1
|
Yong Y, Li J, Yu T, Fang B, Liu X, Yu Z, Ma X, Gooneratne R, El-Atye AA, Ju X. Overexpression of heat shock protein 70 induces apoptosis of intestinal epithelial cells in heat-stressed pigs: A proteomics approach. J Therm Biol 2022; 108:103289. [DOI: 10.1016/j.jtherbio.2022.103289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/11/2022] [Indexed: 12/28/2022]
|
2
|
Strasser A, Vaux DL. Cell Death in the Origin and Treatment of Cancer. Mol Cell 2020; 78:1045-1054. [PMID: 32516599 DOI: 10.1016/j.molcel.2020.05.014] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cell death, or, more specifically, cell suicide, is a process of fundamental importance to human health. Throughout our lives, over a million cells are produced every second. When organismal growth has stopped, to balance cell division, a similar number of cells must be removed. This is achieved by activation of molecular mechanisms that have evolved so that cells can destroy themselves. The first clues regarding the nature of one of these mechanisms came from studying genes associated with cancer, in particular the gene for BCL-2. Subsequent studies revealed that mutations or other defects that inhibit cell death allow cells to accumulate, prevent removal of cells with damaged DNA, and increase the resistance of malignant cells to chemotherapy. Knowledge of this mechanism has allowed development of drugs that kill cancer cells by directly activating the cell death machinery and by synergizing with conventional chemotherapy as well as targeted agents to achieve improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - David L Vaux
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
3
|
Apoptosis Functions in Defense against Infection of Mammalian Cells with Environmental Chlamydiae. Infect Immun 2020; 88:IAI.00851-19. [PMID: 32179584 DOI: 10.1128/iai.00851-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
Apoptotic cell death can be an efficient defense reaction of mammalian cells infected with obligate intracellular pathogens; the host cell dies and the pathogen cannot replicate. While this is well established for viruses, there is little experimental support for such a concept in bacterial infections. All Chlamydiales are obligate intracellular bacteria, and different species infect vastly different hosts. Chlamydia trachomatis infects human epithelial cells; Parachlamydia acanthamoebae replicates in amoebae. We here report that apoptosis impedes growth of P. acanthamoebae in mammalian cells. In HeLa human epithelial cells, P. acanthamoebae infection induced apoptosis, which was inhibited when mitochondrial apoptosis was blocked by codeletion of the mediators of mitochondrial apoptosis, Bax and Bak, by overexpression of Bcl-XL or by deletion of the apoptosis initiator Noxa. Deletion of Bax and Bak in mouse macrophages also inhibited apoptosis. Blocking apoptosis permitted growth of P. acanthamoebae in HeLa cells, as measured by fluorescence in situ hybridization, assessment of genome replication and protein synthesis, and the generation of infectious progeny. Coinfection with C. trachomatis inhibited P. acanthamoebae-induced apoptosis, suggesting that the known antiapoptotic activity of C. trachomatis can also block P. acanthamoebae-induced apoptosis. C. trachomatis coinfection could not rescue P. acanthamoebae growth in HeLa; in coinfected cells, C. trachomatis even suppressed the growth of P. acanthamoebae independently of apoptosis, while P. acanthamoebae surprisingly enhanced the growth of C. trachomatis Our results show that apoptosis can be used in the defense of mammalian cells against obligate intracellular bacteria and suggest that the known antiapoptotic activity of human pathogenic chlamydiae is indeed required to permit their growth in human cells.
Collapse
|
4
|
Qin L, Wang X, Gao Y, Bi K, Wang W. Roles of EvpP in Edwardsiella piscicida-Macrophage Interactions. Front Cell Infect Microbiol 2020; 10:53. [PMID: 32117819 PMCID: PMC7033576 DOI: 10.3389/fcimb.2020.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Edwardsiella piscicida is found to be an important facultative intracellular pathogen with a broad host range. These organisms can replicate and survive within host macrophages to escape from the subversion of the immune defense. E. piscicida-macrophage interaction is very important in determining the outcome of edwardsiellasis. As an effector protein of E. piscicida T6SS, EvpP has been determined to be a very important virulence factor for E. piscicida, although its precise role in E. piscicida-macrophage interactions is not yet clear. In this study, the roles of EvpP in E. piscicida-macrophage interactions were characterized. Here, we constructed the deletion mutants of evpP (ΔevpP) and complementation (ΔevpP-C) by the allelic exchange method. Compared to wild type strain (WT), ΔevpP was found to be attenuated for growth within macrophages. In line with this observation, we found its survival capacity was lower than WT under oxidative and acid stress in vitro, which simulate conditions encountered in host macrophages. Attenuation of ΔevpP also correlated with enhanced activation of macrophages, as reflected by augmented NO production in ΔevpP-treated macrophages. Moreover, compared to WT, ΔevpP induced markedly increased apoptosis of macrophages, characterized by increased Annexin V binding and the activation of cleaved caspase-3. These findings provided strong evidence that EvpP is involved in the process of E. piscicida-macrophage interactions and is required for its survival and replication in macrophages. Thus, we propose that EvpP might be an important factor that controlling the fate of E. piscicida inside macrophages. To further exploring the underlying mechanism of EvpP action, the cDNA library was constructed from E. piscicida-infected macrophages and a yeast two-hybrid screen was performed to search for cellular proteins interacting with EvpP. Ribosomal protein S5 (RPS5) was identified as a target of EvpP. Furthermore, the interaction was validated with co-immunoprecipitation assay. This result implies that the observed effect of EvpP on macrophages might be related to RPS5-mediated regulation, contributing to a better understanding of the mechanisms of EvpP involved in E. piscicida-macrophage interactions.
Collapse
Affiliation(s)
- Lei Qin
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yingli Gao
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Keran Bi
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Weixia Wang
- Jiangsu Key Laboratory of Marine Biotechnology, College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death Differ 2017; 25:13-20. [PMID: 29099481 DOI: 10.1038/cdd.2017.145] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The last 30 years of studying BCL2 have brought cell death research into the molecular era, and revealed its relevance to human pathophysiology. Most, if not all metazoans use an evolutionarily conserved process for cellular self destruction that is controlled and implemented by proteins related to BCL2. We propose the anti-apoptotic BCL2-like and pro-apoptotic BH3-only members of the family arose through duplication and modification of genes for the pro-apoptotic multi-BH domain family members, such as BAX and BAK1. In that way, a cell suicide process that initially evolved as a mechanism for defense against intracellular parasites was then also used in multicellular organisms for morphogenesis and to maintain the correct number of cells in adults by balancing cell production by mitosis.
Collapse
|
6
|
Proteomic analysis of macrophage in response to Edwardsiella tarda-infection. Microb Pathog 2017; 111:86-93. [DOI: 10.1016/j.micpath.2017.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
7
|
Häcker G. Is there, and should there be, apoptosis in bacteria? Microbes Infect 2013; 15:640-4. [DOI: 10.1016/j.micinf.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
|
8
|
Fischer SF, Ludwig H, Holzapfel J, Kvansakul M, Chen L, Huang DCS, Sutter G, Knese M, Häcker G. Modified vaccinia virus Ankara protein F1L is a novel BH3-domain-binding protein and acts together with the early viral protein E3L to block virus-associated apoptosis. Cell Death Differ 2005; 13:109-18. [PMID: 16003387 DOI: 10.1038/sj.cdd.4401718] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Infection with viruses often protects the infected cell against external stimuli to apoptosis. Here we explore the balance of apoptosis induction and inhibition for infection with the modified vaccinia virus Ankara (MVA), using two MVA mutants with experimentally introduced deletions. Deletion of the E3L-gene from MVA transformed the virus from an inhibitor to an inducer of apoptosis. Noxa-deficient mouse embryonic fibroblasts (MEF) were resistant to MVA-DeltaE3L-induced apoptosis. When the gene encoding F1L was deleted from MVA, apoptosis resulted that required Bak or Bax. MVA-DeltaF1L-induced apoptosis was blocked by Bcl-2. When expressed in HeLa cells, F1L blocked apoptosis induced by forced expression of the BH3-only proteins, Bim, Puma and Noxa. Finally, biosensor analysis confirmed direct binding of F1L to BH3 domains. These data describe a molecular framework of how a cell responds to MVA infection by undergoing apoptosis, and how the virus blocks apoptosis by interfering with critical steps of its signal transduction.
Collapse
Affiliation(s)
- S F Fischer
- Institute for Medical Microbiology, Technical University Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
All cells are mortal-i.e. they can be killed if a vital metabolic process is blocked. All cells can engage in a variety of stress responses, such as the heat shock response, when vital processes are slowly, or only partially, inhibited. These stress responses involve detection of the damage, transduction of signals, and activation of a response, such as production of heat shock proteins, proteases, or chaperones. Many cells possess mechanisms whose purpose is to kill the cell. Such physiological cell death mechanisms are used to remove unwanted or damaged cells. Among metazoans, physiological cell death is implemented by a family of cysteine proteases, termed caspases, that exist in a latent state even in healthy cells. Cells killing themselves via activation of their caspases typically exhibit an appearance termed 'apoptosis'. Apoptosis is not only used to remove cells in physiological circumstances, such as during development, but is also a common response to cell stress. Thus many cells will detect damage to, or malfunctioning of, vital metabolic processes, and generate signals that lead to activation of the caspases, and apoptotic death of the cell. This has led to a great deal of confusion, because many drugs and toxins with known biochemical functions have been found to induce apoptosis, and rather than this being interpreted as a stress response, it has often wrongly been assumed that apoptosis is a direct effect of the drug or toxin.
Collapse
Affiliation(s)
- D L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Vic 3050, Australia.
| |
Collapse
|
10
|
Abstract
Cell death by apoptosis is a common response to environmental stimuli and a frequent event in a multicellular organism. Not surprisingly, apoptosis is also found in microbial infections where it may contribute to progression and outcome. Perhaps less predictably, a number of bacteria have also been found to alleviate or even to inhibit apoptosis. Today we are at a point where our in some parts detailed knowledge of the molecular pathway to apoptosis allows us to probe situations in biology for the occurrence of apoptosis and to inquire into mechanisms of apoptosis induction and inhibition. In this brief article we will focus on anti-apoptotic activities exhibited by various bacteria. We will attempt to present the current knowledge on how the contact between mammalian and bacterial cell decrees resistance to apoptosis, what the respective contributions of the two partners are and how this interaction relates to the molecular path to apoptosis.
Collapse
Affiliation(s)
- Georg Häcker
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstr. 9, D-81675, Munich, Germany.
| | | |
Collapse
|
11
|
Schoneboom BA, Catlin KM, Marty AM, Grieder FB. Inflammation is a component of neurodegeneration in response to Venezuelan equine encephalitis virus infection in mice. J Neuroimmunol 2000; 109:132-46. [PMID: 10996215 DOI: 10.1016/s0165-5728(00)00290-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection with the mosquito-transmitted Venezuelan equine encephalitis virus (VEE) causes an acute systemic febrile illness followed by meningoencephalitis. In this communication we characterize the cytokine profile induced in the central nervous system (CNS) in response to virulent or attenuated strains of VEE using RNase Protection Assays. Virulent VEE causes an upregulation of multiple pro-inflammatory genes including inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-alpha). To determine if iNOS and TNF-alpha contribute to the neuropathogenesis of VEE infection, iNOS and TNF receptor knockout mice were used in VEE mortality studies and exhibited extended survival times. Finally, CNS tissue sections labeled for VEE antigen, and adjacent sections double-labeled for an astrocyte marker and apoptosis, revealed that apoptosis of neurons occurs not only in areas of the brain positive for VEE-antigen, but also in areas of astrogliosis. These findings suggest that the inflammatory response, which is in part mediated by iNOS and TNF-alpha, may contribute to neurodegeneration following encephalitic virus infection.
Collapse
Affiliation(s)
- B A Schoneboom
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- A M Verhagen
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
13
|
Affiliation(s)
- D L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital Victoria, Australia.
| | | |
Collapse
|
14
|
Vaux DL. Immunopathology of apoptosis--introduction and overview. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:271-8. [PMID: 9540156 DOI: 10.1007/bf00787224] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D L Vaux
- Walter and Eliza Hall Institute for Medical Research, Post Office Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
15
|
Griffin DE, Hardwick JM. Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 1997; 51:565-92. [PMID: 9343360 DOI: 10.1146/annurev.micro.51.1.565] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alphavirus infection can trigger the host cell to activate its genetically programmed cell death pathway, leading to the morphological features of apoptosis. The ability to activate this death pathway is dependent on both viral and cellular determinants. The more virulent strains of alphavirus induce apoptosis with increased efficiency both in animal models and in some cultured cells. Although the immune system clearly plays a central role in clearing virus, the importance of other cellular factors in determining the outcome of virus infections are evident from the observation that mature neurons are better able to resist alphavirus-induced apoptosis than immature neurons are, both in culture and in mouse brains. These findings are consistent with the age-dependent susceptibility to disease seen in animals. Cellular genes that are known to regulate the cell death pathway can modulate the outcome of alphavirus infection in cultured cells and perhaps in animals. The cellular bax and bak genes, which are known to accelerate cell death, also accelerate virus-induced apoptosis. In contrast, inhibitors of apoptotic cell death such as bcl-2 suppress virus-induced apoptosis, which can facilitate a persistent virus infection. Thus, the balance of cellular factors that regulate cell death may be critical in virus infections. Additional viral factors also contribute to this balance. The more virulent strains of alphavirus have acquired the ability to induce apoptosis in mature neurons, while mature neurons are resistant to cell death upon infection with less virulent strains. Here we discuss a variety of cellular and viral factors that modulate the outcome of virus infection.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
16
|
Abstract
Apoptosis, often synonymously used with the term 'programmed cell death', is an active, genetically controlled process that removes unwanted or damaged cells. Suppression, overexpression or mutation of a number of genes which orchestrate the apoptotic process are associated with disease. The diseases in which apoptosis has been implicated can be grouped into 2 broad groups: those in which there is increased cell survival (i.e. associated with inhibition of apoptosis) and those in which there is excess cell death (where apoptosis is overactive). Diseases in which there is an excessive accumulation of cells include cancer, autoimmune disorders and viral infections. Deprivation of trophic factors is known to induce apoptosis in cells dependent on them for survival. This fact has been exploited in the use of antiandrogens or antiestrogens in the management of prostate or breast cancer. Haemopoietic growth factors like granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin-3 prevent apoptosis in target cells and modulation of levels of these factors has been tried in the prevention of chemotherapy-induced myelosuppression. Until recently, it was thought that cytotoxic drugs killed target cells directly by interfering with some life-maintaining function. However, of late, it has been shown that exposure to several cytotoxic drugs with disparate mechanisms of action induces apoptosis in both malignant and normal cells. Physiological regulation of cell death is essential for the removal of potentially autoreactive lymphocytes during development and the removal of excess cells after the completion of an immune response. Recent work has clearly demonstrated that dysregulation of apoptosis may underlie the pathogenesis of autoimmune diseases by allowing abnormal autoreactive lymphocytes to survive. AIDS and neurodegenerative disorders like Alzheimer's or Parkinson's disease represent the most widely studied group of disorders where an excess of apoptosis has been implicated. Amyotrophic lateral sclerosis, retinitis pigmentosa, epilepsy and alcoholic brain damage are other neurological disorders in which apoptosis has been implicated. Apoptosis has been reported to occur in conditions characterised by ischaemia, e.g. myocardial infarction and stroke. The liver is a site where apoptosis occurs normally. This process has also been implicated in a number of liver disorders including obstructive jaundice. Hepatic damage due to toxins and drugs is also associated with apoptosis in hepatocytes. Apoptosis has also been identified as a key phenomenon in some diseases of the kidney, i.e. polycystic kidney, as well as in disorders of the pancreas like alcohol-induced pancreatitis and diabetes.
Collapse
Affiliation(s)
- U Thatte
- Department of Pharmacology, Seth GS Medical College, Mumbai, India.
| | | |
Collapse
|
17
|
Abstract
Apoptosis, or physiological cell death, is the way in which unwanted cells are removed. The majority of cells formed during haemopoiesis are destined to die by apoptosis before they are fully differentiated, and homeostasis of cell number is maintained by a balance between mitosis and apoptosis. Many haematological malignancies are associated with changes in the number of cells undergoing apoptosis, which may be a direct or an indirect effect. Genetic mutations that prevent cell death cause cells to accumulate and can eventually lead to malignancy. Alternatively, oncogenic mutations that lead to increased cell production can indirectly cause a decrease in apoptosis in some populations and an increase in others. Chemotherapeutic drugs may kill cells directly, or indirectly by inducing apoptosis as a stress response. Therapeutic strategies are evolving to increase the propensity of malignant cells to die by either means and to mitigate side effects by reducing apoptosis in non-malignant cells.
Collapse
Affiliation(s)
- P G Ekert
- Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
18
|
Abstract
All multicellular organisms have mechanisms for killing their own cells, and use physiological cell death for defence, development, homeostasis, and aging. Apoptosis is a morphologically recognizable form of cell death that is implemented by a mechanism that has been conserved throughout evolution from nematode to man. Thus homologs of the genes that implement cell death in nematodes also do so in mammals, but in mammals the process is considerably more complex, involving multiple isoforms of the components of the cell death machinery. In some circumstances this allows independent regulation of pathways that converge upon a common end point. A molecular understanding of this mechanism may allow design of therapies that either enhance or block cell death at will.
Collapse
Affiliation(s)
- D L Vaux
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
19
|
Abstract
Unwanted cells are removed by physiological cell death processes that are highly conserved throughout the animal kingdom. Physiological cell death plays an important role in development, tissue homeostasis and defence against viral infection and mutation. This review describes the molecular components that implement this process, the relevance of these to a variety of human diseases, and discusses the potential for novel therapies based on our understanding of them.
Collapse
Affiliation(s)
- A G Uren
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|