1
|
Kozol RA, Dallman JE. Drugs prescribed for Phelan-McDermid syndrome differentially impact sensory behaviors in shank3 zebrafish models. F1000Res 2023; 12:84. [PMID: 37868296 PMCID: PMC10589628 DOI: 10.12688/f1000research.127830.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Altered sensory processing is a pervasive symptom in individuals with Autism Spectrum Disorders (ASD); people with Phelan McDermid syndrome (PMS), in particular, show reduced responses to sensory stimuli. PMS is caused by deletions of the terminal end of chromosome 22 or point mutations in Shank3. People with PMS can present with an array of symptoms including ASD, epilepsy, gastrointestinal distress, and reduced responses to sensory stimuli. People with PMS are often medicated to manage behaviors like aggression and/or self-harm and/or epilepsy, and it remains unclear how these medications might impact perception/sensory processing. Here we test this using zebrafish mutant shank3ab PMS models that likewise show reduced sensory responses in a visual motor response (VMR) assay, in which increased locomotion is triggered by light to dark transitions. Methods: We screened three medications, risperidone, lithium chloride (LiCl), and carbamazepine (CBZ), prescribed to people with PMS and one drug, 2-methyl-6-(phenylethynyl) pyridine (MPEP) tested in rodent models of PMS, for their effects on a sensory-induced behavior in two zebrafish PMS models with frameshift mutations in either the N- or C- termini. To test how pharmacological treatments affect the VMR, we exposed larvae to selected drugs for 24 hours and then quantified their locomotion during four ten-minute cycles of lights on-to-off stimuli. Results: We found that risperidone normalized the VMR in shank3 models. LiCl and CBZ had no effect on the VMR in any of the three genotypes. MPEP reduced the VMR in wildtype (WT) to levels seen in shank3 models but caused no changes in either shank3 model. Finally, shank3 mutants showed resistance to the seizure-inducing drug pentylenetetrazol (PTZ), at a dosage that results in hyperactive swimming in WT zebrafish. Conclusions: Our work shows that the effects of drugs on sensory processing are varied in ways that can be highly genotype- and drug-dependent.
Collapse
Affiliation(s)
- Robert A. Kozol
- Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, Fl., USA
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
2
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Xu P, Gildea JJ, Zhang C, Konkalmatt P, Cuevas S, Bigler Wang D, Tran HT, Jose PA, Felder RA. Stomach gastrin is regulated by sodium via PPAR-α and dopamine D1 receptor. J Mol Endocrinol 2020; 64:53-65. [PMID: 31794424 PMCID: PMC7654719 DOI: 10.1530/jme-19-0053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Gastrin, secreted by stomach G cells in response to ingested sodium, stimulates the renal cholecystokinin B receptor (CCKBR) to increase renal sodium excretion. It is not known how dietary sodium, independent of food, can increase gastrin secretion in human G cells. However, fenofibrate (FFB), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, increases gastrin secretion in rodents and several human gastrin-secreting cells, via a gastrin transcriptional promoter. We tested the following hypotheses: (1.) the sodium sensor in G cells plays a critical role in the sodium-mediated increase in gastrin expression/secretion, and (2.) dopamine, via the D1R and PPAR-α, is involved. Intact human stomach antrum and G cells were compared with human gastrin-secreting gastric and ovarian adenocarcinoma cells. When extra- or intracellular sodium was increased in human antrum, human G cells, and adenocarcinoma cells, gastrin mRNA and protein expression/secretion were increased. In human G cells, the PPAR-α agonist FFB increased gastrin protein expression that was blocked by GW6471, a PPAR-α antagonist, and LE300, a D1-like receptor antagonist. LE300 prevented the ability of FFB to increase gastrin protein expression in human G cells via the D1R, because the D5R, the other D1-like receptor, is not expressed in human G cells. Human G cells also express tyrosine hydroxylase and DOPA decarboxylase, enzymes needed to synthesize dopamine. G cells in the stomach may be the sodium sensor that stimulates gastrin secretion, which enables the kidney to eliminate acutely an oral sodium load. Dopamine, via the D1R, by interacting with PPAR-α, is involved in this process.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - John J Gildea
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Chi Zhang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Dora Bigler Wang
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Hanh T Tran
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine & Health Sciences, Washington, District of Columbia, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Leite F, Ribeiro L. Dopaminergic Pathways in Obesity-Associated Inflammation. J Neuroimmune Pharmacol 2019; 15:93-113. [DOI: 10.1007/s11481-019-09863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
5
|
Heath F, Newman A, Clementi C, Pasut G, Lin H, Stephens GJ, Whalley BJ, Osborn HMI, Greco F. A novel PEG–haloperidol conjugate with a non-degradable linker shows the feasibility of using polymer–drug conjugates in a non-prodrug fashion. Polym Chem 2016. [DOI: 10.1039/c6py01418f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A PEG–haloperidol conjugate was synthesised, which retains binding to the dopamine D2receptor, showing the possibility of using polymer-drug conjugates as drugsper se' rather than as prodrugs.
Collapse
Affiliation(s)
| | | | - Chiara Clementi
- Dept. of Pharmaceutical Sciences
- Via F. Marzolo 5
- University of Padua
- Padova
- Italy
| | - Gianfranco Pasut
- Dept. of Pharmaceutical Sciences
- Via F. Marzolo 5
- University of Padua
- Padova
- Italy
| | - Hong Lin
- Reading School of Pharmacy
- Reading
- UK
| | | | | | | | | |
Collapse
|
6
|
Perez-Cornago A, Ramírez MJ, Zulet MÁ, Martinez JA. Effect of dietary restriction on peripheral monoamines and anxiety symptoms in obese subjects with metabolic syndrome. Psychoneuroendocrinology 2014; 47:98-106. [PMID: 25001959 DOI: 10.1016/j.psyneuen.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 02/08/2023]
Abstract
Reduced circulating monoamines may have a role in the development of the metabolic syndrome (MetS), which is becoming a major health problem worldwide. Moreover, an association between anxiety disorder and MetS has been reported; however, it is not clear whether weight loss can diminish anxiety. This investigation is aimed to examine the effects of a weight loss intervention on peripheral monoamines levels and anxiety symptoms in subjects with metabolic syndrome (MetS). The study population encompassed subjects with MetS (age: 50±10 y.o. and BMI: 35.8±4.3 kg/m2) selected from the RESMENA study after they had completed the 6-month weight loss intervention (-30% energy). Anthropometric measurements, dietary records, anxiety symptoms, and blood monoamines levels were analysed before and after the intervention. Dopamine (DA) (+18.2%; 95% confidence interval (CI): -51.2 to -0.5) and serotonin (5-HT) (+16.1%; 95% CI: -26.3 to -2.2) blood levels were significantly increased after the intervention. Higher DA blood concentrations at the end of the study were inversely related with the carbohydrate intake during the study (B=-3.3; 95% CI: -8.4 to -0.4) and basal DA levels predicted a greater decrease in body weight and anthropometric parameters. Subjects with higher 5-HT concentrations after the weight loss intervention also showed a lower energy intake during the intervention (B=-0.04; 95% CI: -0.07 to -0.01). Additionally, anxiety symptoms decreased after the weight loss treatment (-28.3%; 95% CI: 6.2-20.4), which was parallel to a greater decrease in body weight and anthropometric markers, being related to lower 5-HT basal levels. Dietary restriction in patients with MetS may help in reducing anxiety symptoms, and also in increasing 5-HT and DA blood levels. These results provide further insights regarding emotional and neurological factors behind weight loss.
Collapse
Affiliation(s)
- Aurora Perez-Cornago
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - M Ángeles Zulet
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain.
| |
Collapse
|
7
|
Cellular localization of dopamine receptors in the gastric mucosa of rats. Biochem Biophys Res Commun 2011; 417:197-203. [PMID: 22155235 DOI: 10.1016/j.bbrc.2011.11.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/16/2011] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) plays a critical role in the protection of gastric mucosa and is mediated through corresponding receptors. However, the details of the expression of DA receptors (D1-D5) in the gastric mucosa are lacking. The present study investigated the expression and cellular localization of DA receptors in rat gastric mucosa by means of real-time PCR and immunofluorescent techniques. The results indicated that the mRNA expressions of all five subtypes of DA receptors were found in the gastric mucosa, among which the D2 level was the highest. The immunopositive cells of D1-D3 and D5 were primarily localized to the basilar gland of the epithelial layer in gastric corpus, but D4 immunoreactivity (IR) was only observed in the enteric nerve plexus. The D1, D2, and D5 IR were found in pepsin C-IR cells except D3. No IR of any DA receptor was detected in the H(+)/K(+)-ATPase- or mucin 6-IR cells. In conclusion, for the first time, this study demonstrates the predominant distribution of DA receptors in the chief cells, not the parietal and mucous neck cells, in rat gastric mucosa, thus suggesting that DA may not directly regulate the function of parietal cells or mucous neck cells, but it may modulate the function of chief cells through the D1, D2, and D5 receptors.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review summarizes the last year's literature regarding the regulation and measurement of gastric exocrine and endocrine secretion. RECENT FINDINGS Parietal cells, distributed along much of the length of the oxyntic glands, with highest density in the neck and base, secrete HCl as well as transforming growth factor-alpha, amphiregulin, heparin-binding epidermal growth factor-like growth factor, and sonic hedgehog. Acid facilitates the digestion of protein and absorption of iron, calcium, vitamin B(12) as well as prevents bacterial overgrowth, enteric infection, and possibly food allergy. The major stimulants of acid secretion are gastrin, histamine, and acetylcholine. Ghrelin and orexin also stimulate acid secretion. The main inhibitor of acid secretion is somatostatin. Nitric oxide and dopamine also inhibit acid secretion. Although Helicobacter pylori is associated with duodenal ulcer disease, most patients infected with the organism produce less than normal amount of acid. The cytoskeletal proteins ezrin and moesin participate in parietal cell acid and chief cell pepsinogen secretion, respectively. SUMMARY Despite our vast knowledge, the understanding of the regulation of gastric acid secretion in health and disease is far from complete. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|