1
|
Khodavandi P, Soogh MM, Alizadeh F, Khodavandi A, Nouripour-Sisakht S. Menthol as an effective inhibitor of quorum sensing and biofilm formation in Candida albicans and Candida glabrata by targeting the transcriptional repressor TUP1. Mol Biol Rep 2024; 51:1114. [PMID: 39485542 DOI: 10.1007/s11033-024-10054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Menthol, a natural quorum sensing molecule, is derived from the Mentha species. Combating pathogenicity by inactivating quorum sensing is an emerging approach. Therefore, our objective was to investigate anti-quorum sensing and anti-biofilm potentials of menthol in Candida albicans and Candida glabrata. METHODS The antifungal properties of menthol were evaluated using a broth microdilution assay and a time-kill assay, and its effects on quorum sensing-mediated virulence factors, cellular reactive oxygen species (ROS), and biofilm formation were tested by evaluating TUP1 expression levels in both C. albicans and C. glabrata. RESULTS Quorum sensing-mediated virulence factors and biofilm formation were inhibited by menthol in both C. albicans and C. glabrata. Furthermore, coinciding with elevated ROS levels, mRNAs of the quorum sensing-related gene TUP1 were upregulated in both C. albicans and C. glabrata. CONCLUSIONS This study highlights the anti-quorum sensing potential of menthol through the inhibition of quorum sensing-mediated virulence factors, ROS generation, and biofilm development by targeting TUP1, which could have potential in the treatment of Candida infections.
Collapse
Affiliation(s)
| | - Maryam Miri Soogh
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | | |
Collapse
|
2
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Robertson SN, Soukarieh F, White TM, Camara M, Romero M, Griffiths RL. Probing Interkingdom Signaling Molecules via Liquid Extraction Surface Analysis-Mass Spectrometry. Anal Chem 2023; 95:5079-5086. [PMID: 36881460 PMCID: PMC10034741 DOI: 10.1021/acs.analchem.2c05703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Previously, metabolites diffused or secreted from microbial samples have been analyzed via liquid chromatography-mass spectrometry (LC-MS) approaches following lengthy extraction protocols. Here, we present a model system for growing biofilms on discs before utilizing rapid and direct surface sampling MS, namely, liquid extraction surface analysis, to study the microbial exometabolome. One of the benefits of this approach is its surface-specific nature, enabling mimicking biofilm formation in a way that the study of planktonic liquid cultures cannot imitate. Even though Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) have been studied previously in isolation, very few studies consider the complexity of the interplay between these pathogens, which are commonly combined causative agents of infection. Our model system provides a route to investigate changes in the exometabolome, such as metabolites that become circulatory in the presence of multiple pathogens. Our results agree with previous reports showing that 2-alkyl-4(1H)-quinolone signal molecules produced by P. aeruginosa are important markers of infection and suggest that methods for monitoring levels of 2-heptyl-4-hydroxyquinoline and 2,4-dihydroxyquinoline, as well as pyocyanin, could be beneficial in the determination of causative agents in interkingdom infection including P. aeruginosa. Furthermore, studying changes in exometabolome metabolites between pqs quorum sensing antagonists in treated and nontreated samples suggests suppression of phenazine production by P. aeruginosa. Hence, our model provides a rapid analytical approach to gaining a mechanistic understanding of bacterial signaling.
Collapse
Affiliation(s)
- Shaun N Robertson
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Fadi Soukarieh
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Thomas M White
- Faculty of Science, School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Miguel Camara
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Manuel Romero
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rian L Griffiths
- Faculty of Science, School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, U.K
| |
Collapse
|
4
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
5
|
Effect of Farnesol in Trichoderma Physiology and in Fungal-Plant Interaction. J Fungi (Basel) 2022; 8:jof8121266. [PMID: 36547599 PMCID: PMC9783820 DOI: 10.3390/jof8121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.
Collapse
|
6
|
Conrado R, Gomes TC, Roque GSC, De Souza AO. Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:1604. [PMID: 36421247 PMCID: PMC9687038 DOI: 10.3390/antibiotics11111604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Microorganisms are known as important sources of natural compounds that have been studied and applied for different purposes in distinct areas. Specifically, in the pharmaceutical area, fungi have been explored mainly as sources of antibiotics, antiviral, anti-inflammatory, enzyme inhibitors, hypercholesteremic, antineoplastic/antitumor, immunomodulators, and immunosuppressants agents. However, historically, the high demand for new antimicrobial and antitumor agents has not been sufficiently attended by the drug discovery process, highlighting the relevance of intensifying studies to reach sustainable employment of the huge world biodiversity, including the microorganisms. Therefore, this review describes the main approaches and tools applied in the search for bioactive secondary metabolites, as well as presents several examples of compounds produced by different fungi species with proven pharmacological effects and additional examples of fungal cytotoxic and antimicrobial molecules. The review does not cover all fungal secondary metabolites already described; however, it presents some reports that can be useful at any phase of the drug discovery process, mainly for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Ana Olívia De Souza
- Development and Innovation Laboratory, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
7
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
8
|
Kitisin T, Muangkaew W, Ampawong S, Sansurin N, Thitipramote N, Sukphopetch P. Development and efficacy of tryptophol-containing emulgel for reducing subcutaneous fungal nodules from Scedosporium apiospermum eumycetoma. Res Pharm Sci 2022; 17:707-722. [PMID: 36704435 PMCID: PMC9872179 DOI: 10.4103/1735-5362.359437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/26/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Subcutaneous infections caused by Scedosporium apiospermum present as chronic eumycetomatous manifestations in both immunocompromised and immunocompetent individuals. Serious adverse effects/toxicities from the long-term use of antifungal drugs and antifungal resistance have been reported in patients with S. apiospermum infections. The present study aimed to determine the anti-S. apiospermum activities of fungal quorum sensing molecule known as tryptophol (TOH) and to develop a TOH-containing emulgel for treating S. apiospermum eumycetoma. Experimental approach Anti-S. apiospermum activities of TOH were determined and compared with voriconazole. Effects of TOH on S. apiospermum biofilm formation and human foreskin fibroblast (HFF)-1 cell cytotoxicity were determined. Moreover, TOH-containing emulgel was developed and physical properties, in vitro, and in vivo antifungal activities against S. apiospermum eumycetoma were evaluated. Findings/Results The minimal concentration of TOH at 100 µM exhibited anti-S. apiospermum activities by reducing growth rate, germination rate, and biofilm formation with less cytotoxicity to HFF-1 cells than voriconazole. Further study on the development of an emulgel revealed that TOH-containing emulgel exhibited excellent physical properties including homogeneity, consistency, and stability. Treatment by TOH-containing emulgel significantly reduced subcutaneous mass in a mouse model of S. apiospermum eumycetoma. The histopathological assessment showed marked improvement after 14 days of TOH-containing emulgel treatment. Conclusion and implications TOH could be used as an anti-fungal agent against S. apiospermum infections. A novel and stable TOH-containing emulgel was developed with excellent anti-S. apiospermum activities suggesting the utilization of TOH-containing emulgel as an innovative therapeutic approach in the treatment of S. apiospermum eumycetoma.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Natthawut Thitipramote
- Center of Excellence in Natural Products Innovation, Mae Fah Luang University, 57100, Chiang Rai, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand,Corresponding author: P. Sukphopetch Tel: +66-23549100, Fax: +66-2643 5583
| |
Collapse
|
9
|
Ferreira MDS, Mendoza SR, Gonçalves DDS, Rodríguez-de la Noval C, Honorato L, Nimrichter L, Ramos LFC, Nogueira FCS, Domont GB, Peralta JM, Guimarães AJ. Recognition of Cell Wall Mannosylated Components as a Conserved Feature for Fungal Entrance, Adaptation and Survival Within Trophozoites of Acanthamoeba castellanii and Murine Macrophages. Front Cell Infect Microbiol 2022; 12:858979. [PMID: 35711659 PMCID: PMC9194641 DOI: 10.3389/fcimb.2022.858979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Leandro Honorato
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Luís Felipe Costa Ramos
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
- Pós-Graduação em Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
10
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
11
|
Veltman B, Harpaz D, Melamed S, Tietel Z, Tsror L, Eltzov E. Whole-cell bacterial biosensor for volatile detection from Pectobacterium-infected potatoes enables early identification of potato tuber soft rot disease. Talanta 2022; 247:123545. [PMID: 35597022 DOI: 10.1016/j.talanta.2022.123545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Half of the harvested food is lost due to rots caused by microorganisms. Plants emit various volatile organic compounds (VOCs) into their surrounding environment, and the VOC profiles of healthy crops are altered upon infection. In this study, a whole-cell bacterial biosensor was used for the early identification of potato tuber soft rot disease caused by the pectinolytic bacteria Pectobacterium in potato tubers. The detection is based on monitoring the luminescent responses of the bacteria panel to changes in the VOC profile following inoculation. First, gas chromatography-mass spectrometry (GC-MS) was used to specify the differences between the VOC patterns of the inoculated and non-inoculated potato tubers during early infection. Five VOCs were identified, 1-octanol, phenylethyl alcohol, 2-ethyl hexanol, nonanal, and 1-octen-3-ol. Then, the infection was detected by the bioreporter bacterial panel, firstly measured in a 96-well plate in solution, and then also tested in potato plugs and validated in whole tubers. Examination of the bacterial panel responses showed an extensive cytotoxic effect over the testing period, as seen by the elevated induction factor (IF) values in the bacterial strain TV1061 after exposure to both potato plugs and whole tubers. Moreover, quorum sensing influences were also observed by the elevated IF values in the bacterial strain K802NR. The developed whole-cell biosensor system based on bacterial detection will allow more efficient crop management during postharvest, storage, and transport of crops, to reduce food losses.
Collapse
Affiliation(s)
- Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sarit Melamed
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Leah Tsror
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
12
|
Abstract
In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence.
Collapse
|
13
|
Vazquez-Munoz R, Thompson A, Russell JT, Sobue T, Zhou Y, Dongari-Bagtzoglou A. Insights From the Lactobacillus johnsonii Genome Suggest the Production of Metabolites With Antibiofilm Activity Against the Pathobiont Candida albicans. Front Microbiol 2022; 13:853762. [PMID: 35330775 PMCID: PMC8940163 DOI: 10.3389/fmicb.2022.853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus johnsonii is a probiotic bacterial species with broad antimicrobial properties; however, its antimicrobial activities against the pathobiont Candida albicans are underexplored. The aim of this study was to study the interactions of L. johnsonii with C. albicans and explore mechanisms of bacterial anti-fungal activities based on bacterial genomic characterization coupled with experimental data. We isolated an L. johnsonii strain (MT4) from the oral cavity of mice and characterized its effect on C. albicans growth in the planktonic and biofilm states. We also identified key genetic and phenotypic traits that may be associated with a growth inhibitory activity exhibited against C. albicans. We found that L. johnsonii MT4 displays pH-dependent and pH-independent antagonistic interactions against C. albicans, resulting in inhibition of C. albicans planktonic growth and biofilm formation. This antagonism is influenced by nutrient availability and the production of soluble metabolites with anticandidal activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Angela Thompson
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Jordan T Russell
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Takanori Sobue
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
14
|
De Seta F, Lonnee-Hoffmann R, Campisciano G, Comar M, Verstraelen H, Vieira-Baptista P, Ventolini G, Lev-Sagie A. The Vaginal Microbiome: III. The Vaginal Microbiome in Various Urogenital Disorders. J Low Genit Tract Dis 2022; 26:85-92. [PMID: 34928258 PMCID: PMC8719503 DOI: 10.1097/lgt.0000000000000645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This series of articles, titled The Vaginal Microbiome (VMB), written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the recent findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders. MATERIALS AND METHODS A search of PubMed database was performed, using the search terms "vaginal microbiome" with "Candida," "vaginitis," "urinary microbiome," "recurrent urinary tract infections," "sexually transmitted infections," "human immunodeficiency virus," "human papillomavirus," "nonspecific vaginitis," "vulvodynia," and "vulvovaginal symptoms." Full article texts were reviewed. Reference lists were screened for additional articles. The third article in this series describes VMB in various urogenital disorders. RESULTS Variable patterns of the VMB are found in patients with vulvovaginal candidiasis, challenging the idea of a protective role of lactobacilli. Highly similar strains of health-associated commensal bacteria are shared in both the bladder and vagina of the same individual and may provide protection against urinary tract infections. Dysbiotic VMB increases the risk of urinary tract infection. Loss of vaginal lactic acid-producing bacteria combined with elevated pH, increase the risk for sexually transmitted infections, although the exact protective mechanisms of the VMB against sexually transmitted infections are still unknown. CONCLUSIONS The VMB may constitute a biological barrier to pathogenic microorganisms. When the predominance of lactobacilli community is disrupted, there is an increased risk for the acquisition of various vaginal pathogents. Longitudinal studies are needed to describe the association between the host, bacterial, and fungal components of the VMB.
Collapse
Affiliation(s)
- Francesco De Seta
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo,” Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Risa Lonnee-Hoffmann
- Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim, Norway
- Institute for Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | | | - Manola Comar
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo,” Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Hans Verstraelen
- Department of Obstetrics & Gynaecology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
- LAP, a Unilabs Company, Porto, Portugal
| | - Gary Ventolini
- Department of Obstetrics and Gynecology, Distinguish University Professor, School of Medicine, Texas Tech University Health Sciences Center, Permian Basin, Odessa, TX
| | - Ahinoam Lev-Sagie
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Barot T, Rawtani D, Kulkarni P. Development, characterization and in vitro-in vivo evaluation of Farnesol loaded niosomal gel for applications in oral candidiasis treatment. Heliyon 2021; 7:e07968. [PMID: 34568596 PMCID: PMC8449029 DOI: 10.1016/j.heliyon.2021.e07968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives The aim of the study was to formulate and characterize the farnesol loaded niosomes comprising gel formulation and perform their in vitro–in vivo evaluation for applications in the treatment of oral candidiasis infections. Methods Various gelling systems were evaluated for their rheological and stability properties. The formulation was statistically optimized using experimental design method (Box-Behnken). Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe the niosomal surface morphology. Centrifugation method and dialysis method were used to find out the % entrapment efficiency (%EE) and in-vitro release of Farnesol, respectively. In-vitro antifungal effect and cell biocompatibility of the Farnesol loaded niosomal gel was also performed using Candida albicans (C. albicans) as the model organism and epithelial cell line (SW480) by MTT cytotoxicity assay. In-vivo skin irritation test was performed on rabbit skin. Key findings Farnesol loaded niosomes were integrated into polymeric gel solution. The optimized formulation demonstrated acceptable % EE (>80%) and an optimum particle size (168.8 nm) along with a sustained release and a long-term storage stability for up to a period of 6 months. TEM and AFM observations displayed a spherical niosome morphology. Farnesol niosomal gel showed a higher antifungal efficacy, ex-vivo skin permeation and deposition in comparison to plain farnesol solution. The niosomal gel also showed negligible cytotoxicity to normal cells citing biocompatibility and was found to be non-toxic and non-irritant to rabbit skin. Conclusions This novel niosome loaded gel-based formulation could make the oral candidiasis healing process more efficient while improving patient compliance. With the optimized methodology used in this work, such formulation approaches can become an efficient, industrially scalable, and cost-effective alternatives to the existing conventional formulations.
Collapse
Affiliation(s)
- Tejas Barot
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Deepak Rawtani
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Pratik Kulkarni
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
16
|
The transcription factor Cas5 suppresses hyphal morphogenesis during yeast-form growth in Candida albicans. J Microbiol 2021; 59:911-919. [PMID: 34491522 DOI: 10.1007/s12275-021-1326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Candida albicans is an opportunistic human pathogen that exists as yeast, hyphal or pseudohyphal forms depending on pH, nutrients, and temperature. The morphological transition from yeast to hyphae, which is required for the complete virulence of C. albicans, is controlled by many transcription factors that activate or repress hypha-specific genes. The C. albicans transcriptional factor Cas5, a key regulator of genes involved in cell wall integrity, affects the susceptibility of C. albicans to fluconazole, an inhibitor of ergosterol synthesis. In this study, we found that deletion of CAS5 in C. albicans decreased the expression levels of a set of ergosterol biosynthesis genes, such as ERG2, ERG3, ERG5, ERG6, ERG11, and ERG24, resulting in the accumulation of lanosterol and zymosterol, which are intermediate metabolites in the ergosterol biosynthesis pathway. Interestingly, it was observed that the cas5Δ/Δ mutant could not maintain the yeast form under non-hypha-inducing conditions, while the CAS5-overexpressing cells could not form hyphae under hypha-inducing conditions. Consistent with these observations, the cas5Δ/Δ mutant highly expressed hypha-specific genes, ALS3, ECE1, and HWP1, under non-hypha-inducing conditions. In addition, CAS5 transcription was significantly downregulated immediately after hyphal initiation in the wild-type strain. Furthermore, the cas5Δ/Δ mutant reduced the transcription of NRG1, which encodes a major repressor of hyphal morphogenesis, while Cas5 overexpression increased the transcription of NRG1 under hypha-inducing conditions. Collectively, this study suggests the potential role of Cas5 as a repressor of hypha-specific genes during yeast-form growth of C. albicans.
Collapse
|
17
|
Escobar IE, Possamai Rossatto FC, Kim SM, Kang MH, Kim W, Mylonakis E. Repurposing Kinase Inhibitor Bay 11-7085 to Combat Staphylococcus aureus and Candida albicans Biofilms. Front Pharmacol 2021; 12:675300. [PMID: 34025434 PMCID: PMC8133364 DOI: 10.3389/fphar.2021.675300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus and Candida spp. are commonly linked with topical biofilm-associated infections such as those found on chronic wounds. These biofilms are notoriously difficult to treat, highlighting the grave need to discover and study new broad-spectrum agents to combat associated infections. Here we report that the kinase inhibitor Bay 11-7085 exhibited bactericidal activity against multidrug-resistant S. aureus with a minimum inhibitory concentration (MIC) of 4 μg/ml. In addition, S. aureus strain MW2 did not acquire resistance to antibiotic pressure. Furthermore, Bay 11-7085 exhibited potency against Candida albicans and the emerging pathogen Candida auris with a MIC of 0.5–1 μg/ml. Bay 11-7085 partially inhibited and eradicated biofilm formation of various pathogens, such as VRSA (vancomycin-resistant S. aureus), as well as antifungal-resistant Candida spp. isolates. Notably, Bay 11-7085 partially inhibited initial cell attachment and formation of a VRSA-C. albicans polymicrobial biofilm in vitro. In contrast to C. albicans, inhibition of VRSA biofilm was linked to initial cell attachment independent of its bactericidal activity. Finally, Bay 11-7085 was effective in vivo at increasing the lifespan of C. elegans during an S. aureus and a C. albicans infection. Our work proposes kinase inhibitor Bay 11-7085 as a potential compound capable of combating biofilms associated with primary multidrug-resistant bacteria and yeast pathogens associated with wound infections.
Collapse
Affiliation(s)
- Iliana E Escobar
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Fernanda Cristina Possamai Rossatto
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States.,Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Min Hee Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
18
|
Ruiz A, Herráez M, Costa-Gutierrez SB, Molina-Henares MA, Martínez MJ, Espinosa-Urgel M, Barriuso J. The architecture of a mixed fungal-bacterial biofilm is modulated by quorum-sensing signals. Environ Microbiol 2021; 23:2433-2447. [PMID: 33615654 DOI: 10.1111/1462-2920.15444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
Interkingdom communication is of particular relevance in polymicrobial biofilms. In this work, the ability of the fungus Ophiostoma piceae to form biofilms individually and in consortium with the bacterium Pseudomonas putida, as well as the effect of fungal and bacterial signal molecules on the architecture of the biofilms was evaluated. Pseudomonas putida KT2440 is able to form biofilms through the secretion of exopolysaccharides and two large extracellular adhesion proteins, LapA and LapF. It has two intercellular signalling systems, one mediated by dodecanoic acid and an orphan LuxR receptor that could participate in the response to AHL-type quorum sensing molecules (QSMs). Furthermore, the dimorphic fungus O. piceae uses farnesol as QSM to control its yeast to hyphae morphological transition. Results show for the first time the ability of this fungus to form biofilms alone and in mixed cultures with the bacterium. Biofilms were induced by bacterial and fungal QSMs. The essential role of LapA-LapF proteins in the architecture of biofilms was corroborated, LapA was induced by farnesol and dodecanol, while LapF by 3-oxo-C6-HSL and 3-oxo-C12-HSL. Our results indicate that fungal signals can induce a transient rise in the levels of the secondary messenger c-di-GMP, which control biofilm formation and architecture.
Collapse
Affiliation(s)
- Alberto Ruiz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Marta Herráez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Stefanie B Costa-Gutierrez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Antonia Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
19
|
Virulence Traits of Candida spp.: An Overview. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Abstract
Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.
Collapse
Affiliation(s)
| | - S Mohan Karuppayil
- Professor and Head, Department of Stem Cell & Regenerative Medicine and Medical Biotechnology, D Y Patil Education Society, Kasaba Bawada, Kolhapur, Maharashtra 416006, India
| |
Collapse
|
21
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
24
|
Kitisin T, Muangkaew W, Ampawong S, Sukphopetch P. Tryptophol Coating Reduces Catheter-Related Cerebral and Pulmonary Infections by Scedosporium apiospermum. Infect Drug Resist 2020; 13:2495-2508. [PMID: 32801788 PMCID: PMC7383110 DOI: 10.2147/idr.s255489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Central venous catheter (CVC) is a medical device that is used to administer medication for a long duration. Colonization by an emerging opportunistic pathogen Scedosporium apiospermum in the CVC lumen is frequently reported to cause severe complications in patients. Here, we describe the effect of fungal quorum-sensing molecule (QSM) known as tryptophol (TOH) to control S. apiospermum colonization in catheter tube lumens in both in vitro and in vivo models. Methods Antifungal susceptibility of TOH against S. apiospermum was compared with voriconazole, and the colony diameter was determined on days 2, 4, and 6. Experimental catheterization rat model was conducted with pre-coating of TOH and voriconazole or an uncoated control and an infection with S. apiospermum. Biofilm formation on the catheter luminal surface was assessed using the scanning electron microscopy, crystal violet, and 2,3-bis(2-methoxy-4-ni-tro-5-sulfophenyl)-5-(phenylamino)-carbonyl-2H-tetra-zolium hydroxide (XTT) reduction assays. Brain and lung samples of catheterized rats were histopathologically assessed. Serum samples from catheterized rats were injected into Galleria mellonella larvae. Survival of catheterized rats and G. mellonella was determined. Results TOH impeded the growth of S. apiospermum by reducing the colony diameter in a dose-dependent manner. TOH coating remarkably lessened S. apiospermum biofilm formation and fungal cell viability on the catheter luminal surface. Additionally, TOH coating lessens cerebral edema that is associated with abscess and invasive pulmonary damages due to S. apiospermum catheter-related infection. Furthermore, TOH coating also lessened the virulence of S. apiospermum in sera of experimental catheterized rats and extended the survival rate of larvae Galleria mellonella infection model. Conclusion An alternative modification of catheter by coating with TOH is effective in preventing S. apiospermum colonization in vivo. Our study gives a new strategy to control catheter contamination and prevents nosocomial diseases due to S. apiospermum infection.
Collapse
Affiliation(s)
- Thitinan Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Bernard C, Girardot M, Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J Mycol Med 2020; 30:100909. [DOI: 10.1016/j.mycmed.2019.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022]
|
26
|
Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, Teles Brito I, Borges de Menezes Leite L, Pereira M, Correa Amaral A. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol 2019; 57:52-62. [PMID: 29361177 DOI: 10.1093/mmy/myx155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is caused mainly by the opportunistic fungus Candida albicans, and its yeast to hyphae transition is considered a major virulence factor. Farnesol is a molecule that inhibits yeast to hyphae transition. The increased incidence of VVC has influenced a need for developing new therapeutic strategies. The objective was to develop a mucoadhesive nanostructured system composed of miconazole and farnesol co-encapsulated within chitosan nanoparticles. The miconazole presented a minimal inhibitory concentration (MIC) of 1 μg/ml against C. albicans. The farnesol was capable of inhibiting yeast to hyphae transition at levels greater or equal to 300 μM. The combination of miconazole and farnesol showed no change in miconazole MIC. Chitosan nanoparticles containing miconazole and farnesol were prepared by ionic gelation and showed favorable characteristics for use on mucous membranes. They showed size variation and polydispersion index (PDI) after 30 days, but the efficiency of drug encapsulation was maintained. Regarding toxicity in cultured fibroblasts (BALB/c 3T3) the nanoparticles were considered nontoxic. The nanoparticles showed antifungal activity against the C. albicans strain used with MICs of 2.5 μg/ml and 2 μg/ml for nanoparticles containing miconazole or miconazole/farnesol, respectively. Nanoparticles containing farnesol inhibited yeast to hyphae transition at concentrations greater than or equal to 240 μM. The in vivo antifungal activity was assessed in the murine model for VVC. The results suggested that chitosan nanoparticles containing miconazole and farnesol were effective at inhibiting fungal proliferation. Additionally, chitosan nanoparticles containing farnesol were capable of decreasing the pathogenicity of infection, demonstrated through the absence of inflammation.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia GO 74605-050, Brazil
| | | | - Mirlane Santos Cabral
- Biological Science Institute, Universidade Federal de Goiás, Goiânia GO 74001-970, Brazil
| | - Isabella Teles Brito
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia GO 74605-050, Brazil
| | - Liliana Borges de Menezes Leite
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia GO 74605-050, Brazil
| | - Maristela Pereira
- Biological Science Institute, Universidade Federal de Goiás, Goiânia GO 74001-970, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia GO 74605-050, Brazil
| |
Collapse
|
27
|
d'Alessandro J, Mas L, Aubry L, Rieu JP, Rivière C, Anjard C. Collective regulation of cell motility using an accurate density-sensing system. J R Soc Interface 2019; 15:rsif.2018.0006. [PMID: 29563247 DOI: 10.1098/rsif.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 01/31/2023] Open
Abstract
The capacity of living cells to sense their population density and to migrate accordingly is essential for the regulation of many physiological processes. However, the mechanisms used to achieve such functions are poorly known. Here, based on the analysis of multiple trajectories of vegetative Dictyostelium discoideum cells, we investigate such a system extensively. We show that the cells secrete a high-molecular-weight quorum-sensing factor (QSF) in their medium. This extracellular signal induces, in turn, a reduction of the cell movements, in particular, through the downregulation of a mode of motility with high persistence time. This response appears independent of cAMP and involves a G-protein-dependent pathway. Using a mathematical analysis of the cells' response function, we evidence a negative feedback on the QSF secretion, which unveils a powerful generic mechanism for the cells to detect when they exceed a density threshold. Altogether, our results provide a comprehensive and dynamical view of this system enabling cells in a scattered population to adapt their motion to their neighbours without physical contact.
Collapse
Affiliation(s)
- Joseph d'Alessandro
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Lauriane Mas
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Jean-Paul Rieu
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Charlotte Rivière
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Christophe Anjard
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| |
Collapse
|
28
|
Das S, Bhuyan R, Bagchi A, Saha T. Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism. Heliyon 2019; 5:e01916. [PMID: 31338453 PMCID: PMC6580234 DOI: 10.1016/j.heliyon.2019.e01916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Candida albicans causes two types of major infections in humans: superficial infections, such as skin and mucosal infection, and life-threatening systemic infections, like airway and catheter-related blood stream infections. It is a polymorphic fungus with two distinct forms (yeast and hyphal) and the morphological plasticity is strongly associated with many disease causing proteins. In this study, 137 hyphae associated proteins from Candida albicans (C. albicans) were collected from different sources to create a Protein-Protein Interaction (PPI) network. Out of these, we identified 18 hub proteins (Hog1, Hsp90, Cyr1, Cdc28, Pkc1, Cla4, Cdc42, Tpk1, Act1, Pbs2, Bem1, Tpk2, Ras1, Cdc24, Rim101, Cdc11, Cdc10 and Cln3) that were the most important ones in hyphae development. Ontology and functional enrichment analysis of these proteins could categorize these hyphae associated proteins into groups like signal transduction, kinase activity, biofilm formation, filamentous growth, MAPK signaling etc. Functional annotation analysis of these proteins showed that the protein kinase activity to be essential for hyphae formation in Candida. Additionally, most of the proteins from the network were predicted to be localized on cell surface or periphery, suggesting them as the main protagonists in inducing infections within the host. The complex hyphae formation phenomenon of C. albicans is an attractive target for exploitation to develop new antifungals and anti-virulence strategies to combat C. albicans infections. We further tried to characterize few of the most crucial proteins, especially the kinases by their sequence and structural prospects. Therefore, through this article an attempt to understand the hyphae forming protein network analysis has been made to unravel and elucidate the complex pathogenesis processes with the principal aim of systems biological research involving novel Bioinformatics strategies to combat fungal infections.
Collapse
Affiliation(s)
- Sanjib Das
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry & Biophysics, University of Kalyani, West Bengal, 741235, India
| | - Angshuman Bagchi
- Department of Biochemistry & Biophysics, University of Kalyani, West Bengal, 741235, India
| | - Tanima Saha
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal, 741235, India
| |
Collapse
|
29
|
Sebaa S, Boucherit-Otmani Z, Courtois P. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep 2019; 19:3201-3209. [PMID: 30816484 PMCID: PMC6423612 DOI: 10.3892/mmr.2019.9981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/13/2019] [Indexed: 11/06/2022] Open
Abstract
The present in vitro study examined the effects of the quorum‑sensing molecules farnesol and tyrosol on the development of Candida albicans biofilm in order to elucidate their role as novel adjuvants in oral hygiene. The investigation was conducted in C. albicans ATCC 10231 and C. albicans isolates from dentures and was performed in flat‑bottomed 96‑well polystyrene plates. Yeast growth and their capacity to form biofilms were evaluated following 24 and 48 h incubations at 37˚C in Sabouraud broth supplemented with 0.001‑3 mM farnesol and/or 1‑20 mM tyrosol. Yeast growth was assessed by turbidimetry and biofilms were quantitated by crystal violet staining, under aerobic and anaerobic conditions. The viability of the fungal cells was controlled by the culture of planktonic cells and by examination of the biofilms using fluorescence microscopy following staining with fluorescein diacetate and ethidium bromide. Farnesol at 3 mM exerted a stronger action when added at the beginning of biofilm formation (>50% inhibition) than when added to preformed biofilms (<10% inhibition). Similarly, tyrosol at 20 mM had a greater effect on biofilm formation (>80% inhibition) than on preformed biofilms (<40% inhibition). Despite significant reductions in attached biomass, yeast growth varied little in the presence of the investigated molecules, as corroborated by the turbidimetry, culture of supernatants on solid culture medium followed by counting of colony‑forming units and viability tests using fluorescence microscopy. At the highest tested concentration, the molecules had a greater effect during the initial phases of biofilm formation. The effect of farnesol during anaerobiosis was not significantly different from that observed during aerobiosis, unlike that of tyrosol during anaerobiosis, which exhibited slightly reduced yeast biofilm inhibition. In conclusion, the present study demonstrated the specific anti‑biofilm effect, independent of fungicidal or fungistatic action, of farnesol and tyrosol, as tested in C. albicans ATCC 10231 and 6 strains isolated from dentures. Prior to suggesting the use of these molecules for preventive purposes in oral hygiene, further studies are required in order to clarify the metabolic pathways and cellular mechanisms involved in their antibiofilm effect, as well as the repercussions on the oral microbiome.
Collapse
Affiliation(s)
- Sarra Sebaa
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, B‑1070 Brussels, Belgium
| | - Zahia Boucherit-Otmani
- Laboratory of Antibiotics and Antifungals, Physico‑Chemistry, Synthesis and Biological Activity, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Philippe Courtois
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, B‑1070 Brussels, Belgium
| |
Collapse
|
30
|
Palmieri A, Petrini M. Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Nat Prod Rep 2019; 36:490-530. [DOI: 10.1039/c8np00032h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report presents some fundamental aspects related to the natural occurrence and bioactivity of tryptophol as well as the synthesis of tryptophols and their utilization for the preparation of naturally occurring alkaloid metabolites embedding the indole system.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| |
Collapse
|
31
|
González B, Vázquez J, Morcillo-Parra MÁ, Mas A, Torija MJ, Beltran G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 2018; 74:64-74. [DOI: 10.1016/j.fm.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
32
|
Rajasekharan S, Byun J, Lee J. Inhibitory effects of deoxynivalenol on pathogenesis ofCandida albicans. J Appl Microbiol 2018; 125:1266-1275. [DOI: 10.1111/jam.14032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- S.K. Rajasekharan
- School of Chemical Engineering; Yeungnam University; Gyeongsan Republic of Korea
| | - J. Byun
- Department of Health Sport; Uiduk University; Gyeongju Republic of Korea
| | - J. Lee
- School of Chemical Engineering; Yeungnam University; Gyeongsan Republic of Korea
| |
Collapse
|
33
|
González B, Vázquez J, Cullen PJ, Mas A, Beltran G, Torija MJ. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species. Front Microbiol 2018; 9:670. [PMID: 29696002 PMCID: PMC5904269 DOI: 10.3389/fmicb.2018.00670] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jennifer Vázquez
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
34
|
Padder SA, Prasad R, Shah AH. Quorum sensing: A less known mode of communication among fungi. Microbiol Res 2018; 210:51-58. [PMID: 29625658 DOI: 10.1016/j.micres.2018.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS), a density-dependent signaling mechanism of microbial cells, involves an exchange and sense of low molecular weight signaling compounds called autoinducers. With the increase in population density, the autoinducers accumulate in the extracellular environment and once their concentration reaches a threshold, many genes are either expressed or repressed. This cell density-dependent signaling mechanism enables single cells to behave as multicellular organisms and regulates different microbial behaviors like morphogenesis, pathogenesis, competence, biofilm formation, bioluminescence, etc guided by environmental cues. Initially, QS was regarded to be a specialized system of certain bacteria. The discovery of filamentation control in pathogenic polymorphic fungus Candida albicans by farnesol revealed the phenomenon of QS in fungi as well. Pathogenic microorganisms primarily regulate the expression of virulence genes using QS systems. The indirect role of QS in the emergence of multiple drug resistance (MDR) in microbial pathogens necessitates the finding of alternative antimicrobial therapies that target QS and inhibit the same. A related phenomenon of quorum sensing inhibition (QSI) performed by small inhibitor molecules called quorum sensing inhibitors (QSIs) has an ability for efficient reduction of gene expression regulated by quorum sensing. In the present review, recent advancements in the study of different fungal quorum sensing molecules (QSMs) and quorum sensing inhibitors (QSIs) of fungal origin along with their mechanism of action and/or role/s are discussed.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, HR, India
| | - Abdul Haseeb Shah
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
35
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
The Mycotoxin Zearalenone Hinders Candida albicans Biofilm Formation and Hyphal Morphogenesis. Indian J Microbiol 2017; 58:19-27. [PMID: 29434393 DOI: 10.1007/s12088-017-0690-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022] Open
Abstract
Yeast-mold mycobiota inhabit several natural ecosystems, in which symbiotic relationships drive strategic pathoadaptation. Mycotoxins are metabolites produced by diverse mycotoxigenic fungi as a defense against yeasts, though at times yeasts secrete enzymes that degrade, detoxify, or bio-transform mycotoxins. The present study is focused on the in vitro inhibitory effects of zearalenone (ZEN), a F2 mycotoxin produced by several Fusarium and Gibberella species, on different microbial strains. ZEN exhibited no effect on the planktonic growth or biofilms of several Gram positive and negative bacteria at the tested concentrations. Remarkably, Candida albicans biofilm formation and hyphal morphogenesis were significantly inhibited when treated with 100 µg/mL of ZEN. Likewise, ZEN proficiently disrupted pre-formed C. albicans biofilms without disturbing planktonic cells. Furthermore, these inhibitions were confirmed by crystal violet staining and XTT reduction assays and by confocal and scanning electron microscopy. In an in vivo model, ZEN significantly suppressed C. albicans infection in the nematode Caenorhabditis elegans. The study reports the in vitro antibiofilm efficacy of ZEN against C. albicans strains, and suggests mycotoxigenic fungi participate in asymmetric competitive interactions, such as, amensalism or antibiosis, rather than commensal interactions with C. albicans, whereby mycotoxins secreted by fungi destroy C. albicans biofilms.
Collapse
|
37
|
Navarro-Arias MJ, Dementhon K, Defosse TA, Foureau E, Courdavault V, Clastre M, Le Gal S, Nevez G, Le Govic Y, Bouchara JP, Giglioli-Guivarc'h N, Noël T, Mora-Montes HM, Papon N. Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host–pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Res Microbiol 2017; 168:644-654. [DOI: 10.1016/j.resmic.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
38
|
Gonçalves S, Silva PM, Felício MR, de Medeiros LN, Kurtenbach E, Santos NC. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms. Front Cell Infect Microbiol 2017. [PMID: 28649561 PMCID: PMC5465278 DOI: 10.3389/fcimb.2017.00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP) Psd1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Psd1 antifungal action. Atomic force microscopy (AFM) was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Psd1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Psd1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Patrícia M Silva
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Mário R Felício
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Luciano N de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Nuno C Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
39
|
González B, Mas A, Beltran G, Cullen PJ, Torija MJ. Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Front Physiol 2017; 8:148. [PMID: 28424625 PMCID: PMC5372830 DOI: 10.3389/fphys.2017.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
In yeast, ethanol is produced as a by-product of fermentation through glycolysis. Ethanol also stimulates a developmental foraging response called filamentous growth and is thought to act as a quorum-sensing molecule. Ethanol-inducible filamentous growth was examined in a small collection of wine/European strains, which validated ethanol as an inducer of filamentous growth. Wine strains also showed variability in their filamentation responses, which illustrates the striking phenotypic differences that can occur among individuals. Ethanol-inducible filamentous growth in Σ1278b strains was independent of several of the major filamentation regulatory pathways [including fMAPK, RAS-cAMP, Snf1, Rpd3(L), and Rim101] but required the mitochondrial retrograde (RTG) pathway, an inter-organellar signaling pathway that controls the nuclear response to defects in mitochondrial function. The RTG pathway regulated ethanol-dependent filamentous growth by maintaining flux through the TCA cycle. The ethanol-dependent invasive growth response required the polarisome and transcriptional induction of the cell adhesion molecule Flo11p. Our results validate established stimuli that trigger filamentous growth and show how stimuli can trigger highly specific responses among individuals. Our results also connect an inter-organellar pathway to a quorum sensing response in fungi.
Collapse
Affiliation(s)
- Beatriz González
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| | - Paul J Cullen
- Department of Biological Sciences, University at BuffaloBuffalo, NY, USA
| | - María Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i VirgiliTarragona, Spain
| |
Collapse
|
40
|
Siddhanta S, Paidi SK, Bushley K, Prasad R, Barman I. Exploring Morphological and Biochemical Linkages in Fungal Growth with Label-Free Light Sheet Microscopy and Raman Spectroscopy. Chemphyschem 2016; 18:72-78. [PMID: 27860053 DOI: 10.1002/cphc.201601062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 01/23/2023]
Abstract
Imaging tip growth in fungal hyphae is highly warranted to unravel the molecular mechanism of this extraordinarily precise and localized phenomenon. In situ probing of fungal cultures, however, have been challenging due to their inherent complexity and light penetration issues associated with conventional optical imaging. In this work, we report a label-free approach using a combination of light sheet microscopy and Raman spectroscopy to obtain concomitant morphological and biochemical information from the growing specimen. We show that the variance in morphology in the symbiotic fungus Piriformospora indica are rooted in the underlying differences in chemical composition in the specific growth zones. Our findings suggest that this potent two-pronged approach can comprehensively characterize growth areas and elucidate microbe interactions in still developing colonies with high sensitivity and multiplexing capability.
Collapse
Affiliation(s)
- Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kathryn Bushley
- Department of Plant Biology, University of Minnesota, MN, 55108, USA
| | - Ram Prasad
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Amity Institute of Microbial Technology, Amity University, Noida, 201303, India), Tel: (+91) 874-585-5570, Fax: (+91) 120-243-1878
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA), Tel: (+1) 410-516-0656, Fax: (+1) 410-516-4316
| |
Collapse
|
41
|
De Vita D, Simonetti G, Pandolfi F, Costi R, Di Santo R, D'Auria FD, Scipione L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg Med Chem Lett 2016; 26:5931-5935. [PMID: 27838185 DOI: 10.1016/j.bmcl.2016.10.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Some compounds, characterized by phenylethenyl moiety, such as methyl cinnamate and caffeic acid phenethyl ester, are able to inhibit C. albicans biofilm formation. On these bases, and as a consequence of our previous work, we synthesized a series of cinnamoyl ester and amide derivatives in order to evaluate them for the activity against C. albicans biofilm and planktonically grown cells. The most active compounds 7 and 8 showed ⩾50% biofilm inhibition concentrations (BMIC50) of 2μg/mL and 4μg/mL respectively, against C. albicans biofilm formation; otherwise, 7 showed an interesting activity also against mature biofilm, with BMIC50 of 8μg/mL.
Collapse
Affiliation(s)
- Daniela De Vita
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabiana Pandolfi
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Roberta Costi
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy; "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy; "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Felicia Diodata D'Auria
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luigi Scipione
- "Istituto Pasteur-Fondazione Cenci Bolognetti", Department of Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy.
| |
Collapse
|
42
|
Pekmezovic M, Aleksic I, Barac A, Arsic-Arsenijevic V, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Prevention of polymicrobial biofilms composed of Pseudomonas aeruginosa and pathogenic fungi by essential oils from selected Citrus species. Pathog Dis 2016; 74:ftw102. [PMID: 27702795 DOI: 10.1093/femspd/ftw102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 11/13/2022] Open
Abstract
Mixed microbial infections caused by Pseudomonas aeruginosa and pathogenic fungi are commonly found in patients with chronic infections and constitute a significant health care burden. The aim of this study was to address the potential polymicrobial antibiofilm activity of pompia and grapefruit essential oils (EOs). The mechanism of antimicrobial activity of EOs was analysed. EOs of pompia and grapefruit inhibited fungal growth with MIC concentrations between 50 and 250 mg L-1, whereas no effect on P. aeruginosa growth was observed. Both citrus EOs inhibited formation of bacterial and fungal monomicrobial biofilms in concentrations of 50 mg L-1 and were efficient in potentiating the activity of clinically used antimicrobials in vitro The concentration of 10 mg L-1 EOs inhibited mixed biofilm formation composed of P. aeruginosa and Aspergillus fumigatus or Scedosporium apiospermum Citrus EOs affected quorum sensing in P. aeruginosa and caused fast permeabilisation of Candida albicans membrane. Pompia and grapefruit EOs potently inhibited biofilm formation and could be used for the control of common polymicrobial infections.
Collapse
Affiliation(s)
- Marina Pekmezovic
- National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, 11010 Belgrade, Serbia
| | - Aleksandra Barac
- National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Valentina Arsic-Arsenijevic
- National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, 11010 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, 11010 Belgrade, Serbia
| | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P. O. Box 23, 11010 Belgrade, Serbia
| |
Collapse
|
43
|
Quorum-sensing in yeast and its potential in wine making. Appl Microbiol Biotechnol 2016; 100:7841-52. [DOI: 10.1007/s00253-016-7758-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
44
|
Bujdáková H. Management of Candida biofilms: state of knowledge and new options for prevention and eradication. Future Microbiol 2016; 11:235-51. [PMID: 26849383 DOI: 10.2217/fmb.15.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biofilms formed by Candida species (spp.) on medical devices represent a potential health risk. The focus of current research is searching for new options for the treatment and prevention of biofilm-associated infections using different approaches including modern nanotechnology. This review summarizes current information concerning the most relevant resistance/tolerance mechanisms to conventional drugs and a role of additional factors contributing to these phenomena in Candida spp. (mostly Candida albicans). Additionally, it provides an information update in prevention and eradication of a Candida biofilm including experiences with 'lock' therapy, potential utilization of small molecules in biomedical applications, and perspectives of using photodynamic inactivation in the control of a Candida biofilm.
Collapse
Affiliation(s)
- Helena Bujdáková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology & Virology, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
45
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
46
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
47
|
Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh TJ. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother 2014; 70:470-8. [PMID: 25288679 DOI: 10.1093/jac/dku374] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Biofilm formation by Candida albicans poses an important therapeutic challenge in human diseases. Typically, conventional antifungal agents encounter difficulty in treating and fully eradicating biofilm-related infections. Novel therapeutic approaches are needed to treat recalcitrant Candida biofilms. Farnesol is a quorum-sensing molecule, which induces apoptosis, inhibits Ras protein pathways and profoundly affects the morphogenesis of C. albicans. We therefore investigated the interactions between farnesol and different classes of antifungal agents. METHODS The combined antifungal effects of triazoles (fluconazole), polyenes (amphotericin B) and echinocandins (micafungin) with farnesol against C. albicans biofilms were assessed in vitro. Antifungal activity was determined by the XTT metabolic assay and confocal microscopy. The nature and the intensity of the interactions were assessed using the Loewe additivity model [fractional inhibitory concentration (FIC) index] and the Bliss independence (BI) model. RESULTS Significant synergy was found between each of the three antifungal agents and farnesol, while antagonism was not observed for any of the combinations tested. The greatest synergistic effect was found with the farnesol/micafungin combination, for which the BI-based model showed the observed effects as being 39%-52% higher than expected if the drugs had been acting independently. The FIC indices ranged from 0.49 to 0.79, indicating synergism for farnesol/micafungin and farnesol/fluconazole and no interaction for farnesol/amphotericin B. Structural changes in the biofilm correlated well with the efficacies of these combinations. The maximum combined effect was dependent on the farnesol concentration for micafungin and amphotericin B. CONCLUSIONS Farnesol exerts a synergistic or additive interaction with micafungin, fluconazole and amphotericin B against C. albicans biofilms, thus warranting further in vivo study.
Collapse
Affiliation(s)
- Aspasia Katragkou
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Matthew McCarthy
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | | | - Charalampos Antachopoulos
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland, Baltimore, MD, USA Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
48
|
Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1855-69. [PMID: 25018088 DOI: 10.1016/j.bbadis.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of reactive oxygen species (ROS) generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved tricarboxylic acid (TCA) cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and adenosine triphosphate (ATP) levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host.
Collapse
|
49
|
Staniszewska M, Bondaryk M, Swoboda-Kopec E, Siennicka K, Sygitowicz G, Kurzatkowski W. Candida albicans morphologies revealed by scanning electron microscopy analysis. Braz J Microbiol 2013; 44:813-21. [PMID: 24516422 PMCID: PMC3910194 DOI: 10.1590/s1517-83822013005000056] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022] Open
Abstract
Scanning electron microscope (SEM) observations were used to analyze particular morphologies of Candida albicans clinical isolate (strain 82) and mutants defective in hyphae-promoting genes EFG1 (strain HLC52) and/or CPH1 (strains HLC54 and Can16). Transcription factors Efg1 and Cph1 play role in regulating filamentation and adhesion of C. albicans’ morphologies. Comparative analysis of such mutants and clinical isolate showed that Efg1 is required for human serum-induced cell growth and morphological switching. In the study, distinct differences between ultrastructural patterns of clinical strain’s and null mutants’ morphologies were observed (spherical vs tube-like blastoconidia, or solid and fragile constricted septa vs only the latter observed in strains with EFG1 deleted). In addition, wild type strain displayed smooth colonies of cells in comparison to mutants which exhibited wrinkled phenotype. It was observed that blastoconidia of clinical strain exhibited either polarly or randomly located budding. Contrariwise, morphotypes of mutants showed either multiple polar budding or a centrally located single bud scar (mother-daughter cell junction) distinguishing tube-like yeast/pseudohyphal growth (the length-to-width ratios larger than 1.5). In their planktonic form of growth, blastoconidia of clinical bloodstream isolate formed constitutively true hyphae under undiluted human serum inducing conditions. It was found that true hyphae are essential elements for developing structural integrity of conglomerate, as mutants displaying defects in their flocculation and conglomerate-forming abilities in serum. While filamentation is an important virulence trait in C. albicans the true hyphae are the morphologies which may be expected to play a role in bloodstream infections.
Collapse
Affiliation(s)
- M Staniszewska
- National Institute of Public Health, National Institute of Hygiene, Independent Laboratory of Streptomyces and Fungi Imperfecti, Warsaw, Poland
| | - M Bondaryk
- National Institute of Public Health, National Institute of Hygiene, Independent Laboratory of Streptomyces and Fungi Imperfecti, Warsaw, Poland
| | - E Swoboda-Kopec
- Department of Microbiology, Medical University of Warsaw, Poland
| | | | - G Sygitowicz
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Poland
| | - W Kurzatkowski
- National Institute of Public Health, National Institute of Hygiene, Independent Laboratory of Streptomyces and Fungi Imperfecti, Warsaw, Poland
| |
Collapse
|
50
|
Mech F, Wilson D, Lehnert T, Hube B, Thilo Figge M. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Cytometry A 2013; 85:126-39. [PMID: 24259441 DOI: 10.1002/cyto.a.22418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/04/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022]
Abstract
Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium.
Collapse
Affiliation(s)
- Franziska Mech
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI) Jena, Germany; German Rheumatism Research Center a Leibniz Institute-DRFZ Berlin, Germany
| | | | | | | | | |
Collapse
|