1
|
Yang Y, Yuan L, Wang K, Lu D, Meng F, Xu D, Li W, Nan Y. The Role and Mechanism of Paeoniae Radix Alba in Tumor Therapy. Molecules 2024; 29:1424. [PMID: 38611704 PMCID: PMC11012976 DOI: 10.3390/molecules29071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Kaili Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital, Ningxia Medical University, Wuzhong 751100, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Li J, Zhu C, Zhang Z, Zheng X, Wang C, Zhang H. Paeoniflorin increases the anti-tumor efficacy of sorafenib in tumor-bearing mice with liver cancer via suppressing the NF-κb/PD-l1 axis. Heliyon 2024; 10:e24461. [PMID: 38312647 PMCID: PMC10835185 DOI: 10.1016/j.heliyon.2024.e24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Background Sorafenib (Sor) represents a first-line therapy for hepatocellular carcinoma (HCC); however, its efficacy is constrained by secondary failure, which limits its clinical use. Recent studies have indicated that the suppression of Programmed cell death-Ligand 1 (PD-L1) may potentiate Sor's anti-liver cancer effects; furthermore, PD-L1 expression is known to be regulated by NF-κB. Previous research has demonstrated that paeoniflorin (PF) downregulates the NF-κB axis, nevertheless, current research has not yet determined whether PF can synergistically enhance the efficacy of Sor against HCC by modulating the NF-κB/PD-L1 pathway. Methods The study employed a H22 hepatoma-bearing mouse model, which was treated with PF, Sor, and their combination over a period of 12 days. The impact of PF and Sor on tumor growth, proliferation, apoptosis, T-cell subsets, IL-2 and IFN-γ production, and NF-κB and PD-L1 expression was assessed. Moreover, Splenic lymphocyte from normal mice and tumor cells from model mice were co-cultured in vitro, and the tumor-specific cytotoxic T lymphocyte activity was analyzed. In the final phase of the study, Huh-7 cells were stimulated with PF in combination with an NF-κB activator or inhibitor, and the subsequent production of NF-κB and PD-L1 was investigated. Results PF and Sor exhibit a synergistic anti-tumor effect, compared to the use of Sor alone, the combined use of PF and Sor significantly increased the number of CD4+ and CD8+ T cells in tumor tissue, markedly enhanced the cytotoxic activity of tumor-specific cytotoxic T lymphocytes, and reversed the depletion of interleukin-2 and the increase in PD-L1 expression following Sor intervention. This combination also further reduced the level of IFN-γ in peripheral blood and the expression of NF-κB and PD-L1 in tumor tissue. Additionally, in vitro experiments confirmed that PF reduces the expression of PD-L1 in Huh-7 liver cancer cells by inhibiting NF-κB. Conclusions PF plays a synergistic role of Sor inhibiting HCC progression by regulating the NF-κB/PD-L1 pathway.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, Anhui, 241000, China
| | - Zengyu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
3
|
Uncovering the Anti-Lung-Cancer Mechanisms of the Herbal Drug FDY2004 by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6644018. [PMID: 33628308 PMCID: PMC7886515 DOI: 10.1155/2021/6644018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
With growing evidence on the therapeutic efficacy and safety of herbal drugs, there has been a substantial increase in their application in the lung cancer treatment. Meanwhile, their action mechanisms at the system level have not been comprehensively uncovered. To this end, we employed a network pharmacology methodology to elucidate the systematic action mechanisms of FDY2004, an anticancer herbal drug composed of Moutan Radicis Cortex, Persicae Semen, and Rhei Radix et Rhizoma, in lung cancer treatment. By evaluating the pharmacokinetic properties of the chemical compounds present in FDY2004 using herbal medicine-associated databases, we identified its 29 active chemical components interacting with 141 lung cancer-associated therapeutic targets in humans. The functional enrichment analysis of the lung cancer-related targets of FDY2004 revealed the enriched Gene Ontology terms, involving the regulation of cell proliferation and growth, cell survival and death, and oxidative stress responses. Moreover, we identified key FDY2004-targeted oncogenic and tumor-suppressive pathways associated with lung cancer, including the phosphatidylinositol 3-kinase-Akt, mitogen-activated protein kinase, tumor necrosis factor, Ras, focal adhesion, and hypoxia-inducible factor-1 signaling pathways. Overall, our study provides novel evidence and basis for research on the comprehensive anticancer mechanisms of herbal medicines in lung cancer treatment.
Collapse
|
4
|
Jin LB, Zhu J, Liang CZ, Tao LJ, Liu B, Yu W, Zou HH, Wang JJ, Tao H. Paeoniflorin induces G2/M cell cycle arrest and caspase-dependent apoptosis through the upregulation of Bcl-2 X-associated protein and downregulation of B-cell lymphoma 2 in human osteosarcoma cells. Mol Med Rep 2018; 17:5095-5101. [PMID: 29363721 PMCID: PMC5865973 DOI: 10.3892/mmr.2018.8464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Paeoniflorin (PF), extracted from the peony root, has been proved to possess antineoplastic activity in different cancer cell lines. However, it remains unclear whether PF has an antineoplastic effect against osteosarcoma cells. The present study investigated the effects and the specific mechanism of PF on various human osteosarcoma cell lines. Using the multiple methods to detect the activity of PF on HOS and Saos-2 human osteosarcoma cell lines, including an MTS assay, flow cytometry, transmission electron microscopy and western blotting, it was demonstrated that PF induces inhibition of proliferation, G2/M phase cell cycle arrest and apoptosis in the osteosarcoma cell lines in vitro, and activation of cleaved-caspase-3 and cleaved-poly (ADPribose) polymerase in a dose-dependent manner. Furthermore, the pro-apoptotic factors Bcl-2 X-associated protein and BH3 interacting domain death agonist were uregulated, while the anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-extra large were downregulated. In conclusion, these results demonstrated that PF has a promising therapeutic potential in for osteosarcoma.
Collapse
Affiliation(s)
- Li-Bin Jin
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Cheng-Zhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Jiang Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Han Hui Zou
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
5
|
Yue M, Li S, Yan G, Li C, Kang Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 2018; 17:240-249. [PMID: 29301438 DOI: 10.1080/15384101.2017.1407892] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.
Collapse
Affiliation(s)
- Meng Yue
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Shiquan Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Guoqiang Yan
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Chenyao Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Zhenhua Kang
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| |
Collapse
|
6
|
Wang Y, Dai J, Zhu Y, Zhong W, Lu S, Chen H, Chai Y. Paeoniflorin regulates osteoclastogenesis and osteoblastogenesis via manipulating NF-κB signaling pathway both in vitro and in vivo. Oncotarget 2017; 9:7372-7388. [PMID: 29484117 PMCID: PMC5800909 DOI: 10.18632/oncotarget.23677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
The metabolic balance between synthesis and resorption of the bone is maintained by osteoblasts and osteoclasts, respectively. Identification of agents that stimulate bone formation and suppress excessive osteoclast formation, may aid in preventing and treating conditions like osteoporosis and periprosthetic loosening. Paeoniflorin is a natural product derived from Paeonia lactiflora Pall with anti-inflammatory, analgesic, and diuretic properties. However, the effect of paeoniflorin on osteoclastogenesis and osteoblastogenesis is unknown. Herein, we demonstrated that paeoniflorin has a dose-dependent suppressive action on RANKL-evoked osteoclast differentiation and bone resorption, achieved by inhibiting the NF-κB pathway and subunit p65 nuclear translocation. Simultaneously, paeoniflorin was also found to stimulate osteoblast differentiation and bone mineralization, in addition to rescuing TNFα-impaired osteoblastogenesis. At the molecular level, paeoniflorin was found to inhibit NF-κB transcriptional activity and stimulate osteoblastogenesis-related marker gene expression (ALP, osteocalcin, OPN and Runx2), a trend that was inhibited by p65 overexpression. In ovariectomized mice, paeoniflorin was found to improve osteoblast activity, inhibit osteoclast activity, and thus, reduce ovariectomy-induced osteoporosis. Our study demonstrated that paeoniflorin simultaneously suppressed osteoclastogenesis and facilitated osteoblastogenesis by manipulating the actions of NF-κB. Therefore, paeoniflorin may serve as an ideal therapeutic antidote for osteoporosis.
Collapse
Affiliation(s)
- Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jiezhi Dai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Wanrun Zhong
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Shengdi Lu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Hua Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
7
|
Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol Med Rep 2017; 17:1676-1682. [PMID: 29257209 PMCID: PMC5780110 DOI: 10.3892/mmr.2017.8093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. In the present study, the effect of paeoniflorin (PAE) on the platelet derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultured rat VSMCs and its molecular mechanism was investigated. The toxicity was determined by the try pan blue exclusion test. Cell proliferation was determined using a CCK-8 assay, DNA synthesis was assessed by measuring the incorporation of BrdU. Cell cycle progression was determined using PI staining and fluorescence-activated cell sorting. The level of intracellular reactive oxygen species (ROS) generation was assessed using dichlorodihydro fluorescein diacetate. mRNA expression was determined by reverse transcription quantitative polymerase chain reaction. Changes of p38, JNK, ERK1/2 signaling pathways were determined by western blot analysis. Cell migration was detected by scratch assay. PAE was demonstrated to significantly inhibit VSMC proliferation induced by PDGF-BB in a dose-and time-dependent manner without cell cytotoxicity. Thus, PAE blocked progression through the G0/G1 to Sphase of the cell cycle. Furthermore, inhibition of the cell cycle was associated with the inhibition of them RNA expression of cyclin D1, cyclin E, cyclin dependent kinase (CDK) 4 and CDK2 as well as with increased cyclin dependent kinase inhibitor 1A mRNA expression in PDGF-BB-stimulated VSMCs. Further studies showed that the beneficial effect of PAE on blocking VSMCs proliferation was related to the suppression of the ROS-mediated extra cellular signal-regulated kinase (ERK)1/2 and p38 signaling pathways, although PAE had no significant effect on the c-Jun N-terminal kinase signalling pathway. These results demonstrated that PAE suppressed PDGF-BB-induced VSMC proliferation through the ROS-mediated ERK1/2 and p38 signaling pathways, suggesting that it may be a feasible therapy for vascular remodelling diseases.
Collapse
|
8
|
Zhang J, Wang F, Wang H, Wang Y, Wu Y, Xu H, Su C. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med 2017; 14:5445-5451. [PMID: 29285074 PMCID: PMC5740769 DOI: 10.3892/etm.2017.5250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Paeoniflorin (PAE), a principal bioactive component of Paeonia lactiflora Pall., appears to have antitumor properties. However, the pharmacological activity of PAE in endometrial cancer and the specific mechanisms have remained largely elusive. The present study aimed to determine the antitumor activity of PAE in the human endometrial cancer cell line RL95-2 and explore the potential mechanisms. Cell proliferation was assessed to evaluate the antitumor effect of PAE towards RL95-2 cells via a Cell Counting Kit-8 assay. Protein expression was examined to investigate changes in the signaling pathways of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB in RL95-2 cells during PAE treatment by western blot analysis. The results revealed that PAE significantly and dose- and time-dependently inhibited the proliferation of RL95-2 cells. In addition, PAE activated MAPK signaling pathways (p38, JNK and ERK) and the NF-κB signaling pathway. Furthermore, p38 MAPK and NF-κB inhibitors (SB203580 and MG-132, respectively) prevented PAE-induced proliferative inhibition in RL95-2 cells. However, ERK and JNK inhibitors (PD98059 and BI-78D3, respectively) did not produce such an inhibition. In conclusion, the present study demonstrated that PAE exerts its anti-proliferative activity via activating p38 MAPK and NF-κB signaling pathways in endometrial cancer cells, providing a potential new drug of choice for endometrial cancer therapy.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fengchun Wang
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huali Wang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanna Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yan Wu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui Xu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chen Su
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Li Y, Gong L, Qi R, Sun Q, Xia X, He H, Ren J, Zhu O, Zhuo D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2481-2491. [PMID: 28860718 PMCID: PMC5574596 DOI: 10.2147/dddt.s134518] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paeoniflorin (PF) is an active monoterpene glycoside extracted from Paeonia lactiflora Pall. PF has exhibited antitumor effects in various cancer types. However, the effects of PF in pancreatic cancer are largely unexplored. Here, we showed that PF suppressed growth of pancreatic cancer cell lines Capan-1 and MIAPaCa-2 and profoundly sensitized these cells to X-ray irradiation. Through microarray analysis, we identified HTRA3, a tumor-suppressor candidate gene, as the most increased gene upon PF treatment in Capan-1 cells. Ectopic expression of HTRA3 led to reduced cell proliferation and increased expression of apoptotic protein Bax, suggesting a tumor suppressive role of HTRA3 in pancreatic cancer cells. Together, our results provide a set group of genetic proofs and biological proofs that PF inhibited pancreatic cancer growth by upregulating HTRA3.
Collapse
Affiliation(s)
- Yuejun Li
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Ruili Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xian, Shanxi, People's Republic of China
| | - Haihui He
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Jianshu Ren
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Ouning Zhu
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| | - Debin Zhuo
- The Third Department of Oncology, The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, Hunan
| |
Collapse
|
10
|
Hao J, Yang X, Ding XL, Guo LM, Zhu CH, Ji W, Zhou T, Wu XZ. Paeoniflorin Potentiates the Inhibitory Effects of Erlotinib in Pancreatic Cancer Cell Lines by Reducing ErbB3 Phosphorylation. Sci Rep 2016; 6:32809. [PMID: 27609096 PMCID: PMC5016851 DOI: 10.1038/srep32809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
Blockade of the epidermal growth factor receptor (EGFR) by EGFR tyrosine kinase inhibitors is insufficient for effective anti-tumor activity because the reactivation of the ErbB3 signaling pathway significantly contributes to activating the consequent phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Combinatorial therapies including ErbB3 targeting may ameliorate tumor responses to anti-EGFR therapies. In the present study, we found that in BxPC-3 and L3.6pl cells, which highly expressed the ErbB3 receptor, significant reduction in cell viability, induction of apoptosis were observed when treated with a combination of erlotinib and PF compared to either agent alone. Moreover, in ErbB3-expressing BxPC-3, L3.6pl and S2VP10 cell lines, the inhibition of ErbB3/PI3K/Akt phosphorylation were observed when treated with PF. Most strikingly, both EGFR/MAPK/Erk and ErbB3/PI3K/Akt activitions were substantially suppressed when treated with the combination of PF and erlotinib. However, in the ErbB3-deficient cell line MIAPaCa-2, no such effects were observed with similar treatments. Most importantly, these in vitro results were replicated in nude mouse transplanted tumor models. Taken together, our findings show that PF enhances the effect of erlotinib in ErbB3-expressing pancreatic cancer cells by directly suppressing ErbB3 activation, and PF in combination with erlotinib is much more effective as an antitumor agent compared with either agent alone.
Collapse
Affiliation(s)
- Jian Hao
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xue Yang
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xiu-li Ding
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Lei-ming Guo
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cui-hong Zhu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Wei Ji
- Opening Cancer Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tong Zhou
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiong-zhi Wu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| |
Collapse
|
11
|
Methanol and Butanol Extracts of Paeonia lutea Leaves Repress Metastasis of Squamous Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6087213. [PMID: 27293462 PMCID: PMC4886073 DOI: 10.1155/2016/6087213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is one of the most common cancers of the head and neck region worldwide and is generally treated surgically in combination with radiotherapy and/or chemotherapy. However, anticancer agents have numerous serious side effects, and alternative, less toxic agents that are effective as chemotherapeutics for SCC are required. The Paeoniaceae family is widely used in traditional Chinese medicine. We examined methanol and butanol extracts of Paeonia lutea (P. lutea) leaves for their potential as an anticancer agent. Both extracts decreased the proliferation of SCC cells, induced apoptotic cell death, and modulated migration, adhesion, chemotaxis, and haptotaxis in an extracellular matrix- (ECM-) dependent manner due to altered expression of several integrin subunits. Subsequently, SCC cells were subcutaneously transplanted into athymic nude mice; the extracts reduced the metastasis of SCC cells but had little effect on the volume of the primary tumor or survival or body weight of the mice. The results suggest that the extracts may hold promise for preventing cancer metastasis.
Collapse
|
12
|
Anti-tumor effect of Radix Paeoniae Rubra extract on mice bladder tumors using intravesical therapy. Oncol Lett 2016; 12:904-910. [PMID: 27446367 PMCID: PMC4950246 DOI: 10.3892/ol.2016.4698] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2016] [Indexed: 01/26/2023] Open
Abstract
Radix Paeoniae Rubra (RPR) is the dried root of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, and is a herbal medicine that is widely used in traditional Chinese medicine for the treatment of blood-heat and blood-stasis syndrome, similarly to Cortex Moutan. The present study identified the same three components in RPR and Cortex Moutan extracts. In addition, it has been reported that RPR has an anti-cancer effect. Bladder cancer is the seventh most common type of cancer worldwide. Due to the high recurrence rate, identifying novel drugs for bladder cancer therapy is essential. In the present study, RPR extract was evaluated as a bladder cancer therapy in vitro and in vivo. The present results revealed that RPR extract reduced the cell viability of bladder cancer cells with a half maximal inhibitory concentration of 1-3 mg/ml, and had an extremely low cytotoxic effect on normal urothelial cells. Additionally, RPR decreased certain cell cycle populations, predominantly cells in the G1 phase, and caused a clear sub-G increase. In a mouse orthotopic bladder tumor model, intravesical application of RPR extract decreased the bladder tumor size without altering the blood biochemical parameters of the mice. In summary, the present results demonstrate the anti-proliferative properties of RPR extract on bladder cancer cells, and its anti-bladder tumor effect in vivo. Compared to Cortex Moutan extract, RPR extract may provide a more effective alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.
Collapse
|
13
|
Zhou Z, Wang S, Song C, Hu Z. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells. Onco Targets Ther 2016; 9:2511-8. [PMID: 27175085 PMCID: PMC4854234 DOI: 10.2147/ott.s102422] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Paeoniflorin (PF) is a monoterpene glycoside extracted from the root of Paeonia lactiflora Pall. Previous studies have demonstrated that PF inhibits the growth, invasion, and metastasis of tumors in vivo and in vitro. However, the effect of PF on hypoxia-induced epithelial–mesenchymal transition (EMT) in breast cancer cells remains unknown. Therefore, the objective of this study was to investigate the effect of PF on hypoxia-induced EMT in breast cancer cells, as well as characterize the underlying mechanism. The results presented in this study demonstrate that PF blocks the migration and invasion of breast cancer cells by repressing EMT under hypoxic conditions. PF also significantly attenuated the hypoxia-induced increase in HIF-1α level. Furthermore, PF prevented hypoxia-induced expression of phosphorylated PI3K and Akt in MDA-MB-231 cells. In conclusion, PF prevented hypoxia-induced EMT in breast cancer cells by inhibiting HIF-1α expression via modulation of PI3K/Akt signaling pathway. This finding provides evidence that PF can serve as a therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Thyroid and Breast, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Shunchang Wang
- Department of Thyroid and Breast, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| | - Caijuan Song
- Department of Immunization Program, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Zhuang Hu
- Department of Thyroid and Breast, Huaihe Hospital, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
14
|
Zheng YB, Xiao GC, Tong SL, Ding Y, Wang QS, Li SB, Hao ZN. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling. World J Gastroenterol 2015; 21:7197-7207. [PMID: 26109806 PMCID: PMC4476881 DOI: 10.3748/wjg.v21.i23.7197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/26/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.
METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry, DAPI staining assay and caspase-3 activity assay. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression of microRNA-124 (miR-124) in response to paeoniflorin. The expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phospho-Akt (p-Akt) and phospho-signal transducer and activator of transcription 3 (p-STAT3) were also measured by quantitative RT-PCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.
RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3K agonist (IGF-1, 1 μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.
CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.
Collapse
|
15
|
Sansone C, Braca A, Ercolesi E, Romano G, Palumbo A, Casotti R, Francone M, Ianora A. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells. PLoS One 2014; 9:e101220. [PMID: 24992192 PMCID: PMC4081559 DOI: 10.1371/journal.pone.0101220] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022] Open
Abstract
Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.
Collapse
|
16
|
Cortex Moutan Induces Bladder Cancer Cell Death via Apoptosis and Retards Tumor Growth in Mouse Bladders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:207279. [PMID: 24282433 PMCID: PMC3824643 DOI: 10.1155/2013/207279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Cortex Moutan is the root bark of Paeonia suffruticosa Andr. It is the herbal medicine widely used in Traditional Chinese Medicine for the treatment of blood-heat and blood-stasis syndrome. Furthermore, it has been reported that Cortex Moutan has anticancer effect. In this study, the Cortex Moutan extract was evaluated in bladder cancer therapy in vitro and in vivo. Cortex Moutan extract reduces cell viability with IC50 between 1~2 mg/ml in bladder cancer cells, and it has lower cytotoxicity in normal urotheliums. It arrests cells in G1 and S phase and causes phosphatidylserine expression in the outside of cell membrane. It induces caspase-8 and caspase-3 activation and poly(ADP-ribose) polymerase degradation. The pan caspase inhibitor z-VAD-fmk reverses Cortex Moutan-induced cell death. Cortex Moutan also inhibits cell invasion activity in 5637 cells. In mouse orthotopic bladder cancer model, intravesical application of Cortex Moutan decreases the bladder tumor size without altering the blood biochemical parameters. In summary, these results demonstrate the antiproliferation and anti-invasion properties of Cortex Moutan in bladder cancer cells and its antibladder tumor effect in vivo. Cortex Moutan may provide an alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.
Collapse
|
17
|
Shang E, Zhu Z, Liu L, Tang Y, Duan JA. UPLC-QTOF-MS with chemical profiling approach for rapidly evaluating chemical consistency between traditional and dispensing granule decoctions of Tao-Hong-Si-Wu decoction. Chem Cent J 2012; 6:143. [PMID: 23176049 PMCID: PMC3537748 DOI: 10.1186/1752-153x-6-143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background In the present study, chemical consistency between traditional and dispensing granule decoctions of Tao-Hong-Si-Wu decoction was rapidly evaluated by UPLC-QTOF-MS coupled with the MarkerLynx software. Two different kinds of decoctions, namely traditional decoction: water extract of mixed six constituent herbs of Tao-Hong-Si-Wu decoction, and dispensing granules decoction: mixed water extract of each individual herbs of Tao-Hong-Si-Wu decoction, were prepared. Results Chemical difference was found between traditional and dispensing granule decoctions, and albiflorin, paeoniflorin, gallic acid, amygdalin, and hydroxysafflor yellow A were identified as the significantly changed components during decocting Tao-Hong-Si-Wu decoction. All the peaks of mass spectrum from Tao-Hong-Si-Wu decoction and each herb were extracted and integration by using QuanLynx™. And the optimized data was used for linear regression analysis. The contribution of each herb in Tao-Hong-Si-Wu decoction, and the optimal compatibility proportion of dispensing granule decoction were derived from the linear regression equation. Conclusions The optimal dosage proportionality of Tao-Hong-Si-Wu dispensing granule decoction was obtained as 2.5:0.2:1:0.5:0.6:0.1 (DG : CX : BS : SD : TR : HH), which guided better clinic application of Tao-Hong-Si-Wu decoction as dispensing granule decoctions usage, and it also provided some experimental data to reveal the compatibility rule of the relative TCM formulae.
Collapse
Affiliation(s)
- Erxin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | | | | | | | | |
Collapse
|
18
|
Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One 2012; 7:e49701. [PMID: 23166749 PMCID: PMC3498223 DOI: 10.1371/journal.pone.0049701] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/12/2012] [Indexed: 01/15/2023] Open
Abstract
Paeoniflorin (PF), the principal component of Paeoniae Radix prescribed in traditional Chinese medicine, has been reported to exhibit many pharmacological effects including protection against ischemic injury. However, the mechanisms underlying the protective effects of PF on cerebral ischemia are still under investigation. The present study showed that PF treatment for 14 days could significantly inhibit transient middle cerebral artery occlusion (MCAO)-induced over-activation of astrocytes and microglia, and prevented up-regulations of pro-inflamamtory mediators (TNFα, IL-1β, iNOS, COX(2) and 5-LOX) in plasma and brain. Further study demonstrated that chronic treatment with PF suppressed the activations of JNK and p38 MAPK, but enhanced ERK activation. And PF could reverse ischemia-induced activation of NF-κB signaling pathway. Moreover, our in vitro study revealed that PF treatment protected against TNFα-induced cell apoptosis and neuronal loss. Taken together, the present study demonstrates that PF produces a delayed protection in the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral inflammatory response. Our study reveals that PF might be a potential neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Ruo-Bing Guo
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Guo-Feng Wang
- Department of Cadre Ward No. 3, the General Hospital of Jinan Military Area Command of PLA, Jinan, China
| | - An-Peng Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- * E-mail: (X-LS); (GH)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- * E-mail: (X-LS); (GH)
| |
Collapse
|
19
|
Suffruyabiosides A and B, two new monoterpene diglycosides from moutan cortex. Molecules 2012; 17:4915-23. [PMID: 22547314 PMCID: PMC6268304 DOI: 10.3390/molecules17054915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Two new monoterpene diglycosides, suffruyabiosides A (1) and B (2), and seven known compounds 3-9 were isolated from Moutan Cortex (root cortex of Paeonia suffruticosa Andrews). The structures were elucidated on the basis of 2D NMR spectral data. Suffruyabiosides A (1) and B (2) are rare monoterpene diglycosides, including a cellobiose in the molecules. Salicylpaeoniflorin (4) had a antiproliferation effect similar to paeoniflorin (3) on human lung adenocarcinoma epitherial A549 cells. Galloylpaeoniflorin (8) and salicylpaeoniflorin (4) revealed a more pronounced radical scavenging effect than α-tocopherol (positive control). An increase in the number of phenolic hydroxyl groups produced a more effective radical scavenging effect [8 > mudanpioside E (6) > oxypaeoniflorin (5)]. Comparison of the effects of 4 and 5 showed that o-substitution with a phenolic hydroxyl group was more effective than p-substitution. The results suggest that salicylpaeoniflorin (4) may be useful as a cytotoxic and a radical scavenging agent.
Collapse
|
20
|
Aqueous Extract of Paeonia suffruticosa Inhibits Migration and Metastasis of Renal Cell Carcinoma Cells via Suppressing VEGFR-3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:409823. [PMID: 22454663 PMCID: PMC3291499 DOI: 10.1155/2012/409823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/02/2011] [Indexed: 12/19/2022]
Abstract
Renal cell carcinoma (RCC) cells are characterized by strong drug resistance and high metastatic incidence. In this study, the effects of ten kinds of Chinese herbs on RCC cell migration and proliferation were examined. Aqueous extract of Paeonia suffruticosa (PS-A) exerted strong inhibitory effects on cancer cell migration, mobility, and invasion. The results of mouse xenograft experiments showed that the treatment of PS-A significantly suppressed tumor growth and pulmonary metastasis. We further found that PS-A markedly decreased expression of VEGF receptor-3 (VEGFR-3) and phosphorylation of FAK in RCC cells. Moreover, the activation of Rac-1, a modulator of cytoskeletal dynamics, was remarkably reduced by PS-A. Additionally, PS-A suppressed polymerization of actin filament as demonstrated by confocal microscopy analysis and decreased the ratio of F-actin to G-actin in RCC cells, suggesting that PS-A inhibits RCC cell migration through modulating VEGFR-3/FAK/Rac-1 pathway to disrupt actin filament polymerization. In conclusion, this research elucidates the effects and molecular mechanism for antimigration of PS-A on RCC cells and suggests PS-A to be a therapeutic or adjuvant strategy for the patients with aggressive RCC.
Collapse
|