1
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Yun SP, Kim HJ, Kim H, Park SW. Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice. Int J Mol Sci 2024; 25:12563. [PMID: 39684275 DOI: 10.3390/ijms252312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768. After renal IR, P2Y2R KO mice showed greater increases in plasma creatinine, tubular damage and neutrophil infiltration, and significant induction of proinflammatory cytokines and apoptotic markers than wild-type (WT) mice. In contrast, treatment with MRS2768 reduced plasma creatinine levels, tubular damage and inflammation, and renal apoptosis in mice subjected to renal IR. In cultured human proximal tubular HK-2 cells, MRS2768 upregulated P2Y2R mRNA levels and decreased TNF-α/cycloheximide-induced apoptosis and inflammation. Importantly, P2Y2R activation by MRS2768 increased the phosphorylation of protein kinase C (PKC), Src, and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, the inhibition of PI3K/Akt abolished the protective effects of MRS2768 against TNF-α/cycloheximide-induced apoptosis and inflammation in HK-2 cells. In conclusion, activation of P2Y2R protects against tubular apoptosis and inflammation during renal IR via the PKC/Src/Akt pathway, suggesting P2Y2R is a promising therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
2
|
Yue Q, Al-Khalili O, Moseley A, Yoshigi M, Wynne BM, Ma H, Eaton DC. PIP 2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. BIOLOGY 2022; 11:biology11121694. [PMID: 36552204 PMCID: PMC9774185 DOI: 10.3390/biology11121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
Collapse
Affiliation(s)
- Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Masaaki Yoshigi
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Brandi Michele Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Douglas C. Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-4533; Fax: +1-404-727-3425
| |
Collapse
|
3
|
Ilatovskaya DV, Palygin O, Staruschenko A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F1135-F1139. [PMID: 27654892 DOI: 10.1152/ajprenal.00406.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
4
|
P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation. Acta Pharmacol Sin 2016; 37:617-28. [PMID: 27018177 DOI: 10.1038/aps.2015.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. METHODS Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. RESULTS Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. CONCLUSION P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.
Collapse
|
5
|
Wheatley CM, Baker SE, Morgan MA, Martinez MG, Morgan WJ, Wong EC, Karpen SR, Snyder EM. Effects of exercise intensity compared to albuterol in individuals with cystic fibrosis. Respir Med 2014; 109:463-74. [PMID: 25749641 DOI: 10.1016/j.rmed.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although exercise is a vital component of the therapy prescribed to individuals with cystic fibrosis (CF), it is not a priority due to a finite amount of treatment time and the view that exercise is not as beneficial as pharmacological treatments by many individuals with CF. We sought to compare the therapeutic benefits of exercise and their prescribed bronchodilator albuterol. METHODS CF (n = 14) and healthy (n = 16) subjects completed three visits, a baseline screening with VO2 max test and two treatment visits. On the two treatment visits, subjects completed spirometry and diffusing capacity of the lungs for nitric oxide (DLNO) maneuvers either at baseline, 60, and 110 min post-albuterol administration, or at baseline and the midway point of three separate 15 min exercise bouts at low, moderate and vigorous intensity (25, 50 and 65% of the maximum workload, respectively). RESULTS With moderate exercise the increase in DLNO was double (39 ± 8 vs 15 ± 6% change) and the level of bronchodilation similar (23% change) when compared to 110 min post-albuterol in individuals with CF. During exercise FVC became reduced (-309 ± 66 mL with moderate exercise) and the increase in FEV1 was attenuated (103 ± 39 vs 236 ± 58 mL, exercise vs. albuterol) when compared with the response to albuterol in individuals with CF. Epinephrine (EPI) release increased 39, 72 and 144% change with low, moderate and vigorous intensity exercise respectively for individuals with CF, but this increase was blunted when compared to healthy subjects. CONCLUSION Our results suggest that moderate intensity exercise is the optimal intensity for individuals with CF, as low intensity exercise increases EPI less than 50% and vigorous intensity exercise is over taxing, such that airflow can be restricted. Although the duration of the beneficial effect is uncertain, exercise can promote greater improvements in gas diffusion and comparable bronchodilation when compared to albuterol.
Collapse
Affiliation(s)
- Courtney M Wheatley
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Sarah E Baker
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA.
| | - Mary A Morgan
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Marina G Martinez
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Wayne J Morgan
- Department of Pediatrics- Pulmonology, Allergy and Immunology, University of Arizona, Tucson, AZ, USA.
| | - Eric C Wong
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Stephen R Karpen
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA.
| | - Eric M Snyder
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, AZ, USA; Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Marunaka Y. Importance of expression and function of angiotensin II receptor type 1 in pulmonary epithelial cells. Respir Physiol Neurobiol 2014; 196:39-42. [PMID: 24594106 DOI: 10.1016/j.resp.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
7
|
Marunaka Y. Characteristics and Pharmacological Regulation of Epithelial Na+ Channel (ENaC) and Epithelial Na+ Transport. J Pharmacol Sci 2014. [DOI: 10.1254/jphs.14r01sr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Potthoff SA, Stegbauer J, Becker J, Wagenhaeuser PJ, Duvnjak B, Rump LC, Vonend O. P2Y2 receptor deficiency aggravates chronic kidney disease progression. Front Physiol 2013; 4:234. [PMID: 24065922 PMCID: PMC3776930 DOI: 10.3389/fphys.2013.00234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
Purinergic signaling is involved in a variety of physiological states. P2 receptors are mainly activated by adenosine triphosphate (ATP). Activation of specific P2Y receptor subtypes might influence progression of kidney disease. To investigate the in vivo effect of a particular P2 receptor subtype on chronic kidney disease progression, subtotal nephrectomy was performed on wild type (WT) and P2Y2 receptor knockout (KO) mice. During the observational period of 56 ± 2 days, survival of KO mice was inferior compared to WT mice after SNX. Subtotal nephrectomy reduced creatinine clearance in both groups of mice, but the decrease was significantly more pronounced in KO compared to WT mice (53.9 ± 7.7 vs. 84.3 ± 8.7μl/min at day 56). The KO mice also sustained a greater increase in systolic blood pressure after SNX compared to WT mice (177 ± 2 vs. 156 ± 7 mmHg) and a 2.5-fold increase in albuminuria compared to WT. In addition, WT kidneys showed a significant increase in remnant kidney mass 56 days after SNX, but significant attenuation of hypertrophy in KO mice was observed. In line with the observed hypertrophy in WT SNX mice, a significant dose-dependent increase in DNA synthesis, a marker of proliferation, was present in cultured WT glomerular epithelial cells upon ATP stimulation. Markers for tissue damage (TGF-β 1, PAI-1) and proinflammatory target genes (MCP1) were significantly upregulated in KO mice after SNX compared to WT SNX mice. In summary, deletion of the P2Y2 receptor leads to greater renal injury after SNX compared to WT mice. Higher systolic blood pressure and inability of compensatory hypertrophy in KO mice are likely causes for the accelerated progression of chronic kidney disease.
Collapse
Affiliation(s)
- Sebastian A Potthoff
- Department of Nephrology, Medical Faculty, University Duesseldorf Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Dagenais A, Tessier MC, Tatur S, Brochiero E, Grygorczyk R, Berthiaume Y. Hypotonic shock modulates Na(+) current via a Cl(-) and Ca(2+)/calmodulin dependent mechanism in alveolar epithelial cells. PLoS One 2013; 8:e74565. [PMID: 24019969 PMCID: PMC3760838 DOI: 10.1371/journal.pone.0074565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 08/05/2013] [Indexed: 12/02/2022] Open
Abstract
Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.
Collapse
Affiliation(s)
- André Dagenais
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | | | - Sabina Tatur
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Ryszard Grygorczyk
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
CHOLEWA JASONMICHAEL, PAOLONE VINCENTJ. Influence of Exercise on Airway Epithelia in Cystic Fibrosis. Med Sci Sports Exerc 2012; 44:1219-26. [DOI: 10.1249/mss.0b013e31824bd436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Öhman J, Erlinge D. The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signal 2012; 8:599-608. [PMID: 22528685 DOI: 10.1007/s11302-012-9316-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny Öhman
- Faculty of Medicine, Lund University, Box 117, 221 00, Lund, Sweden.
| | | |
Collapse
|
12
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
13
|
Regulation of epithelial sodium transport via epithelial Na+ channel. J Biomed Biotechnol 2011; 2011:978196. [PMID: 22028593 PMCID: PMC3196915 DOI: 10.1155/2011/978196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/09/2011] [Accepted: 08/03/2011] [Indexed: 12/02/2022] Open
Abstract
Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane.
Collapse
|
14
|
Palmer ML, Peitzman ER, Maniak PJ, Sieck GC, Prakash YS, O'Grady SM. K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation. J Physiol 2011; 589:3483-94. [PMID: 21606112 DOI: 10.1113/jphysiol.2011.207548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.
Collapse
Affiliation(s)
- Melissa L Palmer
- Biology Program, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pondugula SR, Raveendran NN, Marcus DC. Ion transport regulation by P2Y receptors, protein kinase C and phosphatidylinositol 3-kinase within the semicircular canal duct epithelium. BMC Res Notes 2010; 3:100. [PMID: 20398257 PMCID: PMC2862037 DOI: 10.1186/1756-0500-3-100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 04/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ionic composition of the luminal fluid in the vestibular labyrinth is maintained within tight limits by the many types of epithelial cells bounding the lumen. Regulatory mechanisms include systemic, paracrine and autocrine hormones along with their associated intracellular signal pathways. The epithelium lining the semicircular canal duct (SCCD) is a tissue that is known to absorb sodium and calcium and to secrete chloride. FINDINGS Transport function was assessed by measurements of short circuit current (Isc) and gene transcript expression was evaluated by microarray. Neither ATP nor UTP (100 microM) on the apical side of the epithelium had any effect on Isc. By contrast, basolateral ATP transiently increased Isc and transepithelial resistance dropped significantly after basolateral ATP and UTP. P2Y2 was the sole UTP-sensitive purinergic receptor expressed. Isc was reduced by 42%, 50% and 63% after knockdown of alpha-ENaC, stimulation of PKC and inhibition of PI3-K, while the latter two increased the transepithelial resistance. PKCdelta, PKCgamma and PI3-K were found to be expressed. CONCLUSIONS These observations demonstrate that ion transport by the SCCD is regulated by P2Y2 purinergic receptors on the basolateral membrane that may respond to systemic or local agonists, such as ATP and/or UTP. The sodium absorption from endolymph mediated by ENaC in SCCD is regulated by signal pathways that include the kinases PKC and PI3-K. These three newly-identified regulatory components may prove to be valuable drug targets in the control of pathologic vestibular conditions involving dysfunction of transport homeostasis in the ear, such as Meniere's disease.
Collapse
|