1
|
De Marzo D, Laudadio V, Khan RU, Tufarelli V, Maiorano G. Feeding of Camelina sativa Seeds to Light-Type Gentile di Puglia Lambs: Effect on Productive Performance and Muscle Fatty Acid Composition. Anim Biotechnol 2023; 34:2360-2366. [PMID: 35736803 DOI: 10.1080/10495398.2022.2091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The effect of different amounts of camelina (CAM; Camelina sativa) seeds in lambs of the Gentile di Puglia breed on growth, carcass characteristics, and meat quality was investigated. Up to 70 days of age, twenty-four male lambs (13.0 ± 0.35 kg) were randomly assigned to three isocaloric and isonitrogenous diets. Pelleted total mixed rations (TMR) were created to provide: (1) a control diet (CON), (2) an experimental corn-based diet including 5% camelina (CAM5) seeds, and (3) an experimental corn-based diet containing 10% camelina (CAM10) seeds. The presence of CAM in the diet impacted lamb performance (p < 0.05), according to the results of a growth study. Lambs were slaughtered at the conclusion of the feeding period, and none of the carcass characteristics investigated were significantly affected by dietary treatment, with the exception of brisket and rib weight and carcass lean, which were improved (p < 0.05) in lambs fed the CAM diet. The color of lamb flesh from the Longissimus lumborum muscle was affected by CAM diets (p < 0.05), but the chemical content and physical characteristics did not differ across treatments (p > 0.05). The fatty acid composition of lamb meat in muscle was somewhat regulated by the experimental diets, with CAM feeding improving (p < 0.05) the level of linolenic acid and MUFA while reducing SFA and PUFA. As a result of the current data, it can be stated that camelina seed supplementation may be included in the lamb diet because no negative impacts on productivity, as well as an enhancement in meat quality, have been found.
Collapse
Affiliation(s)
- Davide De Marzo
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Rifat U Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
2
|
Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals (Basel) 2021; 11:ani11061589. [PMID: 34071444 PMCID: PMC8229916 DOI: 10.3390/ani11061589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
The research studied the effects of dietary supplementation with Camelina sativa fresh forage on the chemical and fatty acid composition of milk and Caciotta cheese, and its sensory properties. Twenty Ionica goats were randomly assigned to the following two groups (n = 10): the control received a traditional forage mixture (Avena sativa, 70%; Vicia sativa, 20%; Trifolium spp., 10%), while the experimental group was given Camelina sativa fresh forage (CAM). All of the dams grazed on pasture and received a commercial feed (500 g/head/day) at housing. The milk from the CAM group showed a higher (p < 0.05) content of dry matter, fat, lactose and concentrations of C6:0, C11:0, C14:0, C18:2 n-6, CLA and PUFA, while lower (p < 0.05) amounts of C12:0, C18:0 and saturated long chain FA (SLCFA). The Caciotta cheese from the CAM group showed a greater (p < 0.05) content of n-6 FA and n-6/n-3 ratio, although close to four, thus resulting adequate under the nutritional point of view. The overall liking, odour, taste, hardness, solubility and "goaty" flavour were better (p < 0.05) in the CAM cheeses. Further investigation would be advisable in order to evaluate the effect of feeding Camelina forage obtained from different phenological stages, and the application of ensiling techniques.
Collapse
|
3
|
Ebeid HM, Hassan FU, Li M, Peng L, Peng K, Liang X, Yang C. Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes. Front Vet Sci 2020; 7:550. [PMID: 33005640 PMCID: PMC7479821 DOI: 10.3389/fvets.2020.00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to evaluate the effects of Camelina sativa oil (CO) on fermentation kinetics and methane (CH4) production in rations with different roughage (R) to concentrate (C) ratios. Three total mixed rations (TMRs) were used as substrates (R70:C30, R50:C50, and R30:C70) supplemented with different levels of CO (0, 2, 4, 6, and 8% on dry matter basis) in an in vitro batch culture system. The enteric CH4 production was determined at different times of incubation while fermentation parameters were measured at the end of incubation. Results revealed that CO significantly decreased (P < 0.05) CH4 production at 48 h in medium (R50:C50) and low- (R30:C70) roughage diets than control. Camelina oil at all levels significantly (P < 0.05) affected ammonia nitrogen (NH3-N) and microbial protein (MCP) in all rations. Propionate concentration was increased by supplementing 8% CO to R70:C30 TMR, but it decreased with increasing levels of CO for low- and medium-roughage diets. Acetate concentration was significantly (P < 0.05) higher at 4% CO supplementation, but it decreased with 8% CO level in R30:C70 TMR. For all rations, CO decreased (P < 0.001) total bacteria, protozoa, and methanogens. Total fungi counts were affected by CO in all rations, especially with a 6% level in two rations (R30:C70 and R50:C50) and 8% level with high-roughage ration (R70:C30). Supplementation of CO in medium-roughage ration (R50:C50) showed a linear (P < 0.05) decrease in bacterial richness and evenness indices along with Shannon diversity as compared to the control. Moreover, CO also increased Firmicutes to Bacteroidetes ratio in all TMRs more effectively at higher levels. Camelina oil also affected the relative abundance of Prevotella in both low- and medium-roughage diets while increasing the abundance of Ruminobacter and Pseudobutyrivibrio. The present study concluded that CO enhanced fermentation kinetics while decreasing enteric in vitro CH4 production from fibrous diets. Thus, it may be considered as a potentially effective and environmentally friendly way of mitigating CH4 emission from livestock.
Collapse
Affiliation(s)
- Hossam M Ebeid
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Dairy Science Department, National Research Centre, Giza, Egypt
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Quezada N, Cherian G. Lipid characterization and antioxidant status of the seeds and meals ofCamelina sativaand flax. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100298] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Sales J, Koukolová V. Dietary vitamin E and lipid and color stability of beef and pork: modeling of relationships. J Anim Sci 2011; 89:2836-48. [PMID: 21478452 DOI: 10.2527/jas.2010-3335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary vitamin E supplementation provides a feasible option to extend the shelf life of meat. However, the costs of extra supplementation necessitate an accurate level of feeding to achieve the maximum return in product quality improvement. The current study aimed to quantify the effects of total dietary vitamin E intake on muscle α-tocopherol concentration in cattle and pigs, and to relate muscle α-tocopherol concentration to lipid oxidation and color of meat. Through computerized and manual searches, 13 studies with cattle and 10 with pigs were identified that have presented data on dietary vitamin E intake and muscle α-tocopherol concentration. Treatment means from 12 studies with beef and 14 with pork were used to evaluate the effects of muscle α-tocopherol concentration on lipid oxidation, as represented by thiobarbituric acid reactive substances in meat stored or retail displayed at chilled temperatures. With CIELAB a* (redness) values as an indicator of color development, the association between muscle α-tocopherol concentration and color could be evaluated with treatment means from 8 studies with beef and 5 with pork. Different treatments applied within studies resulted in 20 to 66 values available for the respective regression analyses. Relationships could be described effectively by different forms of the Mitscherlich model, which presented an initial value for y when x = 0, an asymptotic plateau, and the rate of change of y with increasing values of x. With the inclusion of experiment as a random effect, the relationship between total dietary vitamin E intake (x, IU/d for cattle and mg/d for pigs) and muscle α-tocopherol concentration (y, µg/g of meat) reached asymptotic plateau values at 5.71 and 4.83 µg/g of meat for cattle and pigs, respectively. The fractional accumulation rate (per total dietary vitamin E intake) of muscle α-tocopherol concentration was considerably greater in pigs (0.0130) than in cattle (0.00174). The form of the relationship between muscle α-tocopherol concentration and thiobarbituric acid reactive substances in pork was influenced by a single value, whereas muscle α-tocopherol concentrations could not be related to a* values in beef. This study presented viable models that could be applied in practice to calculate the amounts of supplemental dietary vitamin E needed to obtain the maximum profit from beef and pork.
Collapse
Affiliation(s)
- J Sales
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, Uhříněves, 104 00 Prague 10, Czech Republic.
| | | |
Collapse
|
6
|
Peeters E, Neyt A, Beckers F, De Smet S, Aubert AE, Geers R. Influence of supplemental magnesium, tryptophan, vitamin C, and vitamin E on stress responses of pigs to vibration. J Anim Sci 2007; 83:1568-80. [PMID: 15956466 DOI: 10.2527/2005.8371568x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our objectives were to investigate and compare the effects of supplemental Mg, Trp, vitamin E (vit E), and vitamin C (vit C) on stress responses of pigs undergoing transport simulation. In this study, 126 pigs (25.1 +/- 4.4 kg BW) were allocated to one of the six following treatments: 1) negative control (no supplementation); 2) positive control (i.m. injection with 0.5 mg of carazolol/20 kg BW 12 h before vibration, beta-blocker); 3) Trp (additional amount of 6 g/kg of feed for 5 d, as-fed basis); 4) Mg (3 g/L drinking water for 2 d); 5) vit E (additional amount of 150 mg/kg of feed for 21 d, as-fed basis); 6) or vit C (additional amount of 300 mg/kg of feed for 21 d, as-fed basis). Pigs were treated in groups of three, and each treatment was replicated seven times. Feed and water intake were not different among treatments. Heart rate variables (mean, peak, and minimum heart rate, ventricular ectopic beats, and ST elevation of Channels A and B) and heart rate variability were registered from the night before vibration. Pigs were subjected to vibration in a transport simulator (8 Hz, 3 m/s) for 2 h and allowed to recover for 2 h. Generally, the positive control pigs had the lowest heart rate values (mean, peak, minimum heart rate, ST elevation of Channel A; P < 0.05), whereas Mg and Trp decreased ventricular ectopic beats and ST elevation of Channel B, respectively. The effect of vit C and E as vagal stimulators was clearly visible, whereas carazolol and Mg clearly blocked the sympathetic pathways of the autonomic nervous system. During vibration, the negative control pigs lay the least, and Mg pigs the most (P < 0.05). Salivary cortisol concentrations (taken before and after vibration and after recovery) showed that vit E pigs produced the least cortisol during stress periods. Intermediary metabolites (glucose, lactate, creatine kinase, and NEFA) were analyzed in plasma from blood taken before and after vibration. At the two sampling points, the vit E and Mg pigs had the lowest NEFA concentrations (P < 0.05), and the vit E pigs also had the lowest lactate concentrations before vibration. Urine samples were collected before and after vibration to determine catecholamine concentrations; only negative control pigs had an increase (P = 0.04) in epinephrine concentration, despite large individual variation. In general, these results indicate that the supplementation of Trp, Mg, vit E, or vit C improved coping ability of pigs during vibration comparison with the negative control treatment. A muscular injection of carazolol influenced only the heart rate variables.
Collapse
Affiliation(s)
- E Peeters
- Laboratory for Quality Care in Animal Production, Zootechnical Centre, K.U.Leuven, B-3360 Lovenjoel, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Peiretti P, Mussa P, Prola L, Meineri G. Use of different levels of false flax (Camelina sativa L.) seed in diets for fattening rabbits. Livest Sci 2007. [DOI: 10.1016/j.livsci.2006.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Peiretti P, Meineri G. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Flachowsky G. Vitamin E-Transfer from Feed into Pig Tissues. JOURNAL OF APPLIED ANIMAL RESEARCH 2000. [DOI: 10.1080/09712119.2000.9706292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|