1
|
Dedukh D, Lisachov A, Panthum T, Singchat W, Matsuda Y, Imai Y, Janko K, Srikulnath K. Meiotic deviations and endoreplication lead to diploid oocytes in female hybrids between bighead catfish ( Clarias macrocephalus) and North African catfish ( Clarias gariepinus). Front Cell Dev Biol 2024; 12:1465335. [PMID: 39247622 PMCID: PMC11377317 DOI: 10.3389/fcell.2024.1465335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Reproductive isolation and hybrid sterility are mechanisms that maintain the genetic integrity of species and prevent the introgression of heterospecific genes. However, crosses of closely related species can lead to complex evolution, such as the formation of all-female lineages that reproduce clonally. Bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) diverged 40 million years ago. They are cultivated and hybridized in Thailand for human consumption. Male hybrids are sterile due to genome-wide chromosome asynapsis during meiosis. Although female hybrids are sometimes fertile, their chromosome configuration during meiosis has not yet been studied. Methods We analyzed meiosis in the hybrid female catfish at pachytene (synaptonemal complexes) and diplotene (lampbrush chromosomes), using immunostaining to detect chromosome pairing and double-stranded break formation, and FISH with species-specific satellite DNAs to distinguish the parental chromosomes. Results More than 95% of oocytes exhibited chromosome asynapsis in female hybrid catfish; however, they were able to progress to the diplotene stage and form mature eggs. The remaining oocytes underwent premeiotic endoreplication, followed by synapsis and crossing over between sister chromosomes, similar to known clonal lineages in fish and reptiles. Discussion The occurrence of clonal reproduction in female hybrid catfish suggests a unique model for studying gametogenic alterations caused by hybridization and their potential for asexual reproduction. Our results further support the view that clonal reproduction in certain hybrid animals relies on intrinsic mechanisms of sexually reproducing parental species, given their multiple independent origins with the same mechanism.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czechia
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, Thailand
| |
Collapse
|
2
|
Dedukh D, da Cruz I, Kneitz S, Marta A, Ormanns J, Tichopád T, Lu Y, Alsheimer M, Janko K, Schartl M. Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa. Chromosome Res 2022; 30:443-457. [PMID: 36459298 PMCID: PMC9771850 DOI: 10.1007/s10577-022-09708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Irene da Cruz
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Anatolie Marta
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
- Institute of Zoology, Academiei 1, 2001, MD-2028, Chisinau, Moldova
| | - Jenny Ormanns
- Biochemistry and Cell Biology, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Manfred Alsheimer
- Cell and Developmental Biology, University of Wuerzburg, Am Hubland, 97074, BiocenterWuerzburg, Germany
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
3
|
Knytl M, Forsythe A, Kalous L. A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. Int J Mol Sci 2022; 23:8095. [PMID: 35897665 PMCID: PMC9330404 DOI: 10.3390/ijms23158095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Adrian Forsythe
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden;
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16521 Prague, Czech Republic;
| |
Collapse
|
4
|
Dedukh D, Altmanová M, Klíma J, Kratochvíl L. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development 2022; 149:274975. [PMID: 35388415 DOI: 10.1242/dev.200345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Jiří Klíma
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| |
Collapse
|
5
|
Mishina T, Takeshima H, Takada M, Iguchi K, Zhang C, Zhao Y, Kawahara-Miki R, Hashiguchi Y, Tabata R, Sasaki T, Nishida M, Watanabe K. Interploidy gene flow involving the sexual-asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. Sci Rep 2021; 11:22485. [PMID: 34795357 PMCID: PMC8602411 DOI: 10.1038/s41598-021-01754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Asexual vertebrates are rare and at risk of extinction due to their restricted adaptability through the loss of genetic recombination. We explore the mechanisms behind the generation and maintenance of genetic diversity in triploid asexual (gynogenetic) Carassius auratus fish, which is widespread in East Asian fresh waters and exhibits one of the most extensive distribution among asexual vertebrates despite its dependence on host sperm. Our analyses of genetic composition using dozens of genetic markers and genome-wide transcriptome sequencing uncover admixed genetic composition of Japanese asexual triploid Carassius consisting of both the diverged Japanese and Eurasian alleles, suggesting the involvement of Eurasian lineages in its origin. However, coexisting sexual diploid relatives and asexual triploids in Japan show regional genetic similarity in both mitochondrial and nuclear markers. These results are attributed to a unique unidirectional gene flow from diploids to sympatric triploids, with the involvement of occasional sexual reproduction. Additionally, the asexual triploid shows a weaker population structure than the sexual diploid, and multiple triploid lineages coexist in most Japanese rivers. The generated diversity via repeated interploidy gene flow as well as an increased establishment of immigrants is assumed to offset the cost of asexual reproduction and might contribute to the successful broad distribution of this asexual vertebrate.
Collapse
Affiliation(s)
- Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, 650-0047, Japan.
| | - Hirohiko Takeshima
- Research Institute for Humanity and Nature, Kita-ku, Kyoto, 603-8047, Japan
- Department of Marine Biology, Tokai University, Shimizu, Shizuoka, 424-8610, Japan
| | - Mikumi Takada
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kei'ichiro Iguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Chunguang Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Ryouka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yasuyuki Hashiguchi
- Department of Biology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-0801, Japan
| | - Ryoichi Tabata
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Lake Biwa Museum, 1091 Oroshimo, Kusatsu, Shiga, 525-0001, Japan
| | - Takeshi Sasaki
- Graduate School of Human and Animal-Plant Relationships, Tokyo University of Agriculture, Atsugi, Kanagawa, 243-0034, Japan
| | - Mutsumi Nishida
- University of the Ryukyus, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Katsutoshi Watanabe
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
7
|
Yamaguchi F, Fujimoto T, Suzuki H, Tanaka H, Murakami M, Yamaha E, Arai K. Diploid and aneuploid sperm in tetraploid ginbuna, Carassius auratus langsdorfii. Theriogenology 2021; 172:95-105. [PMID: 34147877 DOI: 10.1016/j.theriogenology.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 11/27/2022]
Abstract
Ginbuna (Carassius auratus langsdorfii (Teleostei: Cyprinidae)) occur in diploid, triploid, and tetraploid forms in wild populations. Diploid females reproduce bisexually, whereas polyploid (triploid and tetraploid) females reproduce gynogenetically with no contribution from sperm nuclei. However, tetraploid males produce diploid sperm. The mechanism responsible for the differences in egg and sperm ploidy has not been elucidated as tetraploid males are rare in wild populations. Here, we aimed to characterize the types of sperm and elucidate the mechanism of spermatogenesis in ginbuna. In the present study, we artificially produced tetraploid males by crossbreeding triploid ginbuna females with diploid goldfish (Carassius auratusauratus) males via accidental incorporation of sperm nuclei. We then examined spermatogenesis to reveal the process by which reduced diploid sperm are generated from tetraploid germ cells. DNA fingerprinting by random amplified polymorphic DNA (RAPD)-PCR indicated that the tetraploid progeny had a paternally derived genome. For the tetraploid male sperm, there were narrow (N-type) and broad (B-type) flow cytometrical histograms. The N-type were determined to be diploid with a low coefficient of variation (CV) by flow cytometry. The B-type were found to be aneuploid (hypodiploid to hexaploid) with a high CV. The head sizes of B-type sperm were variable, whereas those of the N-type sperm were uniform. Computer-assisted sperm analysis (CASA) revealed that both the haploid and diploid B-type sperm were weakly motile compared with the haploid sperm of goldfish and the diploid N-type sperm of tetraploid males. Bivalents and various multivalents were observed in the meiotic configurations of diploid spermatogenesis. In aneuploid spermatogenesis, most of the chromosomes were unpaired univalents and there were very few bivalents. Our findings provide empirical evidence for two different types of spermatogenesis in tetraploid C. a. langsdorfii males. Meiotic synapses might explain the observed differences in the ploidy status of the two sperm types.
Collapse
Affiliation(s)
- Fumi Yamaguchi
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan.
| | - Takafumi Fujimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Hiroko Suzuki
- Gunma Prefectural Fisheries Experimental Station, Maebashi, Gunma, Japan
| | - Hideki Tanaka
- Gunma Prefectural Fisheries Experimental Station, Maebashi, Gunma, Japan
| | - Masaru Murakami
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Etsuro Yamaha
- Nanae Fresh-Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Hokkaido, Japan
| | - Katsutoshi Arai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Delomas TA, Willis SC, Parker BL, Miller D, Anders P, Schreier A, Narum S. Genotyping single nucleotide polymorphisms and inferring ploidy by amplicon sequencing for polyploid, ploidy-variable organisms. Mol Ecol Resour 2021; 21:2288-2298. [PMID: 34008918 DOI: 10.1111/1755-0998.13431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Whole genome duplication is hypothesized to have played a critical role in the evolution of several major taxa, including vertebrates, and while many lineages have rediploidized, some retain polyploid genomes. Additionally, variation in ploidy can occur naturally or be artificially induced within select plant and animal species. Modern genetic techniques have not been widely applied to polyploid or ploidy-variable species, in part due to the difficulty of obtaining genotype data from polyploids. In this study, we demonstrate a strategy for developing an amplicon sequencing panel of single nucleotide polymorphisms for high-throughput genotyping of polyploid organisms. We then develop a method to infer ploidy of individuals from amplicon sequencing data that is generalized to apply to any ploidy and does not require prior identification of heterozygous genotypes. Combining these two techniques will allow researchers to both infer ploidy and generate ploidy-aware genotypes with the same amplicon sequencing panel. We demonstrate this approach with white sturgeon Acipenser transmontanus, a ploidy-variable (octoploid, decaploid and dodecaploid) imperiled species under conservation management in the Pacific Northwest and obtained a panel of 325 loci. These loci were validated by examining inheritance in known-cross families, and the ploidy inference method was validated with known ploidy samples. We provide scripts that adapt existing pipelines to genotype polyploids and an R package for application of the ploidy inference method. We expect that these techniques will empower studies of genetic variation and inheritance in polyploid organisms that vary in ploidy level, either naturally or as a result of artificial propagation practices.
Collapse
Affiliation(s)
- Thomas A Delomas
- Pacific States Marine Fisheries Commission/Idaho Department of Fish and Game, Eagle Fish Genetics Laboratory, Eagle, ID, USA
| | - Stuart C Willis
- Hagerman Genetics Lab, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Blaine L Parker
- Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | | | | | - Andrea Schreier
- Genomic Variation Laboratory, Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Shawn Narum
- Hagerman Genetics Lab, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
9
|
Shivaramu S, Lebeda I, Vuong DT, Rodina M, Gela D, Flajšhans M. Ploidy Levels and Fitness-Related Traits in Purebreds and Hybrids Originating from Sterlet ( Acipenser ruthenus) and Unusual Ploidy Levels of Siberian Sturgeon ( A. baerii). Genes (Basel) 2020; 11:E1164. [PMID: 33023081 PMCID: PMC7600540 DOI: 10.3390/genes11101164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate and compare fitness-related traits and ploidy levels of purebreds and hybrids produced from sturgeon broodstock with both normal and abnormal ploidy levels. We used diploid Acipenser ruthenus and tetraploid A. baerii males and females to produce purebreds and reciprocal hybrids of normal ploidy levels. Likewise, we used diploid A. ruthenus and tetraploid A. baerii females mated to pentaploid and hexaploid A. baerii males to produce hybrids of abnormal ploidy levels. Fertilization of ova of A. ruthenus and A. baerii of normal ploidy with the sperm of pentaploid and hexaploid A. baerii produced fully viable progeny with ploidy levels that were intermediate between those of the parents as was also found in crosses of purebreds and reciprocal hybrids of normal ploidy levels. The A. ruthenus × pentaploid A. baerii and A. ruthenus × hexaploid A. baerii hybrids did not survive after 22 days post-hatch (dph). Mean body weight and cumulative survival were periodically checked at seven-time intervals. The recorded values of mean body weight were significantly higher in A. baerii × pentaploid A. baerii hybrids than other groups at three sampling points (160, 252 and 330 dph). In contrast, the highest cumulative survival was observed in A. baerii × A. ruthenus hybrids at all sampling points (14.47 ± 5.70 at 497 dph). Overall, most of the studied sturgeon hybrids displayed higher mean BW and cumulative survival compared to the purebreds. The utilization of sturgeon hybrids should be restricted to aquaculture purposes because they can pose a significant genetic threat to native populations through ecological interactions.
Collapse
Affiliation(s)
- Sahana Shivaramu
- South Bohemian Research Center for Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (D.T.V.); (M.R.); (D.G.); (M.F.)
| | | | | | | | | | | |
Collapse
|
10
|
Glover KA, Harvey AC, Hansen TJ, Fjelldal PG, Besnier FN, Bos JB, Ayllon F, Taggart JB, Solberg MF. Chromosome aberrations in pressure-induced triploid Atlantic salmon. BMC Genet 2020; 21:59. [PMID: 32505176 PMCID: PMC7276064 DOI: 10.1186/s12863-020-00864-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triploid organisms have three sets of chromosomes. In Atlantic salmon, hydrostatic pressure treatment of newly fertilized eggs has been extensively used to produce triploids which are functionally sterile due to their unpaired chromosomes. These fish often perform poorly on commercial farms, sometimes without explanation. Inheritance patterns in individuals subjected to pressure treatment have not been investigated in Atlantic salmon thus far. However, work on other species suggests that this treatment can result in aberrant inheritance. We therefore studied this in Atlantic salmon by genotyping 16 polymorphic microsatellites in eyed eggs and juveniles which had been subjected to pressure-induction of triploidy. Communally reared juveniles including fish subjected to pressure-induction of triploidy and their diploid siblings were included as a control. RESULTS No diploid offspring were detected in any of the eggs or juveniles which were subjected to hydrostatic pressure; therefore, the induction of triploidy was highly successful. Aberrant inheritance was nevertheless observed in 0.9% of the eggs and 0.9% of the juveniles that had been subjected to pressure treatment. In the communally reared fish, 0.3% of the fish subjected to pressure treatment displayed aberrant inheritance, while their diploid controls displayed 0% aberrant inheritance. Inheritance errors included two eyed eggs lacking maternal DNA across all microsatellites, and, examples in both eggs and juveniles of either the maternal or paternal allele lacking in one of the microsatellites. All individuals displaying chromosome aberrations were otherwise triploid. CONCLUSIONS This is the first study to document aberrant inheritance in Atlantic salmon that have been subjected to pressure-induction of triploidy. Our experiments unequivocally demonstrate that even when induction of triploidy is highly successful, this treatment can cause chromosome aberrations in this species. Based upon our novel data, and earlier studies in other organisms, we hypothesize that in batches of Atlantic salmon where low to modest triploid induction rates have been reported, aberrant inheritance is likely to be higher than the rates observed here. Therefore, we tentatively suggest that this could contribute to the unexplained poor performance of triploid salmon that is occasionally reported in commercial aquaculture. These hypotheses require further investigation.
Collapse
Affiliation(s)
- K A Glover
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - A C Harvey
- Institute of Marine Research, Bergen, Norway.
| | - T J Hansen
- Institute of Marine Research, Bergen, Norway
| | | | - F N Besnier
- Institute of Marine Research, Bergen, Norway
| | - J B Bos
- ZEBCARE, Nederweert, The Netherlands
| | - F Ayllon
- Institute of Marine Research, Bergen, Norway
| | | | - M F Solberg
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
11
|
Schiffer PH, Danchin EGJ, Burnell AM, Creevey CJ, Wong S, Dix I, O'Mahony G, Culleton BA, Rancurel C, Stier G, Martínez-Salazar EA, Marconi A, Trivedi U, Kroiher M, Thorne MAS, Schierenberg E, Wiehe T, Blaxter M. Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. iScience 2019; 21:587-602. [PMID: 31759330 PMCID: PMC6889759 DOI: 10.1016/j.isci.2019.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.
Collapse
Affiliation(s)
- Philipp H Schiffer
- CLOE, Department for Biosciences, University College London, London, UK; Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany; Institut für Genetik, Universität zu Köln, 50674 Köln, Germany.
| | | | - Ann M Burnell
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | - Simon Wong
- Irish Centre for High-End Computing, Tower Building, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin D02 HP83, Ireland
| | - Ilona Dix
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Georgina O'Mahony
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Bridget A Culleton
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland; Megazyme, Bray Business Park, Bray, Co. Wicklow A98 YV29, Ireland
| | | | - Gary Stier
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Elizabeth A Martínez-Salazar
- Unidad Académica de Ciencias Biológicas, Laboratorio de Colecciones Biológicas y Sistemática Molecular, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Aleksandra Marconi
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | | | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK; Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Delomas TA. Differentiating diploid and triploid individuals using single nucleotide polymorphisms genotyped by amplicon sequencing. Mol Ecol Resour 2019; 19:1545-1551. [DOI: 10.1111/1755-0998.13073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas A. Delomas
- Pacific States Marine Fisheries Commission Eagle Fish Genetics Laboratory Eagle ID USA
| |
Collapse
|
13
|
Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. Clonal reproduction assured by sister chromosome pairing in dojo loach, a teleost fish. Chromosome Res 2018; 26:243-253. [DOI: 10.1007/s10577-018-9581-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
|
14
|
Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 2016; 48:12. [PMID: 26867760 PMCID: PMC4751722 DOI: 10.1186/s12711-016-0194-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome. RESULTS Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii. CONCLUSIONS We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.
Collapse
Affiliation(s)
- Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.
| | - Dmytro Bytyutskyy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Radka Symonová
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, 5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic.
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
15
|
Cytological studies on induced mitogynogenesis in Japanese flounder Paralichthys olivaceus (Temminck et Schlegel). ZYGOTE 2016; 24:700-6. [PMID: 26796308 DOI: 10.1017/s0967199415000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of hydrostatic pressure treatment on the induction of mitogynogenesis in the eggs of Japanese flounder Paralichthys olivaceus (Temminck et Schlegel) by using heterospecific sperm were studied. Before treatment, the eggs were at metaphase of the first mitosis. The spindle was disassembled by the treatment and then resembled in its pretreatment position, and the chromosomes were rearranged, i.e., the first mitosis was not blocked. During the second mitotic cycle, only a monopolar spindle was assembled in each blastomere and the chromosomes doubled, but cell cleavage was blocked. In the third cycle, mitosis proceeded normally with a bipolar spindle in each blastomere. Flow cytometric analysis of ploidy demonstrated that mitogynogenetic larvae were all diploid. The ultraviolet light-irradiated sperm of the red sea bream (Pagrus major) was condensed, formed a dense chromatin body, and randomly entered one blastomere.
Collapse
|
16
|
Zhang J, Sun M, Zhou L, Li Z, Liu Z, Li XY, Liu XL, Liu W, Gui JF. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep 2015; 5:10898. [PMID: 26042995 PMCID: PMC4455247 DOI: 10.1038/srep10898] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Min Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, Krasikova A. Optional Endoreplication and Selective Elimination of Parental Genomes during Oogenesis in Diploid and Triploid Hybrid European Water Frogs. PLoS One 2015; 10:e0123304. [PMID: 25894314 PMCID: PMC4403867 DOI: 10.1371/journal.pone.0123304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
Incompatibilities between parental genomes decrease viability of interspecific hybrids; however, deviations from canonical gametogenesis such as genome endoreplication and elimination can rescue hybrid organisms. To evaluate frequency and regularity of genome elimination and endoreplication during gametogenesis in hybrid animals with different ploidy, we examined genome composition in oocytes of di- and triploid hybrid frogs of the Pelophylax esculentus complex. Obtained results allowed us to suggest that during oogenesis the endoreplication involves all genomes occurring before the selective genome elimination. We accepted the hypothesis that only elimination of one copied genome occurs premeiotically in most of triploid hybrid females. At the same time, we rejected the hypothesis stating that the genome of parental species hybrid frogs co-exist with is always eliminated during oogenesis in diploid hybrids. Diploid hybrid frogs demonstrate an enlarged frequency of deviations in oogenesis comparatively to triploid hybrids. Typical for hybrid frogs deviations in gametogenesis increase variability of produced gametes and provide a mechanism for appearance of different forms of hybrids.
Collapse
Affiliation(s)
- Dmitry Dedukh
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Spartak Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Juriy Rosanov
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Glib Mazepa
- Department of Ecology and Genetic, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | | | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
18
|
Arai K, Fujimoto T. Genomic Constitution and Atypical Reproduction in Polyploid and Unisexual Lineages of the Misgurnus Loach, a Teleost Fish. Cytogenet Genome Res 2013; 140:226-40. [DOI: 10.1159/000353301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet Genome Res 2013; 139:276-83. [PMID: 23652770 DOI: 10.1159/000350689] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/19/2022] Open
Abstract
A single female with 206 chromosomes and another 26 females with 156 chromosomes identified as Prussian carp, Carassius gibelio, and 5 individuals with 100 chromosomes identified as crucian carp, C. carassius, were sampled during field survey in one locality in the upper Elbe River. To identify the origin of females with high chromosome numbers, comparative karyotype analysis, GISH, with whole C. carassius DNA as probe and phylogenetic positions of sampled individuals revealed by cytochrome b mitochondrial marker were performed. GISH showed consistently bright labeling of 50 chromosomal elements out of 206, corresponding to the haploid chromosome number of C. carassius. The position of these females with high chromosome numbers in a reconstructed phylogenetic tree was within the clade of C. gibelio, documenting its affiliation to C. gibelio mitochondrial, i.e. maternal lineage. Our findings indicated that the mother of the female with high chromosome numbers was a gynogenetically reproducing 156-chromosome C. gibelio female and the father a bisexually reproducing C. carassius male. We, therefore, hypothesized that the C. gibelio × C. carassius allopolyploid female with 206 chromosomes arose by a mechanism of sperm genome addition to an unreduced egg of the mother.
Collapse
Affiliation(s)
- M Knytl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
20
|
Yoshikawa H, Morishima K, Kusuda S, Yamaha E, Arai K. Diploid sperm produced by artificially sex-reversed clone loaches. ACTA ACUST UNITED AC 2007; 307:75-83. [PMID: 17177281 DOI: 10.1002/jez.a.337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clone loaches reproduce unisexually in a wild population of Hokkaido Island, Japan. These clone loaches produce genetically identical unreduced eggs which develop to diploid individuals without any genetic contribution of sperm donors. In the present study, sex reversal of clone loaches was attempted and the reproductive potential of resultant clone males was examined. Clone loaches administered 0.5 ppm of 17-alpha methyltestosterone (MT) for 30 days from 1 month after hatching differentiated into physiological males. These sex-reversed clone males produced fertile spermatozoa with a diploid DNA content. Diploid spermatozoa had significantly larger heads than normal haploid sperm, but had a normal shape showing a head, mid-piece, and tail. The motility of diploid spermatozoa was low after ambient water was added. Concentration of diploid spermatozoa per unit of sperm was lower than that of control haploid spermatozoa. Microsatellite genotyping revealed that triploid progeny from the cross between a normal diploid female and a sex-reversed clone male had two alleles specific to the diploid clone male and one allele of the mother loach. These results indicated that the sex-reversed clone males produced fertile diploid spermatozoa genetically identical to the clone lineage.
Collapse
Affiliation(s)
- Hiroyuki Yoshikawa
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | |
Collapse
|
21
|
Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach,Misgurnus anguillicaudatus (Teleostei: Cobitidae). ACTA ACUST UNITED AC 2006; 305:513-23. [PMID: 16526047 DOI: 10.1002/jez.a.283] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The natural clone loach produces unreduced eggs genetically identical to somatic cells of the mother fish and such diploid eggs normally develop as a clone without genetic contribution of sperm. Following the identification of clonal nature and diploidy of eggs, we conducted cytological studies to determine the mechanisms responsible for this unusual oogenesis. Cytolological observation of full-grown oocytes cultured in vitro revealed that oocytes of both the clone and the control loach underwent two successive meiotic divisions: formation of a bipolar spindle and metaphase in meiosis I and equal segregation of chromosomes, extrusion of the first polar body and the appearance of metaphase of meiosis II. However, spindle size of the clone was larger than that of the control. Bivalent chromosome number of germinal vesicle of oocytes was 25 in the control diploid, whereas 50 in the clone. The results suggest that chromosomes are duplicated by mitosis without cytokinesis before meiosis, i.e. premeiotic endomitosis and then oocytes differentiated from tetraploid oogonia undergo a quasinormal meiosis followed by two successive divisions to produce diploid eggs.
Collapse
Affiliation(s)
- Masaki Itono
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Morishima K, Oshima K, Horie S, Fujimoto T, Yamaha E, Arai K. Clonal diploid sperm of the diploid-triploid mosaic loach,Misgurnus anguillicaudatus (Teleostei:Cobitidae). ACTA ACUST UNITED AC 2004; 301:502-11. [PMID: 15181644 DOI: 10.1002/jez.a.49] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loach Misgurnus anguillicaudatus comprises diploid, triploid and diploid-triploid mosaic individuals in a wild population of the Hokkaido island, Japan. Previous studies revealed the presence of a cryptic clonal lineage among diploid loaches, which is maintained by uniparental reproduction of genetically identical diploid eggs. In the present study, we analyzed distribution and genetic status of diploid and triploid cells in infrequent mosaic males. Flow cytometry, microsatellite genotyping and DNA fingerprinting verified that mosaic males consisted of diploid cells with genotypes identical to the natural clone and triploid cells with diploid genomes of the clonal lineage plus haploid genome from sperm nucleus of the father. Thus, the occurrence of diploid-triploid mosaicism might be caused by accidental fertilization of a diploid blastomere nucleus with haploid sperm after the initiation of clonal development of unreduced eggs. Such mosaic males produced fertile sperm with diploid DNA content. The experimental cross between normal diploid female and diploid-triploid mosaic male gave rise to the appearance of triploid progeny which exhibited two microsatellite alleles identical to the clonal genotype and one allele derived from the normal female. In DNA fingerprinting, such triploid progeny gave not only all the DNA fragments from the clone, but also other fragments from the normal female. Induced androgenesis using UV irradiated eggs and sperm of the mosaic male gave rise to the occurrence of diploid individuals with paternally derived microsatellite genotypes and DNA fingerprints, absolutely identical to the natural clonal lineage. These results conclude that the diploid-triploid mosaic male produced unreduced diploid sperm with genetically identical genotypes. The spermatogenesis in the clonal diploid cells under the mosaic condition suggests that triploid male somatic cells might transform genetically all-female germ cells to differentiate into functionally male gametes. The discovery of the mosaic male producing unreduced sperm suggests the theoretical occurrence of triploids and other polyploids by the syngamy of such paternally derived diploid gametes.
Collapse
Affiliation(s)
- Kagayaki Morishima
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Xie J, Wen JJ, Yang ZA, Wang HY, Gui JF. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 295:1-16. [PMID: 12506399 DOI: 10.1002/jez.a.10209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Silver crucian carp (Carassius auratus gibelio) is a unique gynogenetic fish. Because of its specific genetic background and reproduction mode, it is an intriguing model system for understanding regulatory mechanism of oocyte maturation division. It keeps its chromosomal integrity by inhibiting the first meiotic division (no extrusion of the first pole body). The spindle behavior during oocyte maturation is significantly different from that in gonochoristic fish. The chromosomes are first arranged in a tripolar spindle, and then they turn around and are reunited mutually to form a normal bipolar spindle. A new member of the fish A-type cyclin gene, cyclin A2, has been isolated by suppression of subtractive hybridization on the basis of its differential transcription in fully-grown oocytes between the gynogenetic silver crucian carp and gonochoristic color crucian carp. There are 18 differing amino acids in the total 428 residues of cyclin A2 between the two forms of crucian carps. In addition, cDNAs of cyclin Al and cyclin B have also been cloned from them. Thus two members of A-type cyclins, cyclin Al and cyclin A2, are demonstrated to exist in fish, just as in frog, humans, and mouse. Northern blotting reveals that cyclin A2 mRNA is more than 20-fold and cyclin A1 mRNA is about 2-fold in fully grown oocytes of gynogenetic silver crucian carp compared to gonochoristic color crucian carp. However, cyclin B does not show such a difference between them. Western blot analysis also shows that the cyclin A2 protein stockpiled in fully grown oocytes of gynogenetic crucian carp is much more abundant than in gonochoristic crucian carp. Moreover, two different cyclin A2 expression patterns during oocyte maturation have been revealed in the two closely related crucian carps. For color crucian carp, cyclin A2 protein is translated only after hormone stimulation. For silver crucian carp, cyclin A2 protein can be detected throughout the process of maturation division. The different expression of cyclin A2 may be a clue to understanding the special maturation division of gynogenetic silver crucian carp.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
24
|
Morishima K, Horie S, Yamaha E, Arai K. A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting. Zoolog Sci 2002; 19:565-75. [PMID: 12130809 DOI: 10.2108/zsj.19.565] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Memanbetsu town, Hokkaido island, Japan, a high frequency of natural triploid loaches Misgurnus anguillicaudatus (7.4% on average) was detected by flow cytometry for relative DNA content. Among sympatric diploid females (n=6) from a single population, we found two unique females that laid unreduced diploid eggs. They gave normal diploid progeny even after induction of gynogenesis with genetically inert UV-irradiated sperm. When fertilized with normal loach sperm, some unreduced eggs developed into triploids, but the rest into diploids. Hybridization using goldfish Carassius auratus sperm gave both normal diploid loaches and inviable allotriploid hybrids possessing the diploid loach genome and the haploid goldfish genome. Microsatellite genotyping and DNA fingerprinting demonstrated that the diploid progeny developing from the unreduced eggs were genetically identical to the mother, while the triploids had some of the paternal DNA. These results indicate that the diploid eggs reproduced unisexually as a diploid clone and in other cases developed into triploids after accidental incorporation of sperm nucleus. The presence of at least one clonal line in this area was shown by the identical DNA fingerprint detected in five out of 17 diploid loaches examined.
Collapse
Affiliation(s)
- Kagayaki Morishima
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | | | |
Collapse
|
25
|
Xie J, Wen JJ, Chen B, Gui JF. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene 2001; 271:109-16. [PMID: 11410372 DOI: 10.1016/s0378-1119(01)00491-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver crucian carp (Carassius auratus gibelio) is a unique triploid bisexual species that can reproduce by gynogenesis. As all other gynogenetic animals, it keeps its chromosome integrity by inhibiting the first meiosis division (no extrusion of the first pole body). To understand the molecular events governing this reproduction mode, suppression subtractive hybridization was used to identify the genes differentially expressed in fully-grown oocytes of the gynogenetic and gonochoristic crucian carp (gyno-carp and gono-carp). From two specific subtractive cDNA libraries, the clones screened out by dot blots and virtual Northern blots were chosen to clone full-length cDNA by RACE. Four differentially expressed genes were obtained. Two are novel genes and are expressed specifically in the oocytes. The gyno-carp stores much more mRNA of cyclin A2, a new member of the fish A-type cyclin gene, in its fully-grown oocyte than in the gono-carp. The last gene is histone H2A. The histone H2As of these two closely related crucian carps are quite different in the C-terminus. Preliminary characterization of the four genes has been analyzed by nucleotide and deduced amino acid sequence and Northern analysis.
Collapse
Affiliation(s)
- J Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
26
|
Yang ZA, Li QH, Wang YF, Gui JF. Comparative investigation on spindle behavior and MPF activity changes during oocyte maturation between gynogenetic and amphimictic crucian carp. Cell Res 1999; 9:145-54. [PMID: 10418734 DOI: 10.1038/sj.cr.7290012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp. MPF activity was measured by using histone H1 as phosphorylation substrate. There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes, but there existed some subtle difference between them. The subtle difference was that the first peak of MPF kinase activity was kept to a longer-lasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp. It was suggested that the difference may be related to the spindle behavior changes, such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.
Collapse
Affiliation(s)
- Z A Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
| | | | | | | |
Collapse
|
27
|
Zhang Q, Arai K, Yamashita M. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loachMisgurnus anguillicaudatus. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980815)281:6<608::aid-jez9>3.0.co;2-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Arai K, Mukaino M. Clonal nature of gynogenetically induced progeny of triploid (diploid × tetraploid) loach,Misgurnus anguillicaudatus (pisces: cobitididae). ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19970815)278:6<412::aid-jez9>3.0.co;2-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|