigs. Animals (Basel) 2023; 13:ani13101705. [PMID: 37238134 DOI: 10.3390/ani13101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sperm during the freezing and thawing process is damaged by oxidative stress. Thus, its antioxidant scavenger is essential for sperm survival and death in frozen-thawed semen. We used melatonin and silymarin in experiments after the dose-dependent experiment. Our study aimed to identify the effect of melatonin and silymarin on the motility and viability of sperm, reactive oxygen species (ROS), and nitric oxide (NO) production in frozen-thawed boar semen. Melatonin and silymarin were treated alone and cotreated in the fresh boar semen. Boar semen was collected using the gloved-hand method from ten crossbred pigs, and samples were used in the experiments. We evaluated sperm viability using SYBR-14 and PI kit, and ROS and NO production were detected by DCF-DA and DAF-2, respectively. The sperm motility was not significantly different between non-treatment and treatment. ROS and NO production in frozen-thawed sperm were decreased by melatonin and silymarin. Moreover, silymarin significantly reduced NO production more than melatonin. Melatonin and silymarin enhanced the viability of sperm. We suggest that melatonin and silymarin are essential antioxidants in semen cryopreservation for protecting sperm damage and maintaining sperm viability. Melatonin and silymarin may be useful antioxidants in freezing boar sperm.
Collapse
Affiliation(s)
- Sang-Hee Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Yadav DK, Kumar A, Gupta S, Sharma P, Kumar G, Sachan V, Yadav B, Yadav S, Saxena A, Swain DK. Antioxidant additive melatonin in tris-based egg yolk extender improves post-thaw sperm attributes in Hariana bull. Anim Reprod Sci 2023; 251:107214. [PMID: 36947953 DOI: 10.1016/j.anireprosci.2023.107214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
In the study, melatonin, a known antioxidant pineal peptide was used as an additive in the tris-egg yolk glycerol-based semen extender in Hariana bull semen and post-thaw sperm characters were evaluated. In the study, Group I was a control without melatonin; and Group II, III, and IV were having 0.5 mM, 1 mM, and 2 mM melatonin/80 × 106 spermatozoa, respectively were treatment groups. Thirty-two semen ejaculates from 4 Hariana bulls were processed for freezing and post-thaw sperm characteristics were evaluated. Sperm motility, velocity, the viability with intact membrane, and total antioxidant capacity were markedly (P < 0.05) improved in Group IV compared to all other groups. The lipid peroxidation and total protein carbonylation were substantially (P < 0.05) decreased in Group IV compared to all other groups. The population of cryocapacitated, acrosome-reacted, and apoptotic-like spermatozoa were significantly (P < 0.05) decreased in Group IV. Further, the relative band intensity of 74 kDa protein and percent of spermatozoa showing positive immune reactivity to tyrosine-phosphorylated proteins was decreased in Group IV. The progesterone-receptor ligand binding, in vitro capacitation response, and Vanguard distance were markedly (P < 0.05) improved in Group IV. In summary- Group IV having 2 mM melatonin was found to be optimal in providing cryoprotective effects to Hariana bull spermatozoa after freezing-thawing and can be suitably used as a semen additive during semen cryopreservation.
Collapse
Affiliation(s)
- Dileep Kumar Yadav
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Anuj Kumar
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Shashikant Gupta
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Pratishtha Sharma
- Sperm Signalling Laboratory, Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Gyanesh Kumar
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Vikas Sachan
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Brijesh Yadav
- Sperm Signalling Laboratory, Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Sarvajeet Yadav
- Sperm Signalling Laboratory, Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Atul Saxena
- Department of Veterinary Gynaecology and Obstetrics, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Dilip Kumar Swain
- Sperm Signalling Laboratory, Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deendayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Salimi A, Eslami M, Farrokhi-Ardabili F. Influence of trans-ferulic acid on the quality of ram semen upon cold preservation. Vet Med Sci 2023; 9:1369-1378. [PMID: 36913307 DOI: 10.1002/vms3.1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Due to lower antioxidant capacity and higher amounts of polyunsaturated fatty acids, ram spermatozoa are very susceptible during cooling process. OBJECTIVES The objective was to examine the effect of the trans-ferulic acid (t-FA) on the ram semen during liquid preservation. METHODS Semen samples were collected from the Qezel rams, pooled, and extended with the Tris-based diluent. Pooled samples enriched with different amounts of the t-FA (0, 2.5, 5, 10, and 25 mM) and preserved at 4°C for 72 h. Spermatozoa's kinematics, membrane functionality, and viability were assessed by CASA system, hypoosmotic swelling test, and eosin-nigrosin staining, respectively. Moreover, biochemical parameters were measured at 0, 24, 48, and 72 h. RESULTS Results showed that 5 and 10 mM t-FA improved forward progressive motility (FPM) and curvilinear velocity compared to the other groups at 72 h (p < 0.05). Samples treated with 25 mM t-FA showed the lowest total motility, FPM, and viability at 24, 48, and 72 h of storage (p < 0.05). Higher total antioxidant activity levels were observed in the 10 mM t-FA-treated group compared to the negative control at 72 h (p < 0.05). Treatment with 25 mM t-FA increased malondialdehyde amounts and decreased superoxide dismutase activity compared to other groups at the final time assessment (p < 0.05). Nitrate-nitrite and lipid hydroperoxides values were not affected by treatment. CONCLUSIONS The current study indicates the positive and negative influences of different concentrations of t-FA on the ram semen upon cold storage.
Collapse
Affiliation(s)
- Ali Salimi
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
13
|
Improvement of the Seminal Characteristics in Rams Using Agri-Food By-Products Rich in Phytomelatonin. Animals (Basel) 2023; 13:ani13050905. [PMID: 36899762 PMCID: PMC10000078 DOI: 10.3390/ani13050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of this study was to evaluate the effect of a phytomelatonin-rich diet, including by-products from the food industry, on ram sperm quality and seminal plasma composition. Melatonin content in several by-products before and after in vitro ruminal and abomasal digestion was determined by HPLC-ESI-MS/MS. Finally, 20% of a mix of grape pulp with pomegranate and tomato pomaces was included in the rams' diet, constituting the phytomelatonin-rich diet. Feeding the rams with this diet resulted in an increase in seminal plasma melatonin levels compared with the control group (commercial diet) in the third month of the study. In addition, percentages higher than those in the control group of morphologically normal viable spermatozoa with a low content of reactive oxygen species were observed from the second month onwards. However, the antioxidant effect does not seem to be exerted through the modulation of the antioxidant enzymes since the analysis of the activities of catalase, glutathione reductase and glutathione peroxidase in seminal plasma revealed no significant differences between the two experimental groups. In conclusion, this study reveals, for the first time, that a phytomelatonin-rich diet can improve seminal characteristics in rams.
Collapse
|
14
|
Miguel-Jiménez S, Carvajal-Serna M, Peña-Delgado V, Casao A, Pérez-Pe R. Effect of melatonin and nitric oxide on capacitation and apoptotic changes induced by epidermal growth factor in ram sperm. Reprod Fertil Dev 2023; 35:282-293. [PMID: 36403503 DOI: 10.1071/rd22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
CONTEXT Apart from the canonical cAMP-PKA pathway, ram sperm capacitation can be achieved by the MAPK ERK1/2 signalling cascade, activated by epidermal growth factor (EGF). AIMS This study aims to investigate the effect of melatonin and nitric oxide (NO·) on capacitation and apoptotic-like changes in EGF-capacitated ram spermatozoa. METHODS In vitro capacitation was induced by EGF in the absence or presence of melatonin (100pM or 1μM). Also, a NO· precursor, L-arginine, or a NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), were added to capacitation media to study the interaction of NO· and melatonin during EGF-capacitation. Sperm functionality parameters (motility, viability, capacitation state), apoptotic markers (caspase activation and DNA damage), NO· levels, and phosphorylated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (assessed by Western blot), were evaluated in swim-up and capacitated samples with EGF. KEY RESULTS NO· levels and the apoptotic-related markers were raised after EGF incubation. Melatonin had a bimodal role on sperm EGF-capacitation, preventing it at high concentration and promoting acrosome reaction at low concentration, but neither of the two concentrations prevented the increase in apoptotic-like markers or NO· levels. However, melatonin at 1μM prevented the activation of JNK. CONCLUSIONS NO· metabolism does not seem to modulate the apoptosis-like events in ram spermatozoa. Melatonin at 1μM prevents ram sperm capacitation induced by EGF independently from nitric oxide metabolism, and it could be exerted by limiting the JNK mitogen-activated protein kinase (MAPK) activation. IMPLICATIONS This study improvesour understanding of the biochemical mechanisms involved in sperm capacitation, and ultimately, fertility.
Collapse
Affiliation(s)
- Sara Miguel-Jiménez
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Melissa Carvajal-Serna
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Victoria Peña-Delgado
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Adriana Casao
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | - Rosaura Pérez-Pe
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Veterinary Sciences, Institute of Environmental Sciences of Aragón (IUCA), University of Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| |
Collapse
|
15
|
Muacevic A, Adler JR, Bratoeva K. Effects of Melatonin Supplementation on the Aortic Wall in a Diet-Induced Obesity Rat Model. Cureus 2023; 15:e33333. [PMID: 36751236 PMCID: PMC9897689 DOI: 10.7759/cureus.33333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Background Cardiovascular disease (CVD) is still the leading cause of death globally. Alterations in the arterial wall architecture predict CVD morbidity and mortality and are associated with other CVD risk factors. Aortic wall thickness is closely linked to short- and long-term CVD morbidity and mortality, even without pronounced atherosclerotic changes. Obesity increases the risk of a broad spectrum of pathologies with vascular manifestation, which are often pathogenically associated with chronic oxidative stress and inflammatory response. Hence, as an antioxidant and anti-inflammatory agent, the pineal gland hormone melatonin is expected to have vasoprotective effects. This study evaluated the effects of melatonin supplementation on aortic wall thickness by assessing the cross-sectional associations of abdominal obesity with aortic intima-media thickness in a diet-induced obesity rat model. Methodology The model comprised of male Wistar rats that were on a high-fructose diet (HFD) (20% glucose-fructose corn syrup) for 12 weeks; the rats were divided into four groups (n = 8): control, HFD, HFD and melatonin supplementation (per os - 4 mg/kg/24h), and control and melatonin supplementation. All rats received a standard rodent diet and tap water. Zoometric measurements and the Lee index were calculated. Morphometric analysis of the abdominal aorta was performed by staining with hematoxylin-eosin and measuring the thickness of the abdominal aortic wall. For this, we used the Aperio Image Scope software. To evaluate the functional properties of the abdominal aorta, the modified Kernogan's index (KI) was employed. Results The results showed significantly elevated body weight (Lee index), KI, and wall thickness of the aorta abdominalis with morphometric changes in the vessel wall in HFD rats compared to the control group. Melatonin supplementation prevented these changes. Conclusions The administration of HFD to Wistar rats led to pathomorphological and morphometric changes in their abdominal aorta, which constitute the main diagnostic criteria of endothelial dysfunction. Melatonin supplementation regressed vascular wall remodeling and restored its functional capacity.
Collapse
|
16
|
Cosme P, Rodríguez AB, Garrido M, Espino J. Coping with Oxidative Stress in Reproductive Pathophysiology and Assisted Reproduction: Melatonin as an Emerging Therapeutical Tool. Antioxidants (Basel) 2022; 12:antiox12010086. [PMID: 36670948 PMCID: PMC9854935 DOI: 10.3390/antiox12010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Infertility is an increasing global public health concern with socio-psychological implications for affected couples. Remarkable advances in reproductive medicine have led to successful treatments such as assisted reproductive techniques (ART). However, the search for new therapeutic tools to improve ART success rates has become a research hotspot. In the last few years, pineal indolamine melatonin has been investigated for its powerful antioxidant properties and its role in reproductive physiology. It is considered a promising therapeutical agent to counteract the detrimental effects associated with oxidative stress in fertility treatments. The aim of the present narrative review was to summarize the current state of the art on the importance of melatonin in reproductive physiology and to provide a critical evaluation of the data available encompassing basic, translational and clinical studies on its potential use in ART to improve fertility success rates.
Collapse
Affiliation(s)
| | | | - María Garrido
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| | - Javier Espino
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| |
Collapse
|
17
|
Zheng H, Huang S, Wei G, Sun Y, Li C, Si X, Chen Y, Tang Z, Li X, Chen Y, Liao W, Liao Y, Bin J. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther 2022; 30:3477-3498. [PMID: 35791879 PMCID: PMC9637749 DOI: 10.1016/j.ymthe.2022.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) derived from oxygen-dependent mitochondrial metabolism are the essential drivers of cardiomyocyte (CM) cell-cycle arrest in adulthood. Mitochondria-localized circular RNAs (circRNAs) play important roles in regulating mitochondria-derived ROS production, but their functions in cardiac regeneration are still unknown. Herein, we investigated the functions and underlying mechanism of mitochondria-localized circSamd4 in cardiac regeneration. We found that circSamd4 was selectively expressed in fetal and neonatal CMs. The transcription factor Nrf2 controlled circSamd4 expression by binding to the promoter of circSamd4 host gene. CircSamd4 overexpression reduced while circSamd4 silenced increased mitochondrial oxidative stress and subsequent oxidative DNA damage. Moreover, circSamd4 overexpression induced CM proliferation and prevented CM apoptosis, which reduced the size of the fibrotic area and improved cardiac function after myocardial infarction (MI). Mechanistically, circSamd4 reduced oxidative stress generation and maintained mitochondrial dynamics by inducing the mitochondrial translocation of the Vcp protein, which downregulated Vdac1 expression and prevented the mitochondrial permeability transition pore (mPTP) from opening. Our findings suggest that circSamd4 is a novel therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, Guizhou Medical University, Affiliated Hospital, 550004 Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
18
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
19
|
Zhou Z, Wang R, Wang J, Hao Y, Xie Q, Wang L, Wang X. Melatonin pretreatment on exosomes: Heterogeneity, therapeutic effects, and usage. Front Immunol 2022; 13:933736. [PMID: 36189281 PMCID: PMC9524263 DOI: 10.3389/fimmu.2022.933736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic outcomes of exosome-based therapies have greatly exceeded initial expectations in many clinically intractable diseases due to the safety, low toxicity, and immunogenicity of exosomes, but the production of the exosomes is a bottleneck for wide use. To increase the yield of the exosomes, various solutions have been tried, such as hypoxia, extracellular acidic pH, etc. With a limited number of cells or exosomes, an alternative approach has been developed to improve the efficacy of exosomes through cell pretreatment recently. Melatonin is synthesized from tryptophan and secreted in the pineal gland, presenting a protective effect in pathological conditions. As a new pretreatment method, melatonin can effectively enhance the antioxidant, anti-inflammatory, and anti-apoptotic function of exosomes in chronic kidney disease, diabetic wound healing, and ischemia-reperfusion treatments. However, the current use of melatonin pretreatment varies widely. Here, we discuss the effects of melatonin pretreatment on the heterogeneity of exosomes based on the role of melatonin and further speculate on the possible mechanisms. Finally, the therapeutic use of exosomes and the usage of melatonin pretreatment are described.
Collapse
Affiliation(s)
- Zilan Zhou
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ruiping Wang
- Science and Technology Information and Strategy Research Center of Shanxi, Taiyuan, China
| | - Jie Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yujia Hao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Qingpeng Xie
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Lu Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
- *Correspondence: Xing Wang, ; Lu Wang,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
- *Correspondence: Xing Wang, ; Lu Wang,
| |
Collapse
|
20
|
Benedetti S, Catalani S, De Stefani S, Primiterra M, Fraternale A, Palma F, Palini S. A microplate-based DCFH-DA assay for the evaluation of oxidative stress in whole semen. Heliyon 2022; 8:e10642. [PMID: 36158085 PMCID: PMC9489972 DOI: 10.1016/j.heliyon.2022.e10642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/03/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aims The well-documented relationship between sperm oxidation and male infertility strongly encourages the development of assays for reactive oxygen species detection in semen samples. The present study aims to apply the microplate-based 2',7'-dichlorofluorescein diacetate assay to the evaluation of oxidative stress in unprocessed whole semen, thus avoiding sample centrifugations and other manipulations that may cause significant reactive oxygen species increments. Main methods The fluorescence assay consisted in the quantification of both intracellular and extracellular reactive oxygen species levels in unwashed semen specimens by using the probe 2',7'-dichlorofluorescein diacetate into a 96-well plate. The method was useful for the preliminary assessment of the oxidation levels of whole semen samples from men undergoing standard sperm analysis as well as to evaluate the effect of some pro-glutathione molecules on semen oxidative status. Key findings The 2',7'-dichlorofluorescein diacetate assay was successfully adapted to the evaluation of oxidative stress in whole semen, effectively revealing the perturbation of the redox homeostasis of the sample. Accordingly, specimens with abnormal sperm parameters (n = 10) presented oxidation indexes significantly higher than those with normospermia (n = 10) [7729 (range 3407-12769) vs. 1356 (range 470-2711), p < 0.001]; in addition, semen oxidation indexes negatively correlated to sperm motility and morphology. Noteworthy, whole semen exposure to pro-glutathione compounds led to reduced semen oxidation levels and sperm protection against oxidative damage. Significance Based on our pilot experimental data, the microplate-based 2',7'-dichlorofluorescein diacetate assay appears to be a convenient method for the detection of reactive oxygen species levels in whole semen samples, avoiding artifacts due to semen centrifugation steps. At the same time, the test could be a helpful tool for the basic and quick screening of antioxidant molecules able to preserve semen quality.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino, Via Saffi 2, Urbino, Italy
| | - Simona Catalani
- Department of Biomolecular Sciences, University of Urbino, Via Saffi 2, Urbino, Italy
| | | | | | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino, Via Saffi 2, Urbino, Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino, Via Saffi 2, Urbino, Italy
| | - Simone Palini
- Physiopathology of Reproduction Unit, Cervesi Hospital, Via Ludwig Van Beethoven 1, Cattolica, Italy
| |
Collapse
|
21
|
Kumar T, Kumar P, Saini N, Bhalothia SK, Prakash C, Mahla AS, Kumar A. Shielding effect of melatonin improves seminal quality and oxidative stress indices during chilled storage of ram semen. Trop Anim Health Prod 2022; 54:197. [PMID: 35662381 DOI: 10.1007/s11250-022-03135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Supplementation of antioxidant to semen extender maintains seminal quality by reducing oxidative stress during preservation time period. The main aim of this study was to investigate the effect of different concentrations of melatonin supplementation on liquid storage of Magra ram semen. This study was performed on adult Magra ram (n = 8), and seminal ejaculates (48) were collected and evaluated for various macroscopic and microscopic seminal quality parameters for further processing. After preliminary evaluation, ejaculates of each collection session were mixed and divided into four equal aliquots. All the aliquots were diluted (1:10) with Tris-citric fructose egg yolk extender contained sans melatonin served as control, whereas the other three aliquots were supplemented with 0.5, 1 and 2 mM MLT which were grouped as MLT0.5, MLT1 and MLT2, respectively. Thereafter, the samples were stored at 4 ºC for 72 h, and various seminal parameters (individual sperm progressive motility, viability, abnormalities, plasma membrane functionality) along with oxidative stress parameters (total antioxidant capacity (TAC), malondialdehyde (MDA)) were evaluated at 0, 24, 48 and 72 h of preservation. The results indicated that the mean percent values for progressive sperm motility, viability, plasma membrane functionality and TAC were significantly higher (p < 0.05) in treated groups with the highest values in MLT1 group. Significantly lower (p < 0.05) percentage of total sperm abnormalities and MDA level was observed in treatment groups compared to control group. The results report that supplementation of 1 mM melatonin efficiently maintains the seminal quality and ameliorates oxidative stress during preservation at 4 ºC to 72 h.
Collapse
Affiliation(s)
- Tapendra Kumar
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, Rajasthan, India
| | - Pramod Kumar
- Department of Veterinary Gynaecology & Obstetrics, College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, Rajasthan, India
| | - Nirmala Saini
- ICAR-Central Sheep & Wool Research Institute, Arid Region Campus, Bikaner, Rajasthan, India
| | - Shivendra Kumar Bhalothia
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, Rajasthan, India
| | - Chandan Prakash
- ICAR-Central Sheep & Wool Research Institute, Arid Region Campus, Bikaner, Rajasthan, India.
| | - Ajit Singh Mahla
- ICAR-Central Sheep & Wool Research Institute, Avikanagar, Tonk, Rajasthan, India
| | - Ashok Kumar
- ICAR-Central Sheep & Wool Research Institute, Arid Region Campus, Bikaner, Rajasthan, India
| |
Collapse
|
22
|
Minucci S, Venditti M. New Insight on the In Vitro Effects of Melatonin in Preserving Human Sperm Quality. Int J Mol Sci 2022; 23:ijms23095128. [PMID: 35563519 PMCID: PMC9100642 DOI: 10.3390/ijms23095128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa (SPZ) are sensitive to stressful conditions, particularly oxidative stress, which alters their quality; thus, the use of protective molecules as an antioxidant is encouraged. Herein, we used melatonin (MLT) to investigate its in vitro effects on human sperm parameters under conditions of oxidative stress induced by cadmium (Cd). Fifteen human semen samples were divided into control, Cd-treated, MLT-treated, and Cd+MLT-treated groups and analyzed after 30 min, 6 h, and 24 h of exposure. Results showed a time-dependent decrease in SPZ motility, DNA integrity, and increased apoptosis induced by oxidative stress, and these effects were counteracted by MLT co-treatment. Based on these data, we further explored additional parameters just at 24 h. The induced oxidative stress, highlighted by the increased lipid peroxidation, reduced the percentage of SPZ able to undertake acrosome reaction and altered the levels and localization of some protein markers of motility (PREP, RSPH6A), morphology (DAAM1), and acrosome membrane (PTMA, IAM38); all these effects were counteracted by MLT co-treatment. Interestingly, MLT alone was able to ameliorate motility at 30 min of incubation compared to the control, while at 24 h, it prevented the physiological alteration in terms of motility, DNA integrity, and apoptosis. Collectively, the data encourage MLT use as an integrative molecule to ameliorate human gamete quality when compromised by stressful conditions.
Collapse
|
23
|
Abo El Gheit RE, Soliman NA, Nagla SA, El‐Sayed RM, Badawi GA, Emam MN, Abdel Ghafar MT, Ibrahim MAA, Elswaidy NRM, Radwan DA, Alshenawy HA, Khaled HE, Kamel S, El‐Saka MH, Madi NM, Younis RL. Melatonin epigenetic potential on testicular functions and fertility profile in varicocele rat model is mediated by Silent information regulator1. Br J Pharmacol 2022; 179:3363-3381. [PMID: 35064582 DOI: 10.1111/bph.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/10/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Varicocele is a leading cause of male infertility. Melatonin is a highly pleiotropic neurohormone. We aimed to characterize the melatonin epigenetic potential in varicocele and the involved molecular mechanisms. EXPERIMENTAL APPROACH Fifty-two male albino rats were randomly divided into four groups (13 rats each): control (I), melatonin (II), varicocele (III) and melatonin treated varicocele (IV) groups. Left varicocele was induced by partial left renal vein ligation. Reproductive hormones, epididymal sperm functional parameters, testicular 3/17 β-hydroxysteroid dehydrogenases, antioxidant enzymes, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase, 8-hydroxy-2'-deoxyguanosine and histopathological/Johnsen's score were evaluated. Flow cytometry and Comet were carried out to explore extent of sperm and testicular DNA damage. Testicular expression of silent information regulator 1 (SIRT1), forkhead transcription factors-class O (type1) (FOXO1), tumour suppressor gene, P53, cation channels of sperm (CatSper) and steroidogenic acute regulatory protein was evaluated by western blot technique. Testicular expression of Bcl-2 and its associated X protein and nuclear factor kappa-light-chain-enhancer of activated B cells were assayed by immunohistochemical staining. Testicular miR-34a expression was quantified by quantitative reverse transcription-polymerase chain reaction. KEY RESULTS The varicocele induced testicular histological injury, enhanced oxidative stress, P53-mediated apoptosis, DNA damage and increased testicular miR-34a expression paralleled with down-regulated SIRT1/FOXO axis. Melatonin treatment of varicocele rats displayed antioxidant/anti-apoptotic efficacy and improved reproductive hormones axis, CatSper expression and fertility parameters. MiR-34a/SIRT1/FOXO1 epigenetic axis integrates testicular melatonin mediated intracellular transduction cascades in varicocele. CONCLUSION AND IMPLICATIONS Melatonin can be used as an adjuvant therapy to improve varicocele and its complication.
Collapse
Affiliation(s)
- Rehab E. Abo El Gheit
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
- Department of Physiology, Faculty of Physical therapy Al Salam University Tanta Egypt
| | - Nema A. Soliman
- Medical Biochemistry Department, Faculty of Medicine Tanta University Egypt
| | - Salah A. Nagla
- Urology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Rehab M. El‐Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy Sinai University El‐Arish North Sinai Egypt
| | - Ghada A. Badawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy Sinai University El‐Arish North Sinai Egypt
| | - Marwa N. Emam
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | | | - Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Noha R. M. Elswaidy
- Histology and Cell Biology Department, Faculty of Medicine Tanta University Tanta Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine Tanta University Tanta Egypt
| | | | - Howayda E. Khaled
- Zoology Department, Faculty of Science Suez Canal University Ismailia Egypt
| | - Samar Kamel
- Physiology Department, Faculty of Veterinary Medicine Suez Canal University Ismailia Egypt
| | - Mervat H. El‐Saka
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | - Nermin M. Madi
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | - Reham L. Younis
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| |
Collapse
|
24
|
Rizkallah N, Chambers CG, de Graaf SP, Rickard JP. Factors Affecting the Survival of Ram Spermatozoa during Liquid Storage and Options for Improvement. Animals (Basel) 2022; 12:244. [PMID: 35158568 PMCID: PMC8833663 DOI: 10.3390/ani12030244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/02/2023] Open
Abstract
Semen preservation is an essential component of reproductive technologies, as it promotes genetic gain and long-distance semen transport and multiplies the number of ewes able to be inseminated per single ejaculate. However, the reduced temperature during cold storage at 5 or 15 °C inflicts sub-lethal damage to spermatozoa, compromising sperm quality and the success of artificial breeding. New and emerging research in various species has reported the advantages of storing spermatozoa at higher temperatures, such as 23 °C; however, this topic has not been thoroughly investigated for ram spermatozoa. Despite the success of storing spermatozoa at 23 °C, sperm quality can be compromised by the damaging effects of lipid peroxidation, more commonly when metabolism is left unaltered during 23 °C storage. Additionally, given the biosafety concern surrounding the international transport of egg-yolk-containing extenders, further investigation is critical to assess the preservation ability of synthetic extenders and whether pro-survival factors could be supplemented to maximise sperm survival during storage at 23 °C.
Collapse
Affiliation(s)
- Natalie Rizkallah
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia; (C.G.C.); (S.P.d.G.); (J.P.R.)
| | | | | | | |
Collapse
|
25
|
Armandeh M, Bameri B, Haghi-Aminjan H, Foroumadi R, Ataei M, Hassani S, Samadi M, Shayesteh MRH, Abdollahi M. A systematic review on the role of melatonin and its mechanisms on diabetes-related reproductive impairment in non-clinical studies. Front Endocrinol (Lausanne) 2022; 13:1022989. [PMID: 36303864 PMCID: PMC9592976 DOI: 10.3389/fendo.2022.1022989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diabetes-induced reproductive complications can lead to subfertility and infertility, raising the need to protect reproductive organs. There are limited medications used to improve reproductive health in diabetic patients. Melatonin, mainly produced by the pineal gland, may improve diabetes-associated reproductive complications through various mechanisms and may be a preferred candidate to protect the reproductive system. The present review aims to elucidate the underlying mechanisms of melatonin's effect on the reproductive system adversely affected by diabetes mellitus (DM). METHODS A comprehensive systematic literature electronic search was done using the PRISMA guidelines. Web of Science, PubMed, Embase, and Scopus were searched for publications up to June 2022. Search terms were selected based on the study purpose and were explored in titles and abstracts. After screening, out of a total of 169 articles, 14 pertinent articles were included based on our inclusion and exclusion criteria. RESULTS The results of studies using rats and mice suggest that DM adversely affects reproductive tissues, including testes and epididymis, prostate, corpus cavernosum, and ovary leading to alterations in histological and biochemical parameters compared to the normal groups. Treatment with melatonin improves oxidative stress, blocks apoptosis induced by endoplasmic reticulum stress and caspase activation, reduces pro-inflammation cytokines, and enhances steroidogenesis. CONCLUSION Melatonin exerted a protective action on the impaired reproductive system in in-vivo and in-vitro models of DM. The topic has to be followed up in human pregnancy cases that will need more time to be collected and approved.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Ataei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| |
Collapse
|
26
|
Babaei A, Asadpour R, Mansouri K, Sabrivand A, Kazemi‐Darabadi S. Lycopene protects sperm from oxidative stress in the experimental varicocele model. Food Sci Nutr 2021; 9:6806-6817. [PMID: 34925809 PMCID: PMC8645712 DOI: 10.1002/fsn3.2632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) is an important parameter in the evaluation of infertility caused by varicocele. Antioxidants are the most commonly prescribed drugs in these patients. Lycopene molecule, as the powerful antioxidant in the carotenoid family, has beneficial effects on improving fertility in males. Therefore, we investigated the effects of lycopene on induced OS by varicocele in an animal model. Forty-five adult male Wistar rats were divided into two groups: control (n = 12) and varicocele (n = 33). Two months after induced varicocele, five rats in each group were sacrificed randomly and induced varicocele was investigated. Remained rats were divided into five groups (n = 7), including the control (I), varicocele (II), varicocele reserving solvent (III), varicocele reserving lycopene 4 mg/kg (IV), and 10 mg/kg (V) for two months. At the end of the experiment, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), total antioxidant capacity (TAC), %DNA damage, and antioxidant enzymatic levels were measured. The results indicated that there were significant increases in the levels of ROS, MDA, DNA damage, superoxide dismutase (SOD), sperm concentration, and motility in the varicocele groups compared with the control group. In the lycopene group (10 mg/kg), sperm concentration, the levels of TAC, and catalase (CAT) activity were improved so the levels of ROS, MDA, and %DNA damage were reduced compared with varicocele group. Our findings indicated that the administration of lycopene especially at a dose of 10 mg/kg in the varicocele group could protect sperm from OS and sperm DNA damage by increasing antioxidant activity and reducing ROS.
Collapse
Affiliation(s)
- Atefeh Babaei
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Reza Asadpour
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Kamran Mansouri
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Adel Sabrivand
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | - Siamak Kazemi‐Darabadi
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of TabrizTabrizIran
| |
Collapse
|
27
|
Starr KE, Burns K, Demler TL. Pharmacological and philosophical considerations for the around-the-clock use of scheduled melatonin to promote sedation and reduce aggression in individuals with serious mental illness: a case report. Int Clin Psychopharmacol 2021; 36:296-304. [PMID: 34605448 DOI: 10.1097/yic.0000000000000369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin, the endogenous hormone that helps maintain circadian rhythm, has been used exogenously for both primary and secondary sleep disorders. While the effects of melatonin given prior to planned sleep and to restore normal circadian sleep phases have been well studied, there is little information on the use of melatonin as a pharmacotherapeutic intervention for around-the-clock sedation to prevent agitation and aggressive patient behaviors. This is the first case report to our knowledge of melatonin used throughout the day, as a scheduled dose for prolonged treatment duration, to reduce aggression in a patient with severe mental illness.
Collapse
Affiliation(s)
- Kaitlyn E Starr
- Department of Pharmacy, Veterans Affairs Western New York Healthcare System
| | - Kimberly Burns
- Department of Pharmacy, New York State Office of Mental Health
| | - Tammie Lee Demler
- Department of Pharmacy, New York State Office of Mental Health
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo
- Department of Psychiatry, School of Medicine, Buffalo, New York, USA
| |
Collapse
|
28
|
Heckmann L, Langenstroth-Röwer D, Wistuba J, Portela JMD, van Pelt AMM, Redmann K, Stukenborg JB, Schlatt S, Neuhaus N. The initial maturation status of marmoset testicular tissues has an impact on germ cell maintenance and somatic cell response in tissue fragment culture. Mol Hum Reprod 2021; 26:374-388. [PMID: 32236422 DOI: 10.1093/molehr/gaaa024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Successful in vitro spermatogenesis was reported using immature mouse testicular tissues in a fragment culture approach, raising hopes that this method could also be applied for fertility preservation in humans. Although maintaining immature human testicular tissue fragments in culture is feasible for an extended period, it remains unknown whether germ cell survival and the somatic cell response depend on the differentiation status of tissue. Employing the marmoset monkey (Callithrix jacchus), we aimed to assess whether the maturation status of prepubertal and peri-/pubertal testicular tissues influence the outcome of testis fragment culture. Testicular tissue fragments from 4- and 8-month-old (n = 3, each) marmosets were cultured and evaluated after 0, 7, 14, 28 and 42 days. Immunohistochemistry was performed for identification and quantification of germ cells (melanoma-associated antigen 4) and Sertoli cell maturation status (anti-Müllerian hormone: AMH). During testis fragment culture, spermatogonial numbers were significantly reduced (P < 0.05) in the 4- but not 8-month-old monkeys, at Day 0 versus Day 42 of culture. Moreover, while Sertoli cells from 4-month-old monkeys maintained an immature phenotype (i.e. AMH expression) during culture, AMH expression was regained in two of the 8-month-old monkeys. Interestingly, progression of differentiation to later meiotic stage was solely observed in one 8-month-old marmoset, which was at an intermediate state regarding germ cell content, with gonocytes as well as spermatocytes present, as well as Sertoli cell maturation status. Although species-specific differences might influence the outcome of testis fragment experiments in vitro, our study demonstrated that the developmental status of the testicular tissues needs to be considered as it seems to be decisive for germ cell maintenance, somatic cell response and possibly the differentiation potential.
Collapse
Affiliation(s)
- L Heckmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - D Langenstroth-Röwer
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J M D Portela
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, 17164 Solna, Sweden
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
29
|
Escada-Rebelo S, Mora FG, Sousa AP, Almeida-Santos T, Paiva A, Ramalho-Santos J. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa. Asian J Androl 2021; 22:465-471. [PMID: 31939350 PMCID: PMC7523605 DOI: 10.4103/aja.aja_132_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is a by-product of mitochondrial activity and is necessary for the acquisition of the capacitated state, a requirement for functional spermatozoa. However, an increase in oxidative stress, due to an abnormal production of ROS, has been shown to be related to loss of sperm function, highlighting the importance of an accurate detection of sperm ROS, given the specific nature of this cell. In this work, we tested a variety of commercially available fluorescent probes to detect ROS and reactive nitrogen species (RNS) in human sperm, to define their specificity. Using both flow cytometry (FC) and fluorescence microscopy (FM), we confirmed that MitoSOX™ Red and dihydroethidium (DHE) detect superoxide anion (as determined using antimycin A as a positive control), while DAF-2A detects reactive nitrogen species (namely, nitric oxide). For the first time, we also report that RedoxSensor™ Red CC-1, CellROX® Orange Reagent, and MitoPY1 seem to be mostly sensitive to hydrogen peroxide, but not superoxide. Furthermore, mean fluorescence intensity (and not percentage of labeled cells) is the main parameter that can be reproducibly monitored using this type of methodology.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra 3030-789, Portugal
| | - Francisca G Mora
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana P Sousa
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - Teresa Almeida-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3000-370, Portugal
| | - Artur Paiva
- Clinical Pathology Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
30
|
Miguel-Jiménez S, Pina-Beltrán B, Gimeno-Martos S, Carvajal-Serna M, Casao A, Pérez-Pe R. NADPH Oxidase 5 and Melatonin: Involvement in Ram Sperm Capacitation. Front Cell Dev Biol 2021; 9:655794. [PMID: 34026754 PMCID: PMC8138477 DOI: 10.3389/fcell.2021.655794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an essential role in mammalian sperm capacitation. NADPH oxidase 5 (NOX5) has been described as the main source of ROS production in some mammalian spermatozoa, such as human and equine. On the other hand, melatonin can decrease cellular ROS levels and regulates NOX activity in somatic cells. Therefore, the objectives of this work were (1) to identify NOX5 in ram spermatozoa and analyze its possible changes during in vitro capacitation and (2) to investigate the effect of melatonin on NOX5 expression and localization and on superoxide levels in capacitated ram spermatozoa. Protein bands associated with NOX5 were detected by Western blot analysis. Likewise, indirect immunofluorescence (IIF) revealed six different immunotypes for NOX5, which varied throughout in vitro capacitation. Superoxide (O2⋅–), evaluated by DHE/Yo-Pro-1, rose after in vitro capacitation and in the presence of the calcium ionophore A23187 but decreased in the presence of the NOX inhibitor GKT136901. GKT also reduced the percentage of capacitated and acrosome-reacted spermatozoa that had increased during incubation in capacitating conditions. The presence of melatonin at micromolar concentrations avoided the increment in O2⋅– and the changes in NOX5 immunotypes provoked by capacitation. In conclusion, NOX5 is present in ram spermatozoa and the changes in its distribution, associated with sperm capacitation, can be prevented by melatonin. To this extent, it could imply that melatonin exerts its antioxidant role, at least in part, by modulating NOX5 activity during ram sperm capacitation.
Collapse
Affiliation(s)
- Sara Miguel-Jiménez
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Blanca Pina-Beltrán
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Gimeno-Martos
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Melissa Carvajal-Serna
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Adriana Casao
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosaura Pérez-Pe
- Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular - Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
31
|
Cosso G, Luridiana S, Pulinas L, Curone G, Pich G, Carcangiu V, Mura MC. Melatonin Treatment in Rams and Their Replacement with Novel Treated Rams Advance First Lambing and Increase Fertility in Sarda Ewe Lambs. Animals (Basel) 2021; 11:ani11051227. [PMID: 33922809 PMCID: PMC8146759 DOI: 10.3390/ani11051227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The goals of this study were to advance first mating in ewe lambs and to shorten the period ranging from weaning to first lambing. Sarda ewe lambs (n = 400) were separated into four groups of 100 and exposed for a 50-day breeding period to fertile, adult rams as follows: (1) RMR (Rams–Melatonin–Replacement) group: exposed to melatonin-treated rams which were replaced every 10 days; (2) RM (Rams–Melatonin) group: exposed to melatonin-treated rams which were not replaced; (3) RCR (Rams–Controls–Replacement) group: exposed to untreated rams which were replaced every 10 days; and (4) RC (Rams–Controls) group: exposed to untreated rams which were not replaced. In each group, lambing dates, fertility rate, litter size, and distance in days from ram introduction to lambing (DRIL) were recorded. The RMR group showed the highest fertility rate, whilst shorter DRIL and higher number of ewes that lambed in a shorter time frame were recorded both in RM and RMR groups, compared to controls. The findings highlighted that melatonin treatment in rams and their replacement allowed advancing first mating, increasing fertility rate, and improving lambing concentration. Abstract This study aims to find reliable strategies for advancing first mating and shortening the period from weaning to first lambing in ewe lambs. Sarda ewe lambs (n = 400) were selected from two farms and allocated into four separated groups of 100, all of which were exposed to fertile, adult rams over the course of a 50-day breeding period. The first treatment group (RMR) was exposed to four melatonin-treated rams which were replaced every ten days, whilst the second treatment group (RM) was exposed to four melatonin-treated rams which were not replaced. Alternatively, the first control group (RCR) was exposed to four untreated rams which were replaced every ten days, whilst the second control group (RC) was exposed to four untreated rams which were not replaced. In each group, lambing dates, fertility rate, litter size, and distance in days from ram introduction to lambing (DRIL) were recorded. The highest fertility rate was recorded in the RMR group (p ≤ 0.05). Shorter DRIL (p ≤ 0.01) and higher lambing concentrations were recorded in the RM and RMR groups as compared to the controls. The findings indicate that melatonin treatment of rams and their replacement at 10-day intervals results in earlier onset of first mating, increased fertility rate in ewe lambs, and a higher number of ewes that lambs in a shorter time frame.
Collapse
Affiliation(s)
- Giovanni Cosso
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
| | - Sebastiano Luridiana
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
| | - Luisa Pulinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
| | - Giulia Pich
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
| | - Vincenzo Carcangiu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
| | - Maria Consuelo Mura
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.C.); (S.L.); (L.P.); (G.P.); (V.C.)
- Correspondence: ; Tel.: +39-079-229-437; Fax: +39-079-229-592
| |
Collapse
|
32
|
Melatonin protects rats testes against bleomycin, etoposide, and cisplatin-induced toxicity via mitigating nitro-oxidative stress and apoptosis. Biomed Pharmacother 2021; 138:111481. [PMID: 33752059 DOI: 10.1016/j.biopha.2021.111481] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
There is growing concern that some cytotoxic regimens for cancer adversely affect spermatogenesis and male fertility. Increasing evidence demonstrated that melatonin has beneficial impacts on reproductive processes; however, whether melatonin can protect against bleomycin, etoposide, and cisplatin (BEP) chemotherapy regimen-induced testicular toxicity, remains obscure. The present study aimed to explore the effect of melatonin on BEP-evoked testicular injury in rats. Adult male Wistar rats (n = 10/group) were intraperitoneally (i.p.) injected with one cycle of 21 days of 0.33 therapeutically relevant dose levels of BEP (.5 mg/kg bleomycin, 5 mg/kg etoposide, and 1 mg/kg cisplatin) with or without melatonin. At the end of the study, sperm parameters, testosterone level, stereology of testes, testicular levels of malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC), the expression of apoptosis-associated genes such as Bcl2, Bax, Caspase-3, p53, and TNF-α (Real-time PCR and Immunohistochemistry) were evaluated. Our findings showed that melatonin restored spermatogenesis by improving sperm count, motility, viability, and morphology. Testosterone level, histopathology, and stereology of testes were significantly improved in melatonin-administrated groups. Furthermore, melatonin recovered the oxidative status of the testes through elevating TAC and ameliorating MDA and NO levels. More importantly, melatonin therapy suppressed BEP-evoked apoptosis by modulating Bcl-2, Bax, Caspase-3, p53, and TNF-α expression in testes. In conclusion, melatonin protects the testes against BEP-induced testicular damage by attenuating nitro-oxidative stress, apoptosis, and inflammation, which provides evidence for melatonin as a possible clinical therapy against BEP-associated gonadotoxicity and male sub/infertility.
Collapse
|
33
|
Zhao F, Whiting S, Lambourne S, Aitken RJ, Sun YP. Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med 2021; 164:410-416. [PMID: 33482333 DOI: 10.1016/j.freeradbiomed.2021.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress generates a large amount of reactive oxygen species (ROS) and affects sperm quality via damaging sperm DNA and compromising the intracellular homeostasis in human spermatozoa. In assisted reproductive technology (ART), it is substantial to prevent spermatozoa from ROS attack. The pineal hormone melatonin has the natural antioxidant capacity and can scavenge ROS. To the best of our knowledge, however, there are presently no studies investigating if melatonin can protect human spermatozoa from heat-induced oxidative damage. Herein, we induced oxidative stress in human spermatozoa with heat treatment, and determined that melatonin could protect human spermatozoa from heat-induced oxidative stress. We first confirmed that heat stress-induced oxidative stress damaged human spermatozoa by decreasing sperm motility and viability. Furthermore, the pretreatment of human spermatozoa by melatonin was able to alleviate such damage by suppressing sperm mitochondrial ROS generation, increasing mitochondrial membrane potential, reducing the formation of the lipid peroxidation product, 4-HNE, and reducing sperm DNA damage and apoptosis. Collectively, these findings suggest that melatonin is useful as a potential treatment option for male infertility caused by heat-induced oxidative stress.
Collapse
Affiliation(s)
- Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sara Whiting
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Lambourne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
34
|
Oxidative and nitrosative stress in frozen-thawed pig spermatozoa. I: Protective effect of melatonin and butylhydroxytoluene on sperm function. Res Vet Sci 2021; 136:143-150. [PMID: 33626440 DOI: 10.1016/j.rvsc.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The addition of antioxidants to the cryopreservation medium has been shown to exert a positive effect on the quality of frozen-thawed sperm in different species. The objective of the present study was to evaluate the effects of supplementing the freezing medium with butylhydroxytoluene (BHT) and melatonin (MEL) in frozen-thawed pig spermatozoa. With this purpose, six ejaculates coming from six separate boars were cryopreserved in traditional freezing medium (i.e. lactose/egg-yolk/glycerol; Control) supplemented with 1.0 mM BHT (BHT-1), 2.0 mM BHT (BHT-2), 0.01 μM MEL (MEL-1) and 1.0 μM MEL (MEL-2). We evaluated sperm viability, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential, lipid peroxidation, oxidation of thiol groups, and levels of total reactive oxygen species (ROS), peroxynitrite and superoxide anion (·O2-). We also analysed total (TM) and progressive sperm motilities (PM), and kinetic parameters at post-thaw (T0, T30 and T60). The BHT-2 and MEL-2 groups presented higher viability and acrosome integrity, and lower levels of peroxynitrite, ·O2- and lipid peroxidation than the control (P < 0.05), whereas MEL-2 diminished the levels of total ROS (P < 0.05). TM and PM were not affected by the treatment, while, LIN and STR shows differences between experimental groups. In conclusion, the addition of BHT and MEL to cryopreservation medium diminishes oxidative and nitrosative stress markers, which has repercussions for the integrity of plasma and acrosomal membranes of frozen-thawed spermatozoa.
Collapse
|
35
|
Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A. Protective Role of Natural Products in Glioblastoma Multiforme: A Focus on Nitric Oxide Pathway. Curr Med Chem 2021; 28:377-400. [PMID: 32000638 DOI: 10.2174/0929867327666200130104757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
In spite of therapeutic modalities such as surgical resection, chemotherapy, and radiotherapy, Glioblastoma Multiforme (GBM) remains an incurable fatal disease. This necessitates further therapeutic options that could enhance the efficacy of existing modalities. Nitric Oxide (NO), a short-lived small molecule, has been revealed to play a crucial role in the pathophysiology of GBM. Several studies have demonstrated that NO is involved in apoptosis, metastasis, cellular proliferation, angiogenesis, invasion, and many other processes implicated in GBM pathobiology. Herein, we elaborate on the role of NO as a therapeutic target in GBM and discuss some natural products affecting the NO signaling pathway.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
36
|
Gomes PRL, Motta-Teixeira LC, Gallo CC, Carmo Buonfiglio DD, Camargo LSD, Quintela T, Reiter RJ, Amaral FGD, Cipolla-Neto J. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen Comp Endocrinol 2021; 300:113633. [PMID: 33031801 DOI: 10.1016/j.ygcen.2020.113633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.
Collapse
Affiliation(s)
- Patrícia Rodrigues Lourenço Gomes
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Congentino Gallo
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - Daniella do Carmo Buonfiglio
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ludmilla Scodeler de Camargo
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, Infante D. Henrique Ave, University of Beira Interior, Covilhã 6200-506, Portugal.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, 7703 Floyd Curl Drive, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Fernanda Gaspar do Amaral
- Pineal Neurobiology Lab, Department of Physiology, 862 Botucatu St., 5th floor, Federal University of São Paulo, São Paulo 04023-901, Brazil.
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, 1524 Prof. Lineu Prestes Ave., Institute of Biomedical Sciences, Bldg 1, Lab 118, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
37
|
Leite AA, Reiter RJ, Brandão JCM, Sakae TM, Marinho M, Camargo CR, Oliveira-Junior IS. Melatonin can be, more effective than N-acetylcysteine, protecting acute lung injury induced by intestinal ischemia-reperfusion in rat model. Clinics (Sao Paulo) 2021; 76:e2513. [PMID: 33978073 PMCID: PMC8075110 DOI: 10.6061/clinics/2021/e2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The current study compared the impact of pretreatment with melatonin and N-acetylcysteine (NAC) on the prevention of rat lung damage following intestinal ischemia-reperfusion (iIR). METHODS Twenty-eight Wistar rats were subjected to intestinal ischemia induced by a 60 min occlusion of the superior mesenteric artery, followed by reperfusion for 120 min. Animals were divided into the following groups (n=7 per group): sham, only abdominal incision; SS+iIR, pretreated with saline solution and iIR; NAC+iIR, pretreated with NAC (20 mg/kg) and iIR; MEL+iIR, pretreated with melatonin (20 mg/kg) and iIR. Oxidative stress and inflammatory mediators were measured and histological analyses were performed in the lung tissues. RESULTS Data showed a reduction in malondialdehyde (MDA), myeloperoxidase (MPO), and TNF-alpha in the animals pretreated with NAC or MEL when compared to those treated with SS+iIR (p<0.05). An increase in superoxide dismutase (SOD) levels in the NAC- and MEL-pretreated animals as compared to the SS+iIR group (34±8 U/g of tissue; p<0.05) was also observed. TNF-α levels were lower in the MEL+iIR group (91±5 pg/mL) than in the NAC+iIR group (101±6 pg/mL). Histological analysis demonstrated a higher lung lesion score in the SS+iIR group than in the pretreated groups. CONCLUSION Both agents individually provided tissue protective effect against intestinal IR-induced lung injury, but melatonin was more effective in ameliorating the parameters analyzed in this study.
Collapse
Affiliation(s)
- Alberto Andrade Leite
- Programa de Pos-Graduacao em Medicina Translacional, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Russel Joseph Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Julio Cezar Mendes Brandão
- Departamento de Cirurgia, Disciplina de Anestesiologia, Dor e Medicina Paliativa, Universidade Federal de Sergipe, Aracaju, SE, BR
| | | | - Marcia Marinho
- Departamento de Producao e Saude Animal, Universidade Estadual Paulista, Faculdade de Medicina Veterinaria, Aracatuba, SP, BR
| | - Celia Regina Camargo
- Departamento de Cirurgia, Disciplina de Anestesiologia, Dor e Medicina Intensiva, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | - Itamar Souza Oliveira-Junior
- Departamento de Cirurgia, Disciplina de Anestesiologia, Dor e Medicina Intensiva, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
38
|
Fadl AM, Ghallab ARM, Abou-Ahmed MM, Moawad AR. Melatonin can improve viability and functional integrity of cooled and frozen/thawed rabbit spermatozoa. Reprod Domest Anim 2020; 56:103-111. [PMID: 33145881 DOI: 10.1111/rda.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Melatonin is known to protect sperm against freezing-inflicted damage in different domestic species. The aim of the study was to evaluate the effect of supplementation of semen extender with melatonin on the quality and DNA integrity of cooled and frozen/thawed rabbit spermatozoa. We also investigated whether the addition of melatonin to the semen extender could improve the fertility of rabbit does artificially inseminated with frozen/thawed semen. Semen samples collected from eight rabbit bucks were pooled and then diluted in INRA-82 supplemented either with (0.5, 1.0 or 1.5 mM) or without (0.0 mM) melatonin. Diluted semen was cooled at 5°C for 24 hr. For cryopreservation and based on the first experiment's best result, semen samples were diluted in INRA-82 in the presence or absence of 1.0 mM melatonin and then frozen in 0.25 ml straws. Following cooling or thawing, sperm quality and DNA integrity were evaluated. Furthermore, the fertility of frozen/thawed semen was investigated after artificial insemination. Supplementation of semen extender with 1.0 mM melatonin improved (p < .05) motility, viability, membrane and acrosome integrities in cooled semen compared with other groups. Sperm quality and DNA integrity were higher (p < .05) in frozen/thawed semen diluted in 1.0 mM melatonin-supplemented extender than in the control group. Conception and birth rates were higher in does inseminated with 1.0 mM melatonin treated semen compared with the controls. In conclusion, supplementation of semen extender with 1.0 mM melatonin improved the quality of cooled and frozen/thawed rabbit spermatozoa. Melatonin can preserve DNA integrity and enhance the fertility of frozen/thawed rabbit spermatozoa.
Collapse
Affiliation(s)
- Aya M Fadl
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Raouf M Ghallab
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mostafa M Abou-Ahmed
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel R Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
39
|
Soleimani Mehranjani M, Azizi M, Sadeghzadeh F. The effect of melatonin on testis histological changes and spermatogenesis indexes in mice following treatment with dexamethasone. Drug Chem Toxicol 2020; 45:1140-1149. [PMID: 33161762 DOI: 10.1080/01480545.2020.1809672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dexamethasone is a common medicine that is capable of causing malformation in the male reproductive system. The aim of this study was to investigate the effect of melatonin on testis histological changes and Spermatogenesis indexes in adult mice following treatment with dexamethasone. Adult male NMRI mice were divided randomly into four groups: control, dexamethasone (i.p injections, 7 mg/kg/day), dexamethasone + melatonin and melatonin (i.p injections, 20 mg/kg/day). After 7 days of treatment, the right testes were studied stereologically and the left testes were used to measure the daily sperm production (DSP). The serum levels of malondialdehyde (MDA), testosterone and total antioxidant capacity (TAC) were also measured. The left caudal epididymis was used to analyze sperm parameters. Data were analyzed using one way ANOVA and means were considered significantly different at p < 0.05. A significant decrease in the testis volume, seminiferous tubules volume, the number of spermatocytes, round and long spermatids, Spermatogenesis indexes, sperm parameters such as motility, count, viability, tail length and DSP, serum testosterone level, TAC and the body weight was found in the dexamethasone group compared to the control. Meanwhile a significant swelling of the interstitial tissue and a significant increase in the MDA level was found in the dexamethasone group compared to the control. The above parameters reached the control level in the dexamethasone + melatonin group. Melatonin can compensate for the adverse effects of dexamethasone on sperm parameters and the histology of the seminiferous tubules in mice.
Collapse
Affiliation(s)
| | - Mina Azizi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | |
Collapse
|
40
|
Kumar N, Singh NK. "Emerging role of Novel Seminal Plasma Bio-markers in Male Infertility: A Review". Eur J Obstet Gynecol Reprod Biol 2020; 253:170-179. [PMID: 32871440 DOI: 10.1016/j.ejogrb.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/03/2023]
Abstract
Male infertility has emerged as an important cause of infertility worldwide. There are many factors affecting male fertility and research is going on to know impact of various factors on sperm functions. Semen analysis is gold standard diagnostic test for male infertility, but it is crude method for estimation of male infertility as seminal composition gets affected by environmental factors, infections, other pathologies, hence, results of semen analysis either becomes normal/ambiguous, leading to failure of diagnosis and delayed treatment. Hence, with need of newer, better tests for assessing male factor infertility, seminal plasma is being tested for biomarkers. Seminal plasma is considered gold mine for male fertility as it contains molecules from male reproductive glands which play important role in sperm function. Study of seminal plasma molecules can give an idea about sperm concentration, motility, morphology and cause of infertility and can serve as biomarkers for male infertility. Present review briefs on some of these novel seminal plasma biomarkers which may play significant role in male fertility and can be used in future for better identification, assessment of infertile males. METHODOLOGY Literature from 1985 to 2019 was searched from various databases including PUBMED, SCOPUS, Google Scholar on seminal plasma biomarkers using keywords: "seminal plasma protein biomarkers", "novel seminal plasma markers and male infertility", "hormones in seminal plasma and male infertility", "oxidative stress and male infertility", "Reactive Oxygen Species and sperm DNA", "immunoinfertility". INCLUSION CRITERIA All full length original or review articles or abstracts on seminal plasma markers and male infertility published in English language in various peer-reviewed journals were considered. EXCLUSION CRITERIA Articles published in languages other than English were excluded from the study. RESULTS Seminal plasma is a big reservoir of molecules derived from the various male reproductive glands which can be used as potential biomarkers of male fertility. CONCLUSION Hence, seminal plasma biomarkers can be used in future for better assessment of male factor infertility, its causes and may play an important role in management of male factor infertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Mangalagiri, 522503, Guntur, Andhra Pradesh, India.
| | - Namit Kant Singh
- Department of Otorhinolaryngology, Katuri Medical College and Hospital, Guntur, Andhra Pradesh, India.
| |
Collapse
|
41
|
Protective effects of melatonin on male fertility preservation and reproductive system. Cryobiology 2020; 95:1-8. [DOI: 10.1016/j.cryobiol.2020.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
42
|
Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction. Future Med Chem 2020; 11:3097-3108. [PMID: 31838896 DOI: 10.4155/fmc-2019-0191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases, and particularly in Alzheimer's disease. Results: This work describes the Ugi multicomponent synthesis, antioxidant power and Nrf2 pathway induction in antioxidant response element cells of (E)-N-(2-((2-(1H-indol-3-yl)ethyl)amino)-2-oxoethyl)-N-(2-(5-(benzyloxy)-1H-indol-3-yl)ethyl)-3-(4-hydroxy-3-methoxyphenyl)acryl amides 8a-d, N-(2-((2-(1H-indol-3-yl)ethyl)amino)-2-oxoethyl)-N-(2-(5-(benzyloxy)-1H-indol-3-yl)ethyl)-5-(1,2-dithiolan-3-yl)pentanamides 8e-h and N-(2-((2-(1H-indol-3-yl)ethyl)amino)-2-oxoethyl)-N-(2-(5-(benzyloxy)-1H-indol-3-yl)ethyl)-5-hydroxy-4-oxo-4H-pyran-2-carboxamides 8i,j. Conclusion: We have identified compounds 8e and 8g, showing a potent antioxidant capacity, a remarkable neuroprotective effect against the cell death induced by H2O2 in SH-SY5Y cells, and a performing activation of the Nrf2 signaling pathway, as very interesting new antioxidant agents for pathologies that curse with oxidative stress.
Collapse
|
43
|
H. Hassan M, A. El-Taieb M, N. Fares N, M. Fayed H, Toghan R, M. Ibrahim H. Men with idiopathic oligoasthenoteratozoospermia exhibit lower serum and seminal plasma melatonin levels: Comparative effect of night-light exposure with fertile males. Exp Ther Med 2020; 20:235-242. [PMID: 32509010 PMCID: PMC7271713 DOI: 10.3892/etm.2020.8678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Melatonin is a darkness hormone secreted by the pineal gland, which serves a role in idiopathic oligoasthenoteratozoospermia (iOAT). The present study aimed to evaluate the seminal plasma and serum melatonin levels of 50 patients with iOAT and 50 normal fertile controls and the effects of exposure to light at night on semen parameters. Semen analyses were performed according to the World Health Organization 2010 guidelines. Measurements of serum and seminal plasma melatonin, serum TSH, FT3, FT4, free testosterone, prolactin, FSH and LH were performed using ELISA. The overall results revealed that the serum and seminal plasma levels of melatonin were lower in patients with iOAT compared with the control subjects (P=0.0004 and 0.01, respectively). Patients with iOAT who were exposed to light at night exhibited lower serum and seminal plasma melatonin levels compared with those who were not exposed to light at night (P<0.0001 and 0.02, respectively). Additionally, similar significant differences were identified in control subjects exposed to light at night when compared to non-exposed controls. There was a significantly positive correlation between serum melatonin levels and sperm motility in the entire iOAT patient cohort (r=0.614; P<0.0001) and a significantly positive correlation between the serum and seminal plasma melatonin levels in the non-exposed iOAT patient subgroup (r=0.753; P<0.001). Thus, darkness and sleep at night may improve the semen parameters of patients with iOAT, as evidenced by the effects of light exposure at night on the serum and seminal plasma levels of melatonin and, consequently, on semen parameters.
Collapse
Affiliation(s)
- Mohammed H. Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Moustafa A. El-Taieb
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Nahed N. Fares
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan M. Fayed
- Department of Clinical Pathology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Rana Toghan
- Department of Medical Physiology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| | - Hassan M. Ibrahim
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
44
|
Miguel-Jiménez S, Carvajal-Serna M, Calvo S, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pe R. Does Melatonin Exert Its Effect on Ram Sperm Capacitation Through Nitric Oxide Synthase Regulation? Int J Mol Sci 2020; 21:ijms21062093. [PMID: 32197481 PMCID: PMC7139474 DOI: 10.3390/ijms21062093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO·), synthesized from L-arginine by nitric oxide synthase (NOS), is involved in sperm functionality. NOS isoforms have been detected in spermatozoa from different species, and an increment in NOS activity during capacitation has been reported. This work aims to determine the presence and localization of NOS isoforms in ram spermatozoa and analyse their possible changes during in vitro capacitation. Likewise, we investigated the effect of melatonin on the expression and localization of NOS and NO· levels in capacitated ram spermatozoa. Western blot analysis revealed protein bands associated with neuronal NOS (nNOS) and epithelial NOS (eNOS) but not with inducible NOS (iNOS). However, the three isoforms were detected by indirect immunofluorescence (IFI), and their immunotypes varied over in vitro capacitation with cAMP-elevating agents. NO· levels (evaluated by DAF-2-DA/PI staining) increased after in vitro capacitation, and the presence of L-arginine in the capacitating medium raised NO· production and enhanced the acrosome reaction. Incubation in capacitating conditions with a high-cAMP medium with melatonin modified the NOS distribution evaluated by IFI, but no differences in Western blotting were observed. Melatonin did not alter NO· levels in capacitating conditions, so we could infer that its role in ram sperm capacitation would not be mediated through NO· metabolism.
Collapse
|
45
|
Green A, Barak S, Shine L, Kahane A, Dagan Y. Exposure by males to light emitted from media devices at night is linked with decline of sperm quality and correlated with sleep quality measures. Chronobiol Int 2020; 37:414-424. [PMID: 32126861 DOI: 10.1080/07420528.2020.1727918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The last several decades have been characterized by the widespread usage of digital devices, especially smartphones. At the same time, there have been reports of both decline in sleep duration and quality and male fertility decline. The aim of this study was to assess the relationship between evening exposure to the light-emitting screens of digital media devices and measures of both sleep and sperm quality. Semen samples were obtained from 116 men undergoing fertility evaluation for the following sperm variables: volume (mL), pH, sperm concentration (million/mL), motility percentage (progressive% + non-progressive motility%), and total sperm count. Exposure to the screens of electronic devices and sleep habits was obtained by means of a questionnaire. Smartphone and tablet usage in the evening and after bedtime was negatively correlated with sperm motility (-0.392; -0.369; p < .05), sperm progressive motility (-0.322; -0.299; p < .05), and sperm concentration (-0.169; p < .05), and positively correlated with the percentage of immotile sperm (0.382; 0.344; p < .05). In addition, sleep duration was positively correlated with sperm total and progressive motility (0.249; 0.233; p < .05) and negatively correlated with semen pH (-0.349; p < .05). A significant negative correlation was observed between subjective sleepiness and total and progressive motility (-0.264; p < .05) as well as total motile sperm number (-0.173; p < .05). The results of this study support a link between evening and post-bedtime exposure to light-emitting digital media screens and sperm quality. Further research is required to establish the proposed causative link and may lead to the future development of relevant therapeutic and lifestyle interventions.
Collapse
Affiliation(s)
- Amit Green
- The Sleep and Fatigue Institute, Assuta Medical Center, Tel Aviv, Israel.,The Research Institute of Applied Chronobiology, The Academic College of Tel-Hai, Israel
| | - Shlomi Barak
- Reproductive Services, Assuta University Hospital, Ashdod, Israel.,Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Lior Shine
- The Andrology Laboratory, Assuta Medical Center, Rishon Le-Zion, Israel
| | - Arik Kahane
- The IFV Unit, Assuta Medical Center, Rishon Le-Zion, Israel
| | - Yaron Dagan
- The Sleep and Fatigue Institute, Assuta Medical Center, Tel Aviv, Israel.,The Research Institute of Applied Chronobiology, The Academic College of Tel-Hai, Israel.,The Human Biology Department, Haifa University, Haifa, Israel
| |
Collapse
|
46
|
Gimeno-Martos S, Casao A, Yeste M, Cebrián-Pérez JA, Muiño-Blanco T, Pérez-Pé R. Melatonin reduces cAMP-stimulated capacitation of ram spermatozoa. Reprod Fertil Dev 2019; 31:420-431. [PMID: 30209004 DOI: 10.1071/rd18087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
The presence of melatonin receptors on the surface of ram spermatozoa has led to speculation about melatonin having a role in sperm functionality. The aim of this study was to elucidate the mechanism through which melatonin regulates ram sperm capacitation induced by a cocktail containing cAMP-elevating agents. Cocktail samples capacitated in the presence of 1µM melatonin showed lower percentages of capacitated spermatozoa (chlortetracycline staining; P<0.001) together with a decrease in protein tyrosine phosphorylation (P<0.01) and lower levels of reactive oxygen species (ROS) and cAMP (P<0.05) compared with cocktail samples without the hormone. Determination of kinematic parameters, together with principal component and cluster analyses, allowed us to define four sperm subpopulations (SP). After 3h of incubation with cAMP-elevating agents, the percentages of spermatozoa belonging to SP1 (high straightness) and SP4 (less-vigorous spermatozoa with non-linear motility) increased while SP2 and SP3 (rapid spermatozoa starting hyperactivation or already hyperactivated) decreased compared with the control sample. The presence of melatonin at 100 pM and 10nM restored these subpopulations to values closer to those found in the control sample. These results indicate that melatonin at micromolar concentrations modulates ram sperm capacitation induced by cAMP-elevating agents, reducing ROS and cAMP levels, whereas at lower concentrations melatonin modifies motile sperm subpopulations. These findings warrant further studies on the potential use of melatonin for controlling capacitation in artificial insemination procedures.
Collapse
Affiliation(s)
- Silvia Gimeno-Martos
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Adriana Casao
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany 69, Campus Montilivi, E-17003 Girona, Spain
| | - José A Cebrián-Pérez
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Teresa Muiño-Blanco
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - Rosaura Pérez-Pé
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| |
Collapse
|
47
|
Mehaisen GMK, Partyka A, Ligocka Z, Niżański W. Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Anim Reprod Sci 2019; 212:106238. [PMID: 31864488 DOI: 10.1016/j.anireprosci.2019.106238] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) and free radicals are one of the major detrimental factors that can negatively affect the quality of sperm during cryopreservation. Melatonin is an effective antioxidant and free radical scavenger in various cells. In this study, therefore, the aim was to evaluate the post-thawed quality of spermatozoa after cryopreservation of rooster semen in freezing extender supplemented with melatonin. Semen samples from seven Green-legged Partridge roosters were pooled and diluted with EK extender supplemented with 10-3, 10-6, or 10-9 M melatonin (control sample was prepared without supplementation with melatonin), and the pooled sample was subjected to cryopreservation. Post-thawed sperm motility was determined using the IVOS system, whereas plasma membrane status, acrosome integrity, mitochondrial activity, lipid peroxidation, chromatin status, and apoptotic-like changes were determined using fluorochromes and flow cytometry. Results, indicate post-thaw motile sperm cell count was greater (P < 0.05) in the frozen samples supplemented with melatonin (10-3 and 10-6 M) than the control sample. Although no significant differences were observed in post-thawed acrosomal integrity, plasma membrane integrity and mitochondrial activity were greater (P < 0.05) in samples frozen with melatonin (10-3 and 10-6 M) than that of the control sample. In addition, with supplementation of melatonin there was a decrease (P < 0.05) in the amount of lipid peroxidation, DNA fragmentation, and apoptotic-like changes after thawing. These results indicate there is a positive effect of melatonin supplementation in rooster semen freezing extenders on post-thaw sperm quality.
Collapse
Affiliation(s)
- Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamaa Street, 12613, Giza, Egypt.
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland.
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366, Wroclaw, Poland
| |
Collapse
|
48
|
Appiah MO, He B, Lu W, Wang J. Antioxidative effect of melatonin on cryopreserved chicken semen. Cryobiology 2019; 89:90-95. [DOI: 10.1016/j.cryobiol.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/24/2019] [Accepted: 05/01/2019] [Indexed: 02/05/2023]
|
49
|
YADAV DILEEPKUMAR, KUMAR ANUJ, SAXENA ATUL, SWAIN DILIPKUMAR. Melatonin supplementation improves the intactness of plasma membrane and acrosomal membrane of cryopreserved spermatozoa in Hariana bull. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i7.92030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Supplementation of MT @ 2 mM was more beneficial in cryopreservation of Hariana bull spermatozoa as evidenced from post-thawed sperm membrane integrity and acrosomal intactness. Melatonin can be recommended to be used @ 2 mM concentration into the semen extender to increase the post thaw sperm functional attributes in Hariana bull.
Collapse
|
50
|
Ramadan TA, Kumar D, Ghuman SS, Singh I. Melatonin-improved buffalo semen quality during nonbreeding season under tropical condition. Domest Anim Endocrinol 2019; 68:119-125. [PMID: 31082783 DOI: 10.1016/j.domaniend.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 11/28/2022]
Abstract
The role of melatonin in protecting spermatozoa from different kinds of injury has been widely reported. The present study aimed to test whether treatment of buffalo bulls with melatonin could ameliorate sperm function during nonbreeding season under tropical condition. Ten Murrah buffalo bulls were randomly allocated into control and treated groups of equal numbers of bulls to study the effect of melatonin on semen characteristics, seminal plasma constituents, blood plasma hormonal levels, and antioxidant enzyme activities during nonbreeding season. Treated bulls were implanted with melatonin (18 mg/50 kg of body weight) for a period of 2 mo. During this period, semen was collected twice a week, and blood samples were collected weekly to determine plasma concentration of melatonin and LH and activities of antioxidant enzymes. During nonbreeding season, melatonin implantation improved semen characteristics by increasing (P < 0.05) percentages of sperm with forward motility, viability, total motile sperm, and rapid motility, average path, curvilinear, and straight-line velocity and amplitude of lateral head displacement and decreasing (P < 0.05) percentages of abnormal sperm and linearity index as compared to the control group. Furthermore, melatonin implantation increased (P < 0.05) seminal plasma concentrations of total protein, albumin, and cholesterol and decreased (P < 0.05) seminal plasma aspartate aminotransferase activity. In addition, melatonin-implanted bulls exhibited an increase (P < 0.05) in red blood cells superoxide dismutase activity compared to untreated bulls. In conclusion, melatonin implantation successfully improved semen quality of buffalo bulls during nonbreeding season under tropical condition.
Collapse
Affiliation(s)
- T A Ramadan
- Animal Production Research Institute, Agricultural Research Center, 4 Nadi El-Said, 12311 Dokki, Giza, Egypt.
| | - D Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, 125001 Hisar, Haryana, India
| | - S S Ghuman
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004 Punjab, India
| | - I Singh
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, 125001 Hisar, Haryana, India
| |
Collapse
|