1
|
Lepeu G, van Maren E, Slabeva K, Friedrichs-Maeder C, Fuchs M, Z'Graggen WJ, Pollo C, Schindler KA, Adamantidis A, Proix T, Baud MO. The critical dynamics of hippocampal seizures. Nat Commun 2024; 15:6945. [PMID: 39138153 PMCID: PMC11322644 DOI: 10.1038/s41467-024-50504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Epilepsy is defined by the abrupt emergence of harmful seizures, but the nature of these regime shifts remains enigmatic. From the perspective of dynamical systems theory, such critical transitions occur upon inconspicuous perturbations in highly interconnected systems and can be modeled as mathematical bifurcations between alternative regimes. The predictability of critical transitions represents a major challenge, but the theory predicts the appearance of subtle dynamical signatures on the verge of instability. Whether such dynamical signatures can be measured before impending seizures remains uncertain. Here, we verified that predictions on bifurcations applied to the onset of hippocampal seizures, providing concordant results from in silico modeling, optogenetics experiments in male mice and intracranial EEG recordings in human patients with epilepsy. Leveraging pharmacological control over neural excitability, we showed that the boundary between physiological excitability and seizures can be inferred from dynamical signatures passively recorded or actively probed in hippocampal circuits. Of importance for the design of future neurotechnologies, active probing surpassed passive recording to decode underlying levels of neural excitability, notably when assessed from a network of propagating neural responses. Our findings provide a promising approach for predicting and preventing seizures, based on a sound understanding of their dynamics.
Collapse
Affiliation(s)
- Gregory Lepeu
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ellen van Maren
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kristina Slabeva
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Cecilia Friedrichs-Maeder
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Markus Fuchs
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Timothée Proix
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Maxime O Baud
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Lorenz-Guertin JM, Bambino MJ, Das S, Weintraub ST, Jacob TC. Diazepam Accelerates GABA AR Synaptic Exchange and Alters Intracellular Trafficking. Front Cell Neurosci 2019; 13:163. [PMID: 31080408 PMCID: PMC6497791 DOI: 10.3389/fncel.2019.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.
Collapse
Affiliation(s)
- Joshua M. Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J. Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Cleton A, Mazee D, Voskuyl RA, Danhof M. Rate of change of blood concentrations is a major determinant of the pharmacodynamics of midazolam in rats. Br J Pharmacol 1999; 127:227-35. [PMID: 10369477 PMCID: PMC1565986 DOI: 10.1038/sj.bjp.0702499] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1998] [Revised: 01/25/1999] [Accepted: 01/29/1999] [Indexed: 11/09/2022] Open
Abstract
The objective of this investigation was to characterize quantitatively the influence of the rate of increase in blood concentrations on the pharmacodynamics of midazolam in rats. The pharmacodynamics of midazolam were quantified by an integrated pharmacokinetic-pharmacodynamic modelling approach. Using a computer controlled infusion technique, a linear increase in blood concentrations up to 80 ng ml(-1) was obtained over different time intervals of 16 h, resulting in rates of rise of the blood concentrations of respectively, 1.25, 1.00, 0.87, 0.46, 0.34 and 0.20 ng ml(-1) min(-1). In one group of rats the midazolam concentration was immediately brought to 80 ng ml(-1) and maintained at that level for 4 h. Immediately after the pretreatment an intravenous bolus dose was given to determine the time course of the EEG effect in conjunction with the decline of midazolam concentrations. The increase in beta activity (11.5-30 Hz) of the EEG was used as pharmacodynamic endpoint. For each individual animal the relationship between blood concentration and the EEG effect could be described by the sigmoidal Emax model. After placebo, the values of the pharmacodynamic parameter estimates were Emax = 82+/-5 microV, EC50,u = 6.4+/-0.8 ng ml(-1) and Hill factor = 1.4+/-0.1. A bell-shaped relationship between the rate of change of midazolam concentration and the value of EC50,u was observed with a maximum of 21+/-5.0 ng ml(-1) at a rate of change of 0.46 ng ml(-1) min(-1); lower values of EC50,u were observed at both higher and lower rates. The findings of this study show that the rate of change in plasma concentrations is an important determinant of the pharmacodynamics of midazolam in rats.
Collapse
Affiliation(s)
- A Cleton
- Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | | | | | | |
Collapse
|
5
|
Mandema JW, Tukker E, Danhof M. Pharmacokinetic-pharmacodynamic modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br J Pharmacol 1995; 102:663-8. [PMID: 1364836 PMCID: PMC1917918 DOI: 10.1111/j.1476-5381.1991.tb12230.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The purpose of the present investigation was to quantify the concentration-pharmacological effect relationship of midazolam in individual rats by use of effect parameters derived from aperiodic EEG analysis. By varying the rate and route of administration the role of (inter)active metabolites and development of acute tolerance was evaluated. 2. The pharmacokinetics and pharmacodynamics of midazolam were determined after intravenous administration of 10 mg kg-1 during 5, 30 and 60 min and oral administration of 15 mg kg-1. Following intravenous administration the pharmacokinetics were most adequately described by a bi-exponential equation. The values (mean +/- s.e. mean, n = 20) of clearance, volume of distribution at steady-state and terminal half-life were 67 +/- 2 ml min-1 kg-1, 1.61 +/- 0.071 kg-1 and 27 +/- 1 min, respectively. Following oral administration midazolam was rapidly absorbed with a systemic availability of 45 +/- 9%. 3. The averaged amplitudes in the 11.5-30 Hz (beta) frequency band of the fronto-central lead on the left-hemisphere, as derived by aperiodic EEG analysis, was selected as a measure of the pharmacological effect of midazolam. By pharmacokinetic-pharmacodynamic modelling the individual concentration-EEG effect relationships of midazolam were derived, which were successfully quantified by the sigmoidal Emax model. No marked and systematic differences in pharmacodynamic parameters were found between the rates and routes of administration. The averaged pharmacodynamic parameters of midazolam obtained after combining the results of all rates and routes of administration were (mean + s.e.mean, n = 27): Eo = 61 + 3puV s 1, Emax = 85 + 3 Vs 1, EC50 = 40 + 3 ngmlP-1 and N = 0.84 + 0.04. 4. The results of the present study show that the concentration-EEG effect relationship of midazolam can be characterized in individual animals using the amplitudes in the 11.5-30 (beta) frequency band as a measure of pharmacological response. Acute tolerance did not develop and (inter)active metabolites did not contribute to this effect parameter within the time span of the experiments.
Collapse
Affiliation(s)
- J W Mandema
- Center for Bio-Pharmaceutical Sciences, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | |
Collapse
|
6
|
Abstract
This article provides a historical review of the animal literature relating to the development of tolerance to the behavioral effects of benzodiazepines, and the incidence of biochemical and behavioral changes that result from termination of benzodiazepine treatment (spontaneous withdrawal responses). It charts the slow emergence of a pertinent animal literature and highlights conclusions that were prevalent in 1963 (at the introduction of diazepam), 1973 (at the introduction of lorazepam), 1980 and the present day. For 25 years the animal literature has lagged behind the clinical literature, but recent studies into the neurochemical mechanisms of benzodiazepine dependence and possible treatments for withdrawal responses suggest that, at last, animal experiments may be about to make a substantial contribution.
Collapse
Affiliation(s)
- S E File
- UMDS Division of Pharmacology, University of London, Guy's Hospital
| |
Collapse
|
7
|
Abstract
Forty-eight hours after a single dose of lorazepam (0.25 mg/kg), there was tolerance to the lorazepam-induced reduction of locomotor activity in the holeboard; but no tolerance to the reductions in exploratory head-dipping or rearing. Mice tested undrugged at this time showed significant hyperactivity and increased rearing, indicating withdrawal responses, but no change in head-dipping. In the elevated plus-maze, no tolerance could be detected to the effects of lorazepam (0.25 mg/kg) when the mice were tested 48 hr after an initial dose; in fact, there was a trend towards enhanced effects in this group. When mice were tested undrugged 24, 48 or 72 hr after a single dose of lorazepam there was an increase in the % time spent on the open arms, compared with controls, that reached significance for the 24 hr group. This indicates a sensitization to the anxiolytic effects of lorazepam, as assessed in the plus-maze. These results demonstrate long-lasting effects of even a single dose of lorazepam.
Collapse
Affiliation(s)
- S E File
- UMDS Division of Pharmacology, University of London, Guy's Hospital, UK
| | | | | |
Collapse
|
8
|
Dingemanse J, Sollie FA, Breimer DD, Danhof M. Pharmacokinetic modeling of the anticonvulsant response of oxazepam in rats using the pentylenetetrazol threshold concentration as pharmacodynamic measure. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1988; 16:203-28. [PMID: 3418496 DOI: 10.1007/bf01062261] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This investigation developed strategies along which the anticonvulsant effect of oxazepam in the rat could be pharmacokinetically modeled. After determination of the pharmacokinetics of oxazepam, which could be described with a two-compartment model (half-lives of distribution and elimination 6 and 52 min, respectively), the drug was administered iv to groups of animals to achieve a serum concentration range of 0.1-2.5 mg/L at 10, 45, and 120 min after administration. At these time points pentylenetetrazol (PTZ) was infused slowly until the first myoclonic jerk occurred. The anticonvulsant response, expressed as the elevation of the serum or brain threshold concentration of PTZ, was modeled versus the serum (both total and free) and brain oxazepam concentration, according to the sigmoid Emax model. The total serum and brain oxazepam EC50 values are about 0.5 mg/L and 1.1 mg/kg, respectively, and Emax 120 mg/L PTZ. No marked differences in pharmacodynamic parameters between the three time groups were found, which indicates that serum and brain are pharmacokinetically indistinguishable from the effect compartment, that there is no (inter)activity of oxazepam metabolites and absence of development of acute tolerance during the investigated time frame. An interfering role of metabolites was also excluded by a direct radioreceptor assay of oxazepam, yielding very similar results as the specific chromatographic assay. It is concluded that the conception-anticonvulsant effect relationship of oxazepam can satisfactorily be described by the sigmoid Emax model, when utilizing the employed experimental strategies.
Collapse
Affiliation(s)
- J Dingemanse
- Center for Bio-Pharmaceutical Sciences, University of Leiden, Sylvius Laboratories, The Netherlands
| | | | | | | |
Collapse
|