1
|
Niknafs S, Meijer MMY, Khaskheli AA, Roura E. In ovo delivery of oregano essential oil activated xenobiotic detoxification and lipid metabolism at hatch in broiler chickens. Poult Sci 2024; 103:103321. [PMID: 38100943 PMCID: PMC10762474 DOI: 10.1016/j.psj.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
In ovo interventions are used to improve embryonic development and robustness of chicks. The objective of this study was to identify the optimal dose for in ovo delivery of oregano essential oil (OEO), and to investigate metabolic impacts. Broiler chickens Ross 308 fertile eggs were injected with 7 levels of OEO (0, 5, 10, 20, 30, 40, and 50 µL) into the amniotic fluid at embryonic d 17.5 (E17.5) (n = 48). Chick quality was measured by navel score (P < 0.05) and/or hatchability rates (P < 0.01) were significantly decreased at doses at or above 10 or 20 µL/egg, respectively, indicating potential toxicity. However, no effects were observed at the 5 µL/egg, suggesting that compensatory mechanisms were effective to maintain homeostasis in the developing embryo. To pursue a better understanding of these mechanisms, transcriptomic analyses of the jejunum were performed comparing the control injected with saline and the group injected with 5 µL of OEO. The transcriptomic analyses identified that 167 genes were upregulated and 90 were downregulated in the 5 µL OEO compared to the control group injected with saline (P < 0.01). Functional analyses of the differentially expressed genes (DEG) showed that metabolic pathways related to the epoxygenase cytochrome P450 pathway associated with xenobiotic catabolic processes were significantly upregulated (P < 0.05). In addition, long-chain fatty acid metabolism associated with ATP binding transporters was also upregulated in the OEO treated group (P < 0.05). The results indicated that low doses of OEO in ovo have the potential to increase lipid metabolism in late stages (E17.5) of embryonic development. In conclusion, in ovo delivery of 5 µL OEO did not show any negative impact on hatchability and chick quality. OEO elevated expression of key enzymes and receptors involved in detoxification pathways and lipid metabolism in the jejunum of hatchling broiler chicks.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Mila M Y Meijer
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Asad A Khaskheli
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
| |
Collapse
|
2
|
Kühn S, Williams ME, Dercksen M, Sass JO, van der Sluis R. The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA - an in-silico and in vitro validation. Comput Struct Biotechnol J 2023; 21:1236-1248. [PMID: 36817957 PMCID: PMC9932296 DOI: 10.1016/j.csbj.2023.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Isovaleric acidemia (IVA), due to isovaleryl-CoA dehydrogenase (IVD) deficiency, results in the accumulation of isovaleryl-CoA, isovaleric acid and secondary metabolites. The increase in these metabolites decreases mitochondrial energy production and increases oxidative stress. This contributes to the neuropathological features of IVA. A general assumption in the literature exists that glycine N-acyltransferase (GLYAT) plays a role in alleviating the symptoms experienced by IVA patients through the formation of N-isovalerylglycine. GLYAT forms part of the phase II glycine conjugation pathway in the liver and detoxifies excess acyl-CoA's namely benzoyl-CoA. However, very few studies support GLYAT as the enzyme that conjugates isovaleryl-CoA to glycine. Furthermore, GLYATL1, a paralogue of GLYAT, conjugates phenylacetyl-CoA to glutamine. Therefore, GLYATL1 might also be a candidate for the formation of N-isovalerylglycine. Based on the findings from the literature review, we proposed that GLYAT or GLYATL1 can form N-isovalerylglycine in IVA patients. To test this hypothesis, we performed an in-silico analysis to determine which enzyme is more likely to conjugate isovaleryl-CoA with glycine using AutoDock Vina. Thereafter, we performed in vitro validation using purified enzyme preparations. The in-silico and in vitro findings suggested that both enzymes could form N-isovaleryglycine albeit at lower affinities than their preferred substrates. Furthermore, an increase in glycine concentration does not result in an increase in N-isovalerylglycine formation. The results from the critical literature appraisal, in-silico, and in vitro validation, suggest the importance of further investigating the reaction kinetics and binding behaviors between these substrates and enzymes in understanding the pathophysiology of IVA.
Collapse
Affiliation(s)
- Stefan Kühn
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Monray E. Williams
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Marli Dercksen
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa,Corresponding author.
| |
Collapse
|
3
|
Hala D, Petersen LH, Huggett DB, Puchowicz MA, Brunengraber H, Zhang GF. Overcompensation of CoA Trapping by Di(2-ethylhexyl) Phthalate (DEHP) Metabolites in Livers of Wistar Rats. Int J Mol Sci 2021; 22:ijms222413489. [PMID: 34948286 PMCID: PMC8709406 DOI: 10.3390/ijms222413489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in various industrial and household plastic products, ensuring widespread human exposures. Its routine detection in human bio-fluids and the propensity of its monoester metabolite to activate peroxisome proliferator activated receptor-α (PPARα) and perturb lipid metabolism implicate it as a metabolic disrupter. In this study we evaluated the effects of DEHP exposure on hepatic levels of free CoA and various CoA esters, while also confirming the metabolic activation to CoA esters and partial β-oxidation of a DEHP metabolite (2-ethyhexanol). Male Wistar rats were exposed via diet to 2% (w/w) DEHP for fourteen-days, following which hepatic levels of free CoA and various CoA esters were identified using liquid chromatography-mass spectrometry. DEHP exposed rats showed significantly elevated free CoA and increased levels of physiological, DEHP-derived and unidentified CoA esters. The physiological CoA ester of malonyl-CoA and DEHP-derived CoA ester of 3-keto-2-ethylhexanoyl-CoA were the most highly elevated, at eighteen- and ninety eight-times respectively. We also detected sixteen unidentified CoA esters which may be derivative of DEHP metabolism or induction of other intermediary metabolism metabolites. Our results demonstrate that DEHP is a metabolic disrupter which affects production and sequestration of CoA, an essential cofactor of oxidative and biosynthetic reactions.
Collapse
Affiliation(s)
- David Hala
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Department of Marine Biology, Texas A&M at Galveston, Galveston, TX 77554, USA
- Correspondence: ; Tel.: +1-409-740-4535
| | - Lene H. Petersen
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Department of Marine Biology, Texas A&M at Galveston, Galveston, TX 77554, USA
| | - Duane B. Huggett
- Department of Biology, University of North Texas, Denton, TX 76203, USA; (L.H.P.); (D.B.H.)
- Boehringer Ingelheim Animal Health, Athens, GA 30601, USA
| | - Michelle A. Puchowicz
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; (M.A.P.); (H.B.)
- Department of Pediatrics, The University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; (M.A.P.); (H.B.)
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27705, USA;
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Cholico GN, Fling RR, Zacharewski NA, Fader KA, Nault R, Zacharewski TR. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci Rep 2021; 11:15689. [PMID: 34344994 PMCID: PMC8333094 DOI: 10.1038/s41598-021-95214-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).
Collapse
Affiliation(s)
- Giovan N Cholico
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Functional Characterisation of Three Glycine N-Acyltransferase Variants and the Effect on Glycine Conjugation to Benzoyl-CoA. Int J Mol Sci 2021; 22:ijms22063129. [PMID: 33803916 PMCID: PMC8003330 DOI: 10.3390/ijms22063129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
The glycine conjugation pathway in humans is involved in the metabolism of natural substrates and the detoxification of xenobiotics. The interactions between the various substrates in this pathway and their competition for the pathway enzymes are currently unknown. The pathway consists of a mitochondrial xenobiotic/medium-chain fatty acid: coenzyme A (CoA) ligase (ACSM2B) and glycine N-acyltransferase (GLYAT). The catalytic mechanism and substrate specificity of both of these enzymes have not been thoroughly characterised. In this study, the level of evolutionary conservation of GLYAT missense variants and haplotypes were analysed. From these data, haplotype variants were selected (156Asn > Ser, [17Ser > Thr,156Asn > Ser] and [156Asn > Ser,199Arg > Cys]) in order to characterise the kinetic mechanism of the enzyme over a wide range of substrate concentrations. The 156Asn > Ser haplotype has the highest frequency and the highest relative enzyme activity in all populations studied, and hence was used as the reference in this study. Cooperative substrate binding was observed, and the kinetic data were fitted to a two-substrate Hill equation. The coding region of the GLYAT gene was found to be highly conserved and the rare 156Asn > Ser,199Arg > Cys variant negatively affected the relative enzyme activity. Even though the 156Asn > Ser,199Arg > Cys variant had a higher affinity for benzoyl-CoA (s0.5,benz = 61.2 µM), kcat was reduced to 9.8% of the most abundant haplotype 156Asn > Ser (s0.5,benz = 96.6 µM), while the activity of 17Ser > Thr,156Asn > Ser (s0.5,benz = 118 µM) was 73% of 156Asn > Ser. The in vitro kinetic analyses of the effect of the 156Asn > Ser,199Arg > Cys variant on human GLYAT enzyme activity indicated that individuals with this haplotype might have a decreased ability to metabolise benzoate when compared to individuals with the 156Asn > Ser variant. Furthermore, the accumulation of acyl-CoA intermediates can inhibit ACSM2B leading to a reduction in mitochondrial energy production.
Collapse
|
6
|
Watanabe H, Paxton RL, Tolerico MR, Nagalakshmi VK, Tanaka S, Okusa MD, Goto S, Narita I, Watanabe S, Sequeira-Lοpez MLS, Gomez RA. Expression of Acsm2, a kidney-specific gene, parallels the function and maturation of proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F603-F611. [PMID: 32830538 DOI: 10.1152/ajprenal.00348.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acyl-CoA synthetase medium-chain family member 2 (Acsm2) gene was first identified and cloned by our group as a kidney-specific "KS" gene. However, its expression pattern and function remain to be clarified. In the present study, we found that the Acsm2 gene was expressed specifically and at a high level in normal adult kidneys. Expression of Acsm2 in kidneys followed a maturational pattern: it was low in newborn mice and increased with kidney development and maturation. In situ hybridization and immunohistochemistry revealed that Acsm2 was expressed specifically in proximal tubular cells of adult kidneys. Data from the Encyclopedia of DNA Elements database revealed that the Acsm2 gene locus in the mouse has specific histone modifications related to the active transcription of the gene exclusively in kidney cells. Following acute kidney injury, partial unilateral ureteral obstruction, and chronic kidney diseases, expression of Acsm2 in the proximal tubules was significantly decreased. In human samples, the expression pattern of ACSM2A, a homolog of mouse Acsm2, was similar to that in mice, and its expression decreased with several types of renal injuries. These results indicate that the expression of Acsm2 parallels the structural and functional maturation of proximal tubular cells. Downregulation of its expression in several models of kidney disease suggests that Acms2 may serve as a novel marker of proximal tubular injury and/or dysfunction.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert L Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Matthew R Tolerico
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Vidya K Nagalakshmi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Shizuoka, Japan
| | - Maria Luisa S Sequeira-Lοpez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
7
|
Boldarine VT, Pedroso AP, Brandão-Teles C, LoTurco EG, Nascimento CMO, Oyama LM, Bueno AA, Martins-de-Souza D, Ribeiro EB. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. Am J Physiol Endocrinol Metab 2020; 319:E427-E437. [PMID: 32663100 DOI: 10.1152/ajpendo.00094.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Menopause is often accompanied by visceral obesity. With the aim of exploring the consequences of ovarian failure on visceral fat, we evaluated the effects of ovariectomy and estrogen replacement on the proteome/phosphoproteome and on the fatty acid profile of the retroperitoneal adipose depot (RAT) of rats. Eighteen 3-mo-old female Wistar rats were either ovariectomized or sham operated and fed with standard chow for 3 mo. A subgroup of ovariectomized rats received estradiol replacement. RAT samples were analyzed with data-independent acquisitions LC-MS/MS, and pathway analysis was performed with the differentially expressed/phosphorylated proteins. RAT lipid profile was analyzed by gas chromatography. Ovariectomy induced high adiposity and insulin resistance and promoted alterations in protein expression and phosphorylation. Pathway analysis showed that five pathways were significantly affected by ovariectomy, namely, metabolism of lipids (including fatty acid metabolism and mitochondrial fatty acid β-oxidation), fatty acyl-CoA biosynthesis, innate immune system (including neutrophil degranulation), metabolism of vitamins and cofactors, and integration of energy metabolism (including ChREBP activates metabolic gene expression). Lipid profile analysis showed increased palmitic and palmitoleic acid content. The analysis of the data indicated that ovariectomy favored lipogenesis whereas it impaired fatty acid oxidation and induced a proinflammatory state in the visceral adipose tissue. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.
Collapse
Affiliation(s)
- Valter T Boldarine
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda P Pedroso
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson G LoTurco
- Divisão de Urologia e Reprodução Humana, Departamento de Cirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudia M O Nascimento
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allain A Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Eliane B Ribeiro
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Yang H, Zhao C, Tang MC, Wang Y, Wang SP, Allard P, Furtos A, Mitchell GA. Inborn errors of mitochondrial acyl-coenzyme a metabolism: acyl-CoA biology meets the clinic. Mol Genet Metab 2019; 128:30-44. [PMID: 31186158 DOI: 10.1016/j.ymgme.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/30/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022]
Abstract
The last decade saw major advances in understanding the metabolism of Coenzyme A (CoA) thioesters (acyl-CoAs) and related inborn errors (CoA metabolic diseases, CAMDs). For diagnosis, acylcarnitines and organic acids, both derived from acyl-CoAs, are excellent markers of most CAMDs. Clinically, each CAMD is unique but strikingly, three main patterns emerge: first, systemic decompensations with combinations of acidosis, ketosis, hypoglycemia, hyperammonemia and fatty liver; second, neurological episodes, particularly acute "stroke-like" episodes, often involving the basal ganglia but sometimes cerebral cortex, brainstem or optic nerves and third, especially in CAMDs of long chain fatty acyl-CoA metabolism, lipid myopathy, cardiomyopathy and arrhythmia. Some patients develop signs from more than one category. The pathophysiology of CAMDs is not precisely understood. Available data suggest that signs may result from CoA sequestration, toxicity and redistribution (CASTOR) in the mitochondrial matrix has been suggested to play a role. This predicts that most CAMDs cause deficiency of CoA, limiting mitochondrial energy production, and that toxic effects from the abnormal accumulation of acyl-CoAs and from extramitochondrial functions of acetyl-CoA may also contribute. Recent progress includes the following. (1) Direct measurements of tissue acyl-CoAs in mammalian models of CAMDs have been related to clinical features. (2) Inborn errors of CoA biosynthesis were shown to cause clinical changes similar to those of inborn errors of acyl-CoA degradation. (3) CoA levels in cells can be influenced pharmacologically. (4) Roles for acetyl-CoA are increasingly identified in all cell compartments. (5) Nonenzymatic acyl-CoA-mediated acylation of intracellular proteins occurs in mammalian tissues and is increased in CAMDs.
Collapse
Affiliation(s)
- Hao Yang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Chen Zhao
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada; College of Animal Science and Technology, Northwest A&F University, China
| | | | - Youlin Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Shu Pei Wang
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | | | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
9
|
Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B. Mol Genet Genomics 2018; 293:1279-1292. [PMID: 29948332 DOI: 10.1007/s00438-018-1460-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Benzoate (found in milk and widely used as preservative), salicylate (present in fruits and the active component of aspirin), dietary polyphenols produced by gut microbiota, metabolites from organic acidemias, and medium-chain fatty acids (MCFAs) are all metabolised/detoxified by the glycine conjugation pathway. Xenobiotics are first activated to an acyl-CoA by the mitochondrial xenobiotic/medium-chain fatty acid: CoA ligases (ACSMs) and subsequently conjugated to glycine by glycine N-acyltransferase (GLYAT). The MCFAs are activated to acyl-CoA by the ACSMs before entering mitochondrial β-oxidation. This two-step enzymatic pathway has, however, not been thoroughly investigated and the biggest gap in the literature remains the fact that studies continuously characterise the pathway as a one-step reaction. There are no studies available on the interaction/competition of the various substrates involved in the pathway, whilst very little research has been done on the ACSM ligases. To identify variants/haplotypes that should be characterised in future detoxification association studies, this study assessed the naturally observed sequence diversity and protein expression variation of ACSM2A and ACSM2B. The allelic variation, haplotype diversity, Tajima's D values, and phylogenetic analyses indicated that ACSM2A and ACSM2B are highly conserved. This confirmed an earlier hypothesis that the glycine conjugation pathway is highly conserved and essential for life as it maintains the CoA and glycine homeostasis in the liver mitochondria. The protein expression analyses showed that ACSM2A is the predominant transcript in liver. Future studies should investigate the effect of the variants identified in this study on the substrate specificity of these proteins.
Collapse
|
10
|
van Eunen K, Volker-Touw CML, Gerding A, Bleeker A, Wolters JC, van Rijt WJ, Martines ACMF, Niezen-Koning KE, Heiner RM, Permentier H, Groen AK, Reijngoud DJ, Derks TGJ, Bakker BM. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders. BMC Biol 2016; 14:107. [PMID: 27927213 PMCID: PMC5142382 DOI: 10.1186/s12915-016-0327-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/11/2016] [Indexed: 12/02/2022] Open
Abstract
Background Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. Results First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. Conclusion We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen van Eunen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands
| | - Catharina M L Volker-Touw
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Present address: Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Analytical Biochemistry and Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Willemijn J van Rijt
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anne-Claire M F Martines
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rebecca M Heiner
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hjalmar Permentier
- Analytical Biochemistry and Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands.,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. .,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,, PO Box 196, Internal ZIP code EA12, NL-9700 AD, Groningen, The Netherlands.
| |
Collapse
|
11
|
van der Sluis R, Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin Drug Metab Toxicol 2016; 12:1169-79. [PMID: 27351777 DOI: 10.1080/17425255.2016.1206888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. AREAS COVERED This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. EXPERT OPINION Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.
Collapse
Affiliation(s)
- Rencia van der Sluis
- a Centre for Human Metabolomics, Biochemistry Division , North-West University , Potchefstroom , South Africa
| | - Elardus Erasmus
- a Centre for Human Metabolomics, Biochemistry Division , North-West University , Potchefstroom , South Africa
| |
Collapse
|
12
|
van der Sluis R, Badenhorst CPS, Erasmus E, van Dyk E, van der Westhuizen FH, van Dijk AA. Conservation of the coding regions of the glycine N-acyltransferase gene further suggests that glycine conjugation is an essential detoxification pathway. Gene 2015; 571:126-34. [PMID: 26149650 DOI: 10.1016/j.gene.2015.06.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/20/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Thorough investigation of the glycine conjugation pathway has been neglected. No defect of the glycine conjugation pathway has been reported and this could reflect the essential role of glycine conjugation in hepatic metabolism. Therefore, we hypothesised that genetic variation in the open reading frame (ORF) of the GLYAT gene should be low and that deleterious alleles would be found at low frequencies. This hypothesis was investigated by analysing the genetic variation of the human GLYAT ORF using data available in public databases. We also sequenced the GLYAT ORF of a small cohort of South African Afrikaner Caucasian individuals. In total, data from 1537 individuals was analysed. The two most prominent GLYAT haplotypes in all populations analysed, were S156 (70%) and T17S156 (20%). The S156C199 and S156H131 haplotypes, which have a negative effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. In the Afrikaner Caucasian cohort a novel Q61L SNP occurring at a high frequency (12%) was detected. The results of this study indicated that the GLYAT ORF is highly conserved and supported the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. These findings emphasise the importance of future investigations to determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics.
Collapse
Affiliation(s)
- Rencia van der Sluis
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Christoffel P S Badenhorst
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Elardus Erasmus
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | - Etresia van Dyk
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa
| | | | - Alberdina A van Dijk
- Centre for Human Metabonomics, Biochemistry Division, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
13
|
Badenhorst CPS, Erasmus E, van der Sluis R, Nortje C, van Dijk AA. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab Rev 2014; 46:343-61. [PMID: 24754494 DOI: 10.3109/03602532.2014.908903] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A number of endogenous and xenobiotic organic acids are conjugated to glycine, in animals ranging from mosquitoes to humans. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, the recently proposed glycine deportation hypothesis states that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilized as neurotransmitters in the central nervous systems of animals. This hypothesis is based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. In this review it will be argued that the major role of glycine conjugation is to dispose of the end products of phenylpropionate metabolism. Furthermore, glucuronidation, which occurs in the endoplasmic reticulum, would not be ideal for the detoxification of free benzoate, which has been shown to accumulate in the mitochondrial matrix. Glycine conjugation, however, prevents accumulation of benzoic acid in the mitochondrial matrix by forming hippurate, a less lipophilic conjugate that can be more readily transported out of the mitochondria. Finally, it will be explained that the glycine conjugation of benzoate, a commonly used preservative, exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated.
Collapse
|
14
|
Expression, purification, and characterization of mouse glycine N-acyltransferase in Escherichia coli. Protein Expr Purif 2014; 97:23-8. [PMID: 24576660 DOI: 10.1016/j.pep.2014.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 11/24/2022]
Abstract
Glycine N-acyltransferase (GLYAT) is a phase II metabolic detoxification enzyme for exogenous (xenobiotic) and endogenous carboxylic acids; consisting of fatty acids, benzoic acid, and salicylic acid. GLYAT catalyzes the formation of hippurate (N-benzoylglycine) from the corresponding glycine and benzoyl-CoA. Herein, we report the successful expression, purification, and characterization of recombinant mouse GLYAT (mGLYAT). A 34kDa mGLYAT protein was expressed in Escherichia coli and purified to homogeneity by nickel affinity chromatography to a final yield of 2.5mg/L culture. Characterization for both amino donors and amino acceptors were completed, with glycine serving as the best amino donor substrate, (kcat/Km)app=(5.2±0.20)×10(2)M(-1)s(-1), and benzoyl-CoA serving as the best the amino acceptor substrate, (kcat/Km)app=(4.5±0.27)×10(5)M(-1)s(-1). Our data demonstrate that mGLYAT will catalyzed the chain length specific (C2-C6) formation of N-acylglycines. The steady-state kinetic constants determined for recombinant mGLYAT for the substrates benzoyl-CoA and glycine, were shown to be consistent with other reported species (rat, human, bovine, ovine, and rhesus monkey). The successful recombinant expression and purification of mGLYAT can lead to solve unanswered questions associated with this enzyme, consisting of what is the chemical mechanism and what catalytic residues are essential for the how this phase II metabolic detoxification enzyme conjugates glycine to xenobiotic and endogenous carboxylic acids.
Collapse
|
15
|
Identification of cholesteryl ester of ferulic acid in human plasma by mass spectrometry. J Chromatogr A 2013; 1301:162-8. [DOI: 10.1016/j.chroma.2013.05.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022]
|
16
|
|
17
|
Badenhorst CPS, van der Sluis R, Erasmus E, van Dijk AA. Glycine conjugation: importance in metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation. Expert Opin Drug Metab Toxicol 2013; 9:1139-53. [PMID: 23650932 DOI: 10.1517/17425255.2013.796929] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.
Collapse
|
18
|
Grillo MP, Tadano Lohr M, Wait JCM. Metabolic Activation of Mefenamic Acid Leading to Mefenamyl-S-Acyl-Glutathione Adduct Formation In Vitro and In Vivo in Rat. Drug Metab Dispos 2012; 40:1515-26. [DOI: 10.1124/dmd.112.046102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Watkins PA, Ellis JM. Peroxisomal acyl-CoA synthetases. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1411-20. [PMID: 22366061 DOI: 10.1016/j.bbadis.2012.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 01/26/2023]
Abstract
Peroxisomes carry out many essential lipid metabolic functions. Nearly all of these functions require that an acyl group-either a fatty acid or the acyl side chain of a steroid derivative-be thioesterified to coenzyme A (CoA) for subsequent reactions to proceed. This thioesterification, or "activation", reaction, catalyzed by enzymes belonging to the acyl-CoA synthetase family, is thus central to cellular lipid metabolism. However, despite our rather thorough understanding of peroxisomal metabolic pathways, surprisingly little is known about the specific peroxisomal acyl-CoA synthetases that participate in these pathways. Of the 26 acyl-CoA synthetases encoded by the human and mouse genomes, only a few have been reported to be peroxisomal, including ACSL4, SLC27A2, and SLC27A4. In this review, we briefly describe the primary peroxisomal lipid metabolic pathways in which fatty acyl-CoAs participate. Then, we examine the evidence for presence and functions of acyl-CoA synthetases in peroxisomes, much of which was obtained before the existence of multiple acyl-CoA synthetase isoenzymes was known. Finally, we discuss the role(s) of peroxisome-specific acyl-CoA synthetase isoforms in lipid metabolism.
Collapse
|
20
|
Jung JY, Hwang GS. Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2011. [DOI: 10.6564/jkmrs.2011.15.1.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Feng J, Sun J, Wang MZ, Zhang Z, Kim ST, Zhu Y, Sun J, Xu J. Compilation of a comprehensive gene panel for systematic assessment of genes that govern an individual’s drug responses. Pharmacogenomics 2010; 11:1403-25. [DOI: 10.2217/pgs.10.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: Polymorphisms of genes involved in the pharmacokinetic and pharmacodynamic processes underlie the divergent drug responses among individuals. Despite some successes in identifying these polymorphisms, the candidate gene approach suffers from insufficient gene coverage whereas the genome-wide association approach is limited by less than ideal coverage of SNPs in some important genes. To expand the potential of the candidate approach, we aim to delineate a comprehensive network of drug-response genes for in-depth genetic studies. Materials & methods: Pharmacologically important genes were extracted from various sources including literatures and web resources. These genes, along with their homologs and regulatory miRNAs, were organized based on their pharmacological functions and weighted by literature evidence and confidence levels. Their coverage was evaluated by analyzing three commercial SNP chips commonly used for genome-wide association studies: Affymetrix SNP array 6.0, Illumina HumanHap1M and Illumina Omni. Results: A panel of drug-response genes was constructed, which contains 923 pharmacokinetic genes, 703 pharmacodynamic genes and 720 miRNAs. There are only 16.7% of these genes whose all known SNPs can be directly or indirectly (r2 > 0.8) captured by the SNP chips with coverage of more than 80%. This is possibly because these SNPs chips have notably poor performance over rare SNPs and miRNA genes. Conclusion: We have compiled a panel of candidate genes that may be pharmacologically important. Using this knowledgebase, we are able to systematically evaluate genes and their variants that govern an individual’s response to a given pharmaceutical therapy. This approach can serve as a necessary complement to genome-wide associations.
Collapse
Affiliation(s)
- Junjie Feng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael Zhuo Wang
- Division of Pharmacotherapy & Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Zheng Zhang
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Seong-Tae Kim
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yi Zhu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jishan Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
22
|
Vickery S, Dodds PF. Incorporation of xenobiotic carboxylic acids into lipids by cultured 3T3-L1 adipocytes. Xenobiotica 2008; 34:1025-42. [PMID: 15801546 DOI: 10.1080/02772240400015248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study was established to assess the potential for a variety of xenobiotic aromatic carboxylic acids to be incorporated into glycerolipids. The 14C-labelled xenobiotic acids were included in incubations of cultured 3T3-L1 adipocytes under defined conditions. Lipids were extracted and identified by TLC and radioscanning. Ibuprofen, 4-(2,4-dichlorophenoxy)-butanoic acid (2,4-DB), 4-(2-methyl-4-chlorophenoxy)-butanoic acid (MCPB) and 2-(2-methyl-4-chlorophenoxy)-propanoic acid (MCPP) (all 0.5 mM) were incorporated into lipid extracts at rates of 220, 227, 199 and 21 pmol microg(-1) phospholipid/h, respectively. 2,4-Dichlorophenoxyacetic acid (2,4-D), indomethacin, naproxen and fluroxypyr were incorporated at rates lower than MCPP or not at all. The incorporation of acids was first order to at least 1 mM acid (except MCPB: 300 microM). Triacylglycerol analogues were the major products with incorporation into diacylglycerol and phosphatidylcholine also observed. After digestion with pancreatic lipase, ibuprofen-containing triacylglycerol was unusual in that the main product was the monoacylglycerol analogue, suggesting that esterification had been at the sn-2 position. Incubation with cultured 3T3-L1 adipocytes is a useful and easy method to assess whether xenobiotic compounds can be incorporated into glycerolipids; of eight acids assessed, four (of which three have not previously been reported) were shown to form xenobiotic triacylglycerols.
Collapse
Affiliation(s)
- S Vickery
- Department of Agricultural Sciences, Imperial College London, Wye Campus, Wye, Ashford TN25 5AH, UK
| | | |
Collapse
|
23
|
Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP. Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol 2008; 4:425-38. [PMID: 18433345 DOI: 10.1517/17425255.4.4.425] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carboxylic acids constitute a large and heterogeneous class of both endogenous and xenobiotic compounds. A number of carboxylic acid drugs have been associated with adverse reactions, linked to the metabolic activation of the carboxylic acid moiety of the compounds, i.e., formation of acyl-glucuronides and acyl-CoA thioesters. OBJECTIVE The objective is to give an overview of the current knowledge on metabolic activation of carboxylic acids and how such metabolites may play a role in adverse reactions and toxicity. METHODS Literature concerning the formation and disposition of acyl glucuronides and acyl-CoA thioesters was searched. Also included were papers on the chemical reactivity of acyl glutathione-thioesters, and literature concerning possible links between metabolic activation of carboxylic acids and reported cellular and clinical effects. RESULTS/CONCLUSION This review demonstrates that metabolites of carboxylic acid drugs must be considered chemically reactive, and that the current knowledge about metabolic activation of this compound class can be a good starting-point for further studies on the consequences of chemically reactive metabolites.
Collapse
Affiliation(s)
- Christian Skonberg
- University of Copenhagen, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I. Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab 2008; 94:4-15. [PMID: 18337138 DOI: 10.1016/j.ymgme.2007.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 01/23/2023]
Abstract
Coenzyme A (CoA) sequestration, toxicity or redistribution (CASTOR) is predicted to occur in many hereditary and acquired conditions in which the degradation of organic acyl esters of CoA is impaired. The resulting accumulation of CoA esters and reduction of acetyl-CoA and free CoA (CoASH) will then trigger a cascade of reactions leading to clinical disease. Most conditions detected by expanded neonatal screening are CASTOR diseases. We review acyl-CoA metabolism, including CoASH synthesis, transesterification of acyl-CoAs to glycine, glutamate or l-carnitine and hydrolysis of CoA esters. Because acyl-CoAs do not cross biological membranes, their main toxicity is intracellular, primarily within mitochondria. Treatment measures directed towards removal of circulating metabolites do not address this central problem of intracellular acyl-CoA accumulation. Treatments usually involve the restriction of dietary precursors and administration of agents like l-carnitine and glycine, which can accept the transfer of acyl groups from acyl-CoA, liberating CoASH. Many hereditary CASTOR patients are chronically ill, with persistent symptoms and continuously abnormal metabolites in blood and urine despite good compliance with treatment. Conversely, asymptomatic patients are also common in hereditary CASTOR conditions. Future challenges include the understanding of pathophysiologic mechanisms in CASTOR diseases, the discovery of reliable predictors of outcome in individual patients and the establishment of therapeutic trials with sufficient numbers of patients to permit solid therapeutic conclusions.
Collapse
Affiliation(s)
- Grant A Mitchell
- Division of Medical Genetics, CHU Sainte-Justine, 3175 Côte Sainte-Catherine Road, Montréal, Que., Canada H1R 2A6.
| | | | | | | | | | | |
Collapse
|
25
|
Bhaumik P, Schmitz W, Hassinen A, Hiltunen JK, Conzelmann E, Wierenga RK. The catalysis of the 1,1-proton transfer by alpha-methyl-acyl-CoA racemase is coupled to a movement of the fatty acyl moiety over a hydrophobic, methionine-rich surface. J Mol Biol 2007; 367:1145-61. [PMID: 17320106 DOI: 10.1016/j.jmb.2007.01.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Alpha-methylacyl-CoA racemases are essential enzymes for branched-chain fatty acid metabolism. Their reaction mechanism and the structural basis of their wide substrate specificity are poorly understood. High-resolution crystal structures of Mycobacterium tuberculosis alpha-methylacyl-CoA racemase (MCR) complexed with substrate molecules show the active site geometry required for catalysis of the interconversion of (2S) and (2R)-methylacyl-CoA. The thioester oxygen atom and the 2-methyl group are in a cis-conformation with respect to each other. The thioester oxygen atom fits into an oxyanion hole and the 2-methyl group points into a hydrophobic pocket. The active site geometry agrees with a 1,1-proton transfer mechanism in which the acid/base-pair residues are His126 and Asp156. The structures of the complexes indicate that the acyl chains of the S-substrate and the R-substrate bind in an S-pocket and an R-pocket, respectively. A unique feature of MCR is a large number of methionine residues in the acyl binding region, located between the S-pocket and the R-pocket. It appears that the (S) to (R) interconversion of the 2-methylacyl chiral center is coupled to a movement of the acyl group over this hydrophobic, methionine-rich surface, when moving from its S-pocket to its R-pocket, whereas the 2-methyl moiety and the CoA group remain fixed in their respective pockets.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Reilly SJ, O'Shea EM, Andersson U, O'Byrne J, Alexson SEH, Hunt MC. A peroxisomal acyltransferase in mouse identifies a novel pathway for taurine conjugation of fatty acids. FASEB J 2006; 21:99-107. [PMID: 17116739 DOI: 10.1096/fj.06-6919com] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide variety of endogenous carboxylic acids and xenobiotics are conjugated with amino acids, before excretion in urine or bile. The conjugation of carboxylic acids and bile acids with taurine and glycine has been widely characterized, and de novo synthesized bile acids are conjugated to either glycine or taurine in peroxisomes. Peroxisomes are also involved in the oxidation of several other lipid molecules, such as very long chain acyl-CoAs, branched chain acyl-CoAs, and prostaglandins. In this study, we have now identified a novel peroxisomal enzyme called acyl-coenzyme A:amino acid N-acyltransferase (ACNAT1). Recombinantly expressed ACNAT1 acts as an acyltransferase that efficiently conjugates very long-chain and long-chain fatty acids to taurine. The enzyme shows no conjugating activity with glycine, showing that it is a specific taurine conjugator. Acnat1 is mainly expressed in liver and kidney, and the gene is localized in a gene cluster, together with two further acyltransferases, one of which conjugates bile acids to glycine and taurine. In conclusion, these data describe ACNAT1 as a new acyltransferase, involved in taurine conjugation of fatty acids in peroxisomes, identifying a novel pathway for production of N-acyltaurines as signaling molecules or for excretion of fatty acids.
Collapse
Affiliation(s)
- Sarah-Jayne Reilly
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Ma S, Subramanian R. Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1121-39. [PMID: 16967439 DOI: 10.1002/jms.1098] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metabolic activation of a drug leading to reactive metabolite(s) that can covalently modify proteins is considered an initial step that may lead to drug-induced organ toxicities. Characterization of reactive metabolites is critical to designing new drug candidates with an improved toxicological profile. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) predominates over all analytical tools used for screening and characterization of reactive metabolites. In this review, a brief description of experimental approaches employed for assessing reactive metabolites is followed by a discussion on the reactivity of acyl glucuronides and acyl coenzyme A thioesters. Techniques for high-throughput screening and quantitation of reactive metabolite formation are also described, along with proteomic approaches used to identify protein targets and modification sites by reactive metabolites. Strategies for dealing with reactive metabolites are reviewed. In conclusion, we discuss the challenges and future needs in this field of research.
Collapse
Affiliation(s)
- Shuguang Ma
- Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
28
|
Thornburg T, Turner AR, Chen YQ, Vitolins M, Chang B, Xu J. Phytanic acid, AMACR and prostate cancer risk. Future Oncol 2006; 2:213-23. [PMID: 16563090 DOI: 10.2217/14796694.2.2.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The growing body of knowledge in cancer prevention demonstrates that for many cancers, risk must be defined in terms of both environmental and genetic factors. In prostate cancer, there is increasing evidence linking risk with polymorphisms in the alpha-methylacyl-CoA racemase (AMACR) gene and branched-chain fatty acids derived from specific sources of dietary fats. We are now at the point where we can begin to conceptualize possible inter-relationships between dietary and genetic risk as applied to prostate cancer, with the goal of generating testable hypotheses amenable to coordinated examinations. A greater understanding of such relationships should provide better ways to establish overall risk, to screen for the disease and perhaps to offer specific opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Todd Thornburg
- Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
29
|
Teeguarden JG, Deisinger PJ, Poet TS, English JC, Faber WD, Barton HA, Corley RA, Clewell HJ. Derivation of a human equivalent concentration for n-butanol using a physiologically based pharmacokinetic model for n-butyl acetate and metabolites n-butanol and n-butyric acid. Toxicol Sci 2005; 85:429-46. [PMID: 15703268 DOI: 10.1093/toxsci/kfi103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolic series approach for risk assessment uses a dosimetry-based analysis to develop toxicity information for a group of metabolically linked compounds using pharmacokinetic (PK) data for each compound and toxicity data for the parent compound. The metabolic series approach for n-butyl acetate and its subsequent metabolites, n-butanol and n-butyric acid (the butyl series), was first demonstrated using a provisional physiologically based pharmacokinetic (PBPK) model for the butyl series. The objective of this work was to complete development of the PBPK model for the butyl series. Rats were administered test compounds by iv bolus dose, iv infusion, or by inhalation in a recirculating closed chamber. Hepatic, vascular, and extravascular metabolic constants for metabolism were estimated by fitting the model to the blood time course data from these experiments. The respiratory bioavailability of n-butyl acetate (100% of alveolar ventilation) and n-butanol (50% of alveolar ventilation) was estimated from closed chamber inhalation studies and measured ventilation rates. The resulting butyl series PBPK model successfully reproduces the blood time course of these compounds following iv administration and inhalation exposure to n-butyl acetate and n-butanol in rats and arterial blood n-butanol kinetics following inhalation exposure to n-butanol in humans. These validated inhalation route models can be used to support species and dose-route extrapolations required for risk assessment of butyl series family of compounds. Human equivalent concentrations of 169 ppm and 1066 ppm n-butanol corresponding to the rat n-butyl acetate NOAELs of 500 and 3000 ppm were derived using the models.
Collapse
Affiliation(s)
- J G Teeguarden
- Battelle, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Panuganti SD, Penn JM, Moore KH. Hepatic enzymatic synthesis and hydrolysis of CoA esters of solvent-derived oxa acids. J Biochem Mol Toxicol 2004; 17:76-85. [PMID: 12717739 DOI: 10.1002/jbt.10063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many ethylene glycol-derived solvents are oxidized to xenobiotic alkoxyacetic acids (3-oxa acids) by hepatic enzymes. The toxicity of these ubiquitous solvents has been associated with their oxa acid metabolites. For many xenobiotic carboxylic acids, the toxicity is associated with the CoA ester of the acid. In this study, related alkoxyacetic acids were evaluated as potential substrates for acyl-CoA synthetases found in mitochondrial, peroxisomal, and microsomal fractions isolated from rat liver. Likewise, chemically synthesized oxa acyl-CoAs were used as substrates for acyl-CoA hydrolases associated with the same rat liver fractions. Activities of the xenobiotic oxygen-substituted substrates were compared with analogous physiologic aliphatic substrates by UV-vis spectrophotometric methods. All of the solvent-derived oxa acids were reasonable substrates for the acyl-CoA synthetases, although their activity was usually less than the corresponding physiologic acid. Acyl-CoA hydrolase activities were decreased compared with acyl-CoA synthetase activities for all substrates, especially for the oxa acyl-CoAs. These studies suggest that these xenobiotic carboxylic acids may be converted to reactive acyl-CoA moieties which will persist in areas of the cell proximal to lipid synthesis, beta-oxidation, protein acylation, and amino acid conjugation. The interaction of these xenobiotic acyl-CoAs with those processes may be important to their toxicity and/or detoxification.
Collapse
Affiliation(s)
- Sree D Panuganti
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
| | | | | |
Collapse
|
31
|
Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJA, Lloyd MD. The chemical biology of branched-chain lipid metabolism. Prog Lipid Res 2003; 42:359-76. [PMID: 12814641 DOI: 10.1016/s0163-7827(03)00016-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Sciences & The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, UK
| | | | | | | | | | | |
Collapse
|
32
|
Sprague CL, Elfarra AA. Detection of carboxylic acids and inhibition of hippuric acid formation in rats treated with 3-butene-1,2-diol, a major metabolite of 1,3-butadiene. Drug Metab Dispos 2003; 31:986-92. [PMID: 12867486 DOI: 10.1124/dmd.31.8.986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have indicated that 1,3-butadiene exposure is associated with an increased risk of leukemia. In human liver microsomes, 1,3-butadiene is rapidly oxidized to butadiene monoxide, which can then be hydrolyzed to 3-butene-1,2-diol (BDD). In this study, BDD and several potential metabolites were characterized in the urine of male B6C3F1 mice and Sprague-Dawley rats after BDD administration (i.p.). Rats given 1420 micromol kg(-1) BDD excreted significantly greater amounts of BDD relative to rats administered 710 micromol kg(-1) BDD. Rats administered 1420 or 2840 micromol kg(-1) BDD excreted significantly greater amounts of BDD per kilogram of body weight than mice given an equivalent dose. Trace amounts of 1-hydroxy-2-butanone and the carboxylic acid metabolites, crotonic acid, propionic acid, and 2-ketobutyric acid, were detected in mouse and rat urine after BDD administration. Because of the identification of the carboxylic acid metabolites and because of the known ability of carboxylic acids to conjugate coenzyme A, which is critical for hippuric acid formation, the effect of BDD treatment on hippuric acid concentrations was investigated. Rats given 1420 or 2272 micromol kg(-1) BDD had significantly elevated ratios of benzoic acid to hippuric acid in the urine after treatment compared with control urine. However, this effect was not observed in mice administered 1420 or 2840 micromol kg(-1) BDD. Collectively, the results demonstrate species differences in the urinary excretion of BDD and show that BDD administration in rats inhibits hippuric acid formation. The detection of 1-hydroxy-2-butanone and the carboxylic acids also provides insight regarding pathways of BDD metabolism in vivo.
Collapse
|
33
|
Abstract
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences.
Collapse
Affiliation(s)
- Mark J Bailey
- Department of Medicine, Centre for Studies in Drug Disposition, The University of Queensland at Royal Brisbane Hospital, Queensland 4029, Australia
| | | |
Collapse
|
34
|
Olsen J, Bjørnsdottir I, Honorè Hansen S. Identification of coenzyme A-related tolmetin metabolites in rats: relationship with reactive drug metabolites. Xenobiotica 2003; 33:561-70. [PMID: 12746110 DOI: 10.1080/0049825031000085942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. It has recently been proposed that acyl coenzyme A thioesters (acyl-CoAs) of xenobiotic carboxylic acids are electrophilic, reactive metabolites that may react with proteins. 2. The primary objective was to investigate the reactivity of the tolmetin acyl coenzyme A thioester (Tol-CoA). The second objective was to identify and quantify tolmetin (Tol) metabolites in vivo that were formed via Tol-CoA, e.g. the glycine (Tol-Gly) and taurine (Tol-Tau) conjugates. This finding would be indicative of Tol-CoA formation and thus of other acyl-CoA-related reactions that might occur, e.g. covalent binding to proteins. 3. In order to study the chemical reactivity, Tol-CoA (0.5 mM) was incubated with glutathione (5 mM) in a 0.1 M phosphate buffer (pH 7.4) at 37 degrees C. Tol-CoA reacted rapidly with glutathione in vitro to form the S-acyl glutathione conjugate at a rate of 14.9 +/- 0.7 micro M min(-1) (mean +/- SD, n = 3) from 0 to 10 min. Compared with acyl-CoAs of other xenobiotic carboxylic acids, naproxen and clofibric acid, the rate by which Tol-CoA reacted with glutathione was high. 4. Following administration of (3)H-Tol (100 mg kg(-1), 200 micro Ci kg(-1), p.o.) to male Sprague-Dawley rats, Tol-Tau and Tol-Gly were identified in urine by electrospray ionization MS-MS in both positive- and negative-ion modes. The conjugates were only formed at trace levels (< 0.5%). However, the presence of Tol-Tau and Tol-Gly showed the reactive Tol-CoA was formed in vivo.
Collapse
Affiliation(s)
- J Olsen
- Department of Analytical and Pharmaceutical Chemistry, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Igarza L, Soraci A, Auza N, Zeballos H. Chiral inversion of (R)-ketoprofen: influence of age and differing physiological status in dairy cattle. Vet Res Commun 2002; 26:29-37. [PMID: 11860085 DOI: 10.1023/a:1013301620904] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chiral inversion of ketoprofen has been previously demonstrated in cattle, but no studies have been performed on different ages and metabolic situations in the animals. The aim of this work was to study any modifications of the stereoconversion of ketoprofen that occur by reason of age, lactation or gestation in dairy cows. Holando Argentino cattle were divided into three groups: 8 cows in early lactation, 8 pregnant cows and 8 newborn calves. Four animals from each group received the enantiomer R-(-)-ketoprofen by intravenous administration; the other four animals received the S-(+) enantiomer, all at doses of 0.5 mg/kg. Blood samples were collected at standardized times after dosing and assayed for ketoprofen by high-performance reversed-phase liquid chromatography (HPLC). The percentage inversion of R-(-)-ketoprofen to S-(+)-ketoprofen was 50.5% (SD +/- 2.4) in the preruminants, 33.3% (SD +/- 1.7) in cows in early lactation and 26.0% (SD +/- 5.1) in cows in gestation. These results indicate a differing enantioselective metabolic behaviour for one compound in one species under different physiological situations.
Collapse
Affiliation(s)
- L Igarza
- Department of Physiopathology, Faculty of Veterinary Science, UNCPBA, Tandil, Argentina
| | | | | | | |
Collapse
|
36
|
Abstract
Suprofen (SPF) is a non-steroidal anti-inflammatory drug (NSAID), which belongs to the 2-arylpropionic acids subclass. As a result of their chiral characteristics, these compounds have shown a marked enantioselective behaviour with a high degree of interspecies variation. They are mainly eliminated by glucuronidation. Plasma, biliary and urine disposition of SPF was investigated in the cat after intravenous administration of the racemate (dose 2 mg/kg). Both enantiomers exhibited similar disposition profiles in plasma with no evidence of chiral inversion. During bile sampling time, recovered acylglucuronides of R (-) and S (+) SPF were less than 1% of the total dose administered. Only free SPF was recovered in the urine, representing 0.12% of the administered racemic SPF dose. The results indicate that neither chiral inversion nor glucuronidation predominate in SPF disposition in cats.
Collapse
Affiliation(s)
- E F Castro
- Area de Toxicología, Departamento Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco, Tandil (7000), Bs. As., Argentina.
| | | | | | | | | |
Collapse
|
37
|
Castro E, Soraci A, Fogel F, Tapia O. Chiral inversion of R(-) fenoprofen and ketoprofen enantiomers in cats. J Vet Pharmacol Ther 2000; 23:265-71. [PMID: 11106999 DOI: 10.1046/j.1365-2885.2000.00280.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chiral inversion process is a characteristic metabolic pathway for different aryl-2-propionic acids or profens. Important variations have been observed between these individual compounds as well as between animal species. In this study, R(-) fenoprofen [R(-)FPF] and R(-) ketoprofen [R(-) KTF] were used to investigate their comparative stereoconversion in cats. After intravenous (i.v.) administration of R(-) FPF, the percentage of chiral inversion was 93.20+/-13.70%. A highly significant correlation (r: 0.978) was observed between the clearance of R(-) FPF and the chiral inversion process. After i.v. administration of R(-) KTF, the percentage of inversion was only 36.73+/-2.8%. No correlation between the clearance of R(-) KTF and this process was observed. R(-) FPF was metabolized by the pathways of thioesterification - chiral inversion processes. For R(-) KTF, the competitive metabolic pathways, glucuronidation and hydroxylation may be involved. However, these metabolic steps are saturable or less functional in cats. Moreover, the thioesterification of R(-) KTF in in vitro studies has been shown to be important in carnivores. The lack of correlation between clearance and chiral inversion process of R(-) KTF may be finally explained by deviation of thioesterification to other metabolic pathways of lipids and/or aminoacid conjugation, particulary glicine derivatives.
Collapse
Affiliation(s)
- E Castro
- Departamento de Fisiopatología, Area de Toxicología, Campus Universitario, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil (7000), Argentina
| | | | | | | |
Collapse
|
38
|
Knights KM, Gasser R, Klemisch W. In vitro metabolism of acitretin by human liver microsomes: evidence of an acitretinoyl-coenzyme A thioester conjugate in the transesterification to etretinate. Biochem Pharmacol 2000; 60:507-16. [PMID: 10874125 DOI: 10.1016/s0006-2952(00)00339-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aromatic retinoid acitretin is the primary active metabolite of etretinate, and in this study we investigated the ethyl esterification of acitretin to etretinate using [(14)C]acitretin and human liver microsomes. Samples were analysed by TLC, HPLC, and LC-MS. Essential requirements for the transesterification reaction were identified and included viable microsomal protein, ATP, CoASH, and ethanol. Human liver microsomes catalysed formation of acitretinoyl-CoA at the rate of 0.08 +/- 0.02 nmol/min/mg (mean +/- SD, N = 10). Acitretinoyl-CoA was pivotal for the transesterification to etretinate and in the presence of methanol, ethanol, n-propanol, n-butanol, and hexanol, the corresponding esters, namely methyl-, ethyl (etretinate)-, propyl-, butyl-, and hexyl-acitretinate, were formed. On average, 1.7% of the acitretin present in the incubation was converted to etretinate in the presence of ethanol. In the absence of ethanol, transesterification did not proceed. Inhibition of the ester hydrolysis of etretinate by bis-p-nitrophenylphosphate (BNPP, 1 mM) prevented futile cycling of etretinate via acitretinoyl-CoA. An additional finding was that acitretin (15-30 microM) activated significantly human liver microsomal long-chain fatty acid-CoA ligase (E.C.6.2.1.3, LCL), resulting in enhanced formation of palmitoyl-CoA. This study demonstrated that in the presence of ethanol the ethyl esterification of acitretin to etretinate proceeds via formation of acitretinoyl-CoA. Predicting clearance of acitretin in vivo via this unique metabolic pathway will be a challenge, as the intracellular concentration of ethanol could never be predicted with any degree of accuracy in humans.
Collapse
Affiliation(s)
- K M Knights
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Flinders University, 5042, Adelaide, Australia.
| | | | | |
Collapse
|
39
|
Sallustio BC, Nunthasomboon S, Drogemuller CJ, Knights KM. In vitro covalent binding of nafenopin-CoA to human liver proteins. Toxicol Appl Pharmacol 2000; 163:176-82. [PMID: 10698675 DOI: 10.1006/taap.1999.8868] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous fatty acyl-CoAs play an important role in the acylation of proteins. A number of xenobiotic carboxylic acids are able to mimic fatty acids, forming CoA conjugates and acting as substrates in pathways of lipid metabolism. In this study nafenopin, a substrate for human hepatic fatty acid-CoA ligases, was chosen as a model compound to study xenobiotic acylation of human liver proteins. (3)H-nafenopin (+/- unlabeled palmitate) or (14)C-palmitate (+/- unlabeled nafenopin) were incubated for up to 120 min at 37 degrees C with ATP, CoA, and homogenate protein (1 mg/ml) from four individual human livers. Nafenopin covalently bound to proteins was detectable in all human livers and increased with time. Nafenopin adduct formation was directly proportional to nafenopin-CoA formation (r = 0.985, p < 0.05). Attachment of nafenopin to proteins involved both thioester and amide linkages with 76 and 24% of adducts formed with proteins > 100 and 50-100 kDa, respectively. Protein acylation by palmitate was also demonstrated. Palmitate significantly inhibited nafenopin-CoA formation by 29% but had no effect on nafenopin-CoA-mediated protein acylation. In contrast, nafenopin significantly inhibited protein palmitoylation by palmitoyl-CoA. This is the first study to demonstrate a direct relationship between xenobiotic-CoA formation, acylation of human liver proteins, and inhibition of endogenous palmitoylation. The ability of xenobiotics to acylate tissue proteins may have important biological consequences including perturbation of endogenous regulation of protein localization and function.
Collapse
Affiliation(s)
- B C Sallustio
- Department of Clinical Pharmacology, The Queen Elizabeth Hospital, Woodville, South Australia, 5011, Australia
| | | | | | | |
Collapse
|