1
|
Asakura H, Ogawa H. Perspective on fibrinolytic therapy in COVID-19: the potential of inhalation therapy against suppressed-fibrinolytic-type DIC. J Intensive Care 2020; 8:71. [PMID: 32959003 PMCID: PMC7499019 DOI: 10.1186/s40560-020-00491-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
A high rate of thrombotic complications, such as pulmonary embolism, has been linked to mortality in COVID-19, and appropriate treatment of thrombosis is important for lifesaving. Although heparin is frequently used to treat thrombotic pathology in COVID-19, pulmonary embolism is still seen in severe cases. Although systemic fibrinolytic therapy is a focus of attention because a thrombotic pathology is the cause of death in severe COVID-19, it should be kept in mind that fibrinolytic therapy might be harmful at advanced stage of COVID-19 where the status of disseminated intravascular coagulation (DIC) has been transmitted from suppressed-fibrinolytic to enhanced-fibrinolytic in disease progression of COVID-19. In this respect, inhalation therapy with fibrinolytic substances might be a safe and promising treatment.
Collapse
Affiliation(s)
- Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, Takaramachi 13-1, Kanazawa, Ishikawa 920-8640 Japan
| | - Haruhiko Ogawa
- Department of Environmental and Preventive Medicine, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa 920-8640 Japan
| |
Collapse
|
2
|
Surasarang SH, Sahakijpijarn S, Florova G, Komissarov AA, Nelson CL, Perenlei E, Fukuda S, Wolfson MR, Shaffer TH, Idell S, Williams RO. Nebulization of Single-Chain Tissue-Type and Single-Chain Urokinase Plasminogen Activator for Treatment of Inhalational Smoke-Induced Acute Lung Injury. J Drug Deliv Sci Technol 2018; 48:19-27. [PMID: 30123328 DOI: 10.1016/j.jddst.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-chain tissue-type plasminogen activator (sctPA) and single-chain urokinase plasminogen activator (scuPA) have attracted interest as enzymes for the treatment of inhalational smoke-induced acute lung injury (ISALI). In this study, the pulmonary delivery of commercial human sctPA and lyophilized scuPA and their reconstituted solution forms were demonstrated using vibrating mesh nebulizers (Aeroneb® Pro (active) and EZ Breathe® (passive)). Both the Aeroneb® Pro and EZ Breathe® vibrating mesh nebulizers produced atomized droplets of protein solution of similar size of less than about 5 μm, which is appropriate for pulmonary delivery. Enzymatic activities of scuPA and of sctPA were determined after nebulization and both remained stable (88.0% and 93.9%). Additionally, the enzymatic activities of sctPA and tcuPA were not significantly affected by excipients, lyophilization or reconstitution conditions. The results of these studies support further development of inhaled formulations of fibrinolysins for delivery to the lungs following smoke-induced acute pulmonary injury.
Collapse
Affiliation(s)
- Soraya Hengsawas Surasarang
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Galina Florova
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Andrey A Komissarov
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Christina L Nelson
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Enkhbaatar Perenlei
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Satoshi Fukuda
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Marla R Wolfson
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA
| | - Thomas H Shaffer
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA.,Jefferson Medical College/Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA, USA
| | - Steven Idell
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| |
Collapse
|
3
|
Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:36. [PMID: 29430453 PMCID: PMC5799142 DOI: 10.21037/atm.2018.01.08] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) presents a complex pathophysiology characterized by pulmonary activated coagulation and reduced fibrinolysis. Despite advances in supportive care of this syndrome, morbidity and mortality remains high, leading to the need of novel therapies to combat this disease. Focus these therapies in the inhibition of ARDS development pathophysiology is essential. Beneficial effects of anticoagulants in ARDS have been proved in preclinical and clinical trials, thanks to its anticoagulant and anti-inflammatory properties. Moreover, local administration by nebulization in the alveolar compartment increases local efficacy and does not produce systemic bleeding. In this review the coagulation and fibrinolytic pathway and its pharmacological targets to treat ARDS are summarized.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| |
Collapse
|
4
|
Lin S, Racz J, Tai MF, Brooks KM, Rzeczycki P, Heath LJ, Newstead MW, Standiford TJ, Rosania GR, Stringer KA. A Role for Low Density Lipoprotein Receptor-Related Protein 1 in the Cellular Uptake of Tissue Plasminogen Activator in the Lungs. Pharm Res 2015; 33:72-82. [PMID: 26231141 DOI: 10.1007/s11095-015-1763-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE To gain knowledge of lung clearance mechanisms of inhaled tissue plasminogen activator (tPA). METHODS Using an in vivo mouse model and ex vivo murine whole organ cell suspensions, we examined the capability of the lungs to utilize LRP1 receptor-mediated endocytosis (RME) for the uptake of exogenous tPA with and without an LRP1 inhibitor, receptor associated protein (RAP), and quantitatively compared it to the liver. We also used a novel imaging technique to assess the amount LRP1 in sections of mouse liver and lung. RESULTS Following intratracheal administration, tPA concentrations in the bronchoalveolar lavage fluid (BALF) declined over time following two-compartment pharmacokinetics suggestive of a RME clearance mechanism. Ex vivo studies showed that lung and liver cells are similarly capable of tPA uptake via LRP1 RME which was reduced by ~50% by RAP. The comparable lung and liver uptake of tPA is likely due to equivalent amounts of LRP1 of which there was an abundance in the alveolar epithelium. CONCLUSIONS Our findings indicate that LRP1 RME is a candidate clearance mechanism for inhaled tPA which has implications for the development of safe and effective dosing regimens of inhaled tPA for the treatment of plastic bronchitis and other fibrin-inflammatory airway diseases in which inhaled tPA may have utility.
Collapse
Affiliation(s)
- Swan Lin
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Racz
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa F Tai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M Brooks
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren J Heath
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Brooks K, Caruthers RL, Schumacher KR, Stringer KA. Pharmacotherapy challenges of Fontan-associated plastic bronchitis: a rare pediatric disease. Pharmacotherapy 2013; 33:922-34. [PMID: 23686915 DOI: 10.1002/phar.1290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pediatric pharmacotherapy is often challenging due to the paucity of available clinical data on the safety and efficacy of drugs that are commonly used in children. This quandary is even more prevalent in children with rare diseases. Although extrapolations for dosing and administration are often made from available adult data with similar disease states, this translation becomes even more problematic in rare pediatric diseases. Understanding of rare disease pathophysiology is typically poor, and few, if any, effective therapies have been studied and identified. One condition that illustrates these issues is plastic bronchitis, a rare, most often pediatric disease that is characterized by the production of obstructive bronchial airway casts. This illness primarily occurs in children with congenital heart disease, often after palliative surgery. Plastic bronchitis is a highly clinically relevant and therapeutically challenging problem with a high mortality rate, and, a generally accepted effective pharmacotherapy regimen has yet to be identified. Furthermore, the disease is ill defined, which makes timely identification and treatment of children with plastic bronchitis difficult. The pharmacotherapies currently used to manage this disease are largely anecdotal and vary between the use of macrolide antibiotics, mucolytics, bronchodilators, and inhaled fibrinolytics in a myriad of combinations. The purpose of this review is 2-fold: first, to highlight the dilemma of treating plastic bronchitis, and second, to bring attention to the continuing need for studies of drug therapies used in children so safe and effective drug regimens can be established, particularly for rare diseases.
Collapse
Affiliation(s)
- Kristina Brooks
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
6
|
Heath L, Ling S, Racz J, Mane G, Schmidt L, Myers JL, Tsai WC, Caruthers RL, Hirsch JC, Stringer KA. Prospective, longitudinal study of plastic bronchitis cast pathology and responsiveness to tissue plasminogen activator. Pediatr Cardiol 2011; 32:1182-9. [PMID: 21786171 PMCID: PMC3207025 DOI: 10.1007/s00246-011-0058-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
Abstract
Plastic bronchitis (PB) is a rare disease that often occurs in patients with congenital heart disease (CHD) who have undergone staged single-ventricle palliation. It is characterized by the formation of rubbery "casts" in the airways. PB treatment frequently includes inhaled tissue plasminogen activator (tPA). However, the efficacy of tPA to reduce cast burden is unknown. This is further complicated by our lack of knowledge of cast composition. We obtained spontaneously expectorated PB casts from children (n = 4) with CHD and one adult patient with idiopathic PB. Pathological assessment was made from paraffin-preserved samples. Casts were treated with phosphate-buffered saline (PBS) or tPA. Cast response to tPA was assessed by changes in cast weight and the production of fibrin D-dimer. Independent of dose, tPA reduced cast weight compared with PBS-treatment (P = 0.001) and increased D-dimer levels. Histological staining showed that PB casts from all patients were composed of fibrin and contained notable numbers of lymphocytes. Cast composition did not change over time. Collectively, these data support that in our PB patients, casts are composed of fibrin and are responsive to tPA treatment. This makes inhaled tPA a potentially viable option for symptomatic relief of PB while we work to unravel the complexity of PB pathogenesis.
Collapse
Affiliation(s)
- Lauren Heath
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA
| | - Shelley Ling
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer Racz
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA
| | - Gerta Mane
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lindsay Schmidt
- Division of Anatomic Pathology, Department of Pathology, University of Michigan Hospitals and Health Centers, Ann Arbor, MI 48109 USA
| | - Jeffrey L. Myers
- Division of Anatomic Pathology, Department of Pathology, University of Michigan Hospitals and Health Centers, Ann Arbor, MI 48109 USA
| | - Wan C. Tsai
- Division of Pediatric Pulmonology, Department of Pediatrics and Communicable Diseases, University of Michigan Hospitals and Health Centers, Ann Arbor, MI 48109 USA
| | - Regine L. Caruthers
- Department of Pharmacy, University of Michigan Hospitals and Health Centers, Ann Arbor, MI 48109 USA
| | - Jennifer C. Hirsch
- Department of Surgery, Division of Pediatric Cardiac Surgery, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Kathleen A. Stringer
- Department of Clinical, Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA
- Corresponding Author: Kathleen A. Stringer, PharmD, Associate Professor, University of Michigan, College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, Phone: 734-647-4775,
| |
Collapse
|
7
|
Safety of prolonged, repeated administration of a pulmonary formulation of tissue plasminogen activator in mice. Pulm Pharmacol Ther 2009; 23:107-14. [PMID: 19879371 DOI: 10.1016/j.pupt.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disruption of fibrinolytic homeostasis participates in the pathogenesis of severe lung diseases like acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF) and plastic bronchitis. We have developed a pulmonary formulation of tissue plasminogen activator (pf-tPA) that withstands nebulization and reaches the lower airways. OBJECTIVE Since treatment of ARDS, IPF and plastic bronchitis will require repeated administration of pf-tPA, the purpose of this study was to determine the safety of prolonged, repeated administration of pf-mouse tPA (pf-mtPA) to the lungs of healthy mice. METHODS Male and female B6C3F1 mice received one of two intratracheal (IT) doses of either nebulized pf-mtPA or sterile saline twice daily for 28 days. Weekly blood samples were collected to estimate hematocrit. Following the dosing period, animals were sacrificed for gross necropsy, the acquisition of bronchoalveolar lavage fluid (BALF), and histological assessment of the lungs and other major organs. RESULTS The low dose of pf-mtPA was well tolerated by both female and male mice. However, female and male mice that received the high dose experienced a 16% and 8% incidence, respectively, of fatal pulmonary hemorrhage. Although male mice had a lower incidence of bleeding, these events occurred at lower mean (+/-S.E.) doses (1.06+/-0.02mg/kg/d) of pf-mtPA compared with females (1.48+/-0.03mg/kg/d, p<0.001). In addition, male mice had higher BALF mtPA concentrations. Bleeding occurred six and 12 days in male and female mice, respectively, after the initiation of dosing suggesting that mtPA accumulated in the lungs. CONCLUSION This study established a safe dose range and demonstrated the feasibility of prolonged, repeated dosing of pf-tPA. High doses (> or =1mg/kg/d) were associated with pulmonary hemorrhage that may be due, in part, to accumulation of drug in the lungs.
Collapse
|
8
|
Schoell AR, Heyde BR, Weir DE, Chiang PC, Hu Y, Tung DK. Euthanasia method for mice in rapid time-course pulmonary pharmacokinetic studies. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2009; 48:506-511. [PMID: 19807971 PMCID: PMC2755020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/02/2009] [Accepted: 04/16/2009] [Indexed: 05/28/2023]
Abstract
To develop a means of euthanasia to support rapid time-course pharmacokinetic studies in mice, we compared retroorbital and intravenous lateral tail vein injection of ketamine-xylazine with regard to preparation time, utility, tissue distribution, and time to onset of euthanasia. Tissue distribution and time to onset of euthanasia did not differ between administration methods. However, retroorbital injection could be performed more rapidly than intravenous injection and was considered to be a technically simple and superior alternative for mouse euthanasia. Retroorbital ketamine-xylazine, CO(2) gas, and intraperitoneal pentobarbital then were compared as euthanasia agents in a rapid time-point pharmacokinetic study. Retroorbital ketamine-xylazine was the most efficient and consistent of the 3 methods, with an average time to death of approximately 5 s after injection. In addition, euthanasia by retroorbital ketamine-xylazine enabled accurate sample collection at closely spaced time points and satisfied established criteria for acceptable euthanasia technique.
Collapse
Affiliation(s)
- Adam R Schoell
- World Wide Comparative Medicine, Pfizer Global Research and Development, St Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|